Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jan 23;65(Pt 2):o366. doi: 10.1107/S1600536809002098

N-(2,3-Dimethyl­phen­yl)benzene­sulfonamide

B Thimme Gowda a,*, Sabine Foro b, K S Babitha a, Hartmut Fuess b
PMCID: PMC2968343  PMID: 21581964

Abstract

In the crystal structure of the title compound, C14H15NO2S, the amino H atom is trans to one of the O atoms of the SO2 group. Furthermore, the N—H bond is anti to the ortho- and meta-methyl groups of the aromatic ring. The two aromatic rings are tilted relative to each other by 64.8 (1)°. The mol­ecules form zigzag chains along the a axis via inter­molecular N—H⋯O hydrogen bonds.

Related literature

For related literature, see: Gelbrich et al. (2007); Gowda et al. (2005); Gowda et al. (2008a ,b ,c ); Perlovich et al. (2006).graphic file with name e-65-0o366-scheme1.jpg

Experimental

Crystal data

  • C14H15NO2S

  • M r = 261.33

  • Orthorhombic, Inline graphic

  • a = 6.3969 (5) Å

  • b = 8.8767 (6) Å

  • c = 23.082 (2) Å

  • V = 1310.67 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 299 (2) K

  • 0.50 × 0.30 × 0.18 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) T min = 0.889, T max = 0.958

  • 5869 measured reflections

  • 2611 independent reflections

  • 2200 reflections with I > 2σ(I)

  • R int = 0.014

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.094

  • S = 1.07

  • 2611 reflections

  • 168 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (1983), 1060 Friedel pairs

  • Flack parameter: −0.04 (9)

Data collection: CrysAlis CCD (Oxford Diffraction, 2004); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809002098/bt2853sup1.cif

e-65-0o366-sup1.cif (17.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809002098/bt2853Isup2.hkl

e-65-0o366-Isup2.hkl (128.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.84 (3) 2.10 (3) 2.936 (2) 176 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

supplementary crystallographic information

Comment

In the present work, as part of a study of the substituent effects on the crystal structures of N-(aryl)-arylsulfonamides (Gowda et al., 2008a, 2008b, 2008c), the structure of N-(2,3-dimethylphenyl)-benzenesulfonamide has been determined. The amino H atom is trans to one of the O atoms of the SO2 group (Fig. 1), similar to that observed in N-(2,6-dimethylphenyl)- benzenesulfonamide (Gowda et al., 2008a), N-(2-methylphenyl)-benzenesulfonamide (Gowda et al., 2008b) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007; Gowda et al., 2008c). The two benzene rings are tilted relative to each other by 64.8 (1)°, compared with the values of 44.9 (1)° in N-(2,6-dimethylphenyl)- benzenesulfonamide and 61.5 (1)° in N-(2-methylphenyl)-benzenesulfonamide. The other bond parameters of the title compound are similar to those observed in other N-(aryl)-sulfonamides. The crystal packing is stabilized by intermolecular N—H···O hydrogen bonds forming zigzag chains along the a axis (Table 1, Fig. 2).

Experimental

The solution of benzene (10 cc) in chloroform (40 cc) was treated dropwise with chlorosulfonic acid (25 cc) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual benzenesulfonylchloride was treated with 2,3-dimethylaniline in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 cc). The resultant solid N-(2,3-dimethylphenyl)-benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Gowda et al., 2005). The single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement

The C-bound H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 or 0.96 Å. The H atom of the NH group was located in difference map, and its positional parameters were refined freely. All H atoms were refined with isotropic displacement parameters set to 1.2 times of the Ueq of the parent atom.

To improve considerably values of R1, wR2, and GOOF three reflections (0 1 1, 0 1 2, 0 1 3) were omitted from the refinement.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atom labeling scheme. The displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Molecular packing of the title compound with hydrogen bonding shown as dashed lines.

Crystal data

C14H15NO2S F(000) = 552
Mr = 261.33 Dx = 1.324 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 2432 reflections
a = 6.3969 (5) Å θ = 2.3–27.7°
b = 8.8767 (6) Å µ = 0.24 mm1
c = 23.082 (2) Å T = 299 K
V = 1310.67 (18) Å3 Rod, colourless
Z = 4 0.50 × 0.30 × 0.18 mm

Data collection

Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector 2611 independent reflections
Radiation source: fine-focus sealed tube 2200 reflections with I > 2σ(I)
graphite Rint = 0.014
Rotation method data acquisition using ω and φ scans θmax = 26.4°, θmin = 3.3°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) h = −7→7
Tmin = 0.889, Tmax = 0.958 k = −5→11
5869 measured reflections l = −13→28

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0525P)2 + 0.1566P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max = 0.025
2611 reflections Δρmax = 0.20 e Å3
168 parameters Δρmin = −0.19 e Å3
0 restraints Absolute structure: Flack (1983), 1060 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.04 (9)

Special details

Experimental. CrysAlis RED (Oxford Diffraction, 2007) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.2823 (3) −0.0378 (2) 0.43543 (9) 0.0389 (5)
C2 0.4720 (4) −0.0422 (3) 0.46456 (11) 0.0507 (6)
H2 0.5124 0.0374 0.4882 0.061*
C3 0.5998 (4) −0.1662 (3) 0.45797 (13) 0.0651 (7)
H3 0.7262 −0.1708 0.4778 0.078*
C4 0.5424 (5) −0.2816 (3) 0.42263 (14) 0.0701 (9)
H4 0.6285 −0.3655 0.4189 0.084*
C5 0.3566 (6) −0.2746 (3) 0.39226 (13) 0.0740 (9)
H5 0.3206 −0.3519 0.3670 0.089*
C6 0.2245 (5) −0.1532 (3) 0.39934 (11) 0.0564 (6)
H6 0.0974 −0.1496 0.3798 0.068*
C7 0.2683 (4) 0.2922 (2) 0.36164 (9) 0.0419 (5)
C8 0.1257 (4) 0.3805 (2) 0.33190 (9) 0.0441 (5)
C9 0.1664 (4) 0.4088 (3) 0.27267 (10) 0.0536 (6)
C10 0.3383 (5) 0.3483 (3) 0.24667 (12) 0.0701 (8)
H10 0.3632 0.3679 0.2077 0.084*
C11 0.4762 (5) 0.2585 (3) 0.27715 (13) 0.0757 (9)
H11 0.5909 0.2167 0.2583 0.091*
C12 0.4452 (4) 0.2308 (3) 0.33475 (11) 0.0566 (7)
H12 0.5395 0.1724 0.3557 0.068*
C13 −0.0598 (4) 0.4452 (3) 0.36156 (12) 0.0601 (7)
H13A −0.0457 0.5528 0.3637 0.072*
H13B −0.0697 0.4045 0.4000 0.072*
H13C −0.1837 0.4203 0.3402 0.072*
C14 0.0210 (6) 0.5071 (4) 0.23845 (14) 0.0840 (10)
H14A 0.0214 0.6070 0.2544 0.101*
H14B −0.1179 0.4664 0.2402 0.101*
H14C 0.0665 0.5108 0.1988 0.101*
N1 0.2351 (3) 0.2670 (2) 0.42314 (7) 0.0413 (5)
H1N 0.337 (4) 0.290 (3) 0.4439 (10) 0.050*
O1 −0.0648 (3) 0.09633 (19) 0.41129 (7) 0.0567 (5)
O2 0.0967 (3) 0.13781 (18) 0.50761 (6) 0.0577 (5)
S1 0.11619 (8) 0.11797 (6) 0.44610 (2) 0.04071 (16)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0474 (12) 0.0325 (11) 0.0367 (11) −0.0028 (9) 0.0072 (10) 0.0039 (9)
C2 0.0512 (14) 0.0446 (13) 0.0562 (15) 0.0015 (11) −0.0003 (11) 0.0037 (11)
C3 0.0525 (15) 0.0602 (15) 0.0826 (19) 0.0094 (13) 0.0059 (15) 0.0201 (14)
C4 0.074 (2) 0.0485 (16) 0.088 (2) 0.0167 (14) 0.0292 (17) 0.0089 (14)
C5 0.103 (3) 0.0439 (14) 0.0747 (19) −0.0003 (17) 0.0165 (19) −0.0139 (13)
C6 0.0650 (16) 0.0453 (14) 0.0588 (15) −0.0036 (13) 0.0013 (12) −0.0065 (11)
C7 0.0453 (13) 0.0366 (12) 0.0437 (12) −0.0046 (10) −0.0013 (10) 0.0016 (9)
C8 0.0463 (11) 0.0389 (11) 0.0471 (11) −0.0040 (12) −0.0060 (10) −0.0038 (10)
C9 0.0728 (18) 0.0463 (13) 0.0418 (12) −0.0153 (12) −0.0039 (12) 0.0044 (10)
C10 0.095 (2) 0.0610 (17) 0.0545 (15) −0.0060 (16) 0.0127 (16) 0.0077 (13)
C11 0.0747 (19) 0.0694 (19) 0.083 (2) 0.0123 (16) 0.0330 (17) 0.0058 (16)
C12 0.0488 (15) 0.0536 (15) 0.0674 (17) 0.0070 (12) 0.0105 (12) 0.0128 (12)
C13 0.0515 (16) 0.0658 (16) 0.0631 (16) 0.0125 (13) 0.0018 (12) 0.0035 (13)
C14 0.089 (2) 0.094 (2) 0.069 (2) −0.002 (2) −0.0176 (18) 0.0251 (17)
N1 0.0473 (11) 0.0380 (10) 0.0384 (10) −0.0017 (9) −0.0094 (9) −0.0001 (8)
O1 0.0425 (10) 0.0555 (11) 0.0721 (11) −0.0045 (8) −0.0070 (7) 0.0018 (8)
O2 0.0708 (11) 0.0589 (10) 0.0432 (8) 0.0133 (10) 0.0158 (8) 0.0008 (7)
S1 0.0425 (3) 0.0397 (3) 0.0399 (3) 0.0026 (3) 0.0038 (2) 0.0009 (2)

Geometric parameters (Å, °)

C1—C6 1.371 (3) C9—C10 1.363 (4)
C1—C2 1.388 (3) C9—C14 1.500 (4)
C1—S1 1.762 (2) C10—C11 1.381 (4)
C2—C3 1.379 (4) C10—H10 0.9300
C2—H2 0.9300 C11—C12 1.367 (4)
C3—C4 1.360 (4) C11—H11 0.9300
C3—H3 0.9300 C12—H12 0.9300
C4—C5 1.381 (5) C13—H13A 0.9600
C4—H4 0.9300 C13—H13B 0.9600
C5—C6 1.380 (4) C13—H13C 0.9600
C5—H5 0.9300 C14—H14A 0.9600
C6—H6 0.9300 C14—H14B 0.9600
C7—C8 1.385 (3) C14—H14C 0.9600
C7—C12 1.401 (3) N1—S1 1.615 (2)
C7—N1 1.453 (3) N1—H1N 0.84 (3)
C8—C9 1.414 (3) O1—S1 1.4221 (17)
C8—C13 1.485 (3) O2—S1 1.4362 (15)
C6—C1—C2 120.6 (2) C11—C10—H10 119.4
C6—C1—S1 120.57 (19) C12—C11—C10 120.4 (3)
C2—C1—S1 118.80 (16) C12—C11—H11 119.8
C3—C2—C1 119.2 (2) C10—C11—H11 119.8
C3—C2—H2 120.4 C11—C12—C7 118.6 (3)
C1—C2—H2 120.4 C11—C12—H12 120.7
C4—C3—C2 120.4 (3) C7—C12—H12 120.7
C4—C3—H3 119.8 C8—C13—H13A 109.5
C2—C3—H3 119.8 C8—C13—H13B 109.5
C3—C4—C5 120.2 (3) H13A—C13—H13B 109.5
C3—C4—H4 119.9 C8—C13—H13C 109.5
C5—C4—H4 119.9 H13A—C13—H13C 109.5
C6—C5—C4 120.1 (3) H13B—C13—H13C 109.5
C6—C5—H5 119.9 C9—C14—H14A 109.5
C4—C5—H5 119.9 C9—C14—H14B 109.5
C1—C6—C5 119.4 (3) H14A—C14—H14B 109.5
C1—C6—H6 120.3 C9—C14—H14C 109.5
C5—C6—H6 120.3 H14A—C14—H14C 109.5
C8—C7—C12 122.2 (2) H14B—C14—H14C 109.5
C8—C7—N1 118.4 (2) C7—N1—S1 121.07 (14)
C12—C7—N1 119.4 (2) C7—N1—H1N 114.0 (17)
C7—C8—C9 117.3 (2) S1—N1—H1N 112.4 (17)
C7—C8—C13 121.1 (2) O1—S1—O2 120.28 (11)
C9—C8—C13 121.6 (2) O1—S1—N1 107.97 (10)
C10—C9—C8 120.3 (2) O2—S1—N1 105.37 (10)
C10—C9—C14 119.8 (2) O1—S1—C1 107.82 (10)
C8—C9—C14 119.9 (2) O2—S1—C1 106.68 (10)
C9—C10—C11 121.2 (3) N1—S1—C1 108.24 (9)
C9—C10—H10 119.4
C6—C1—C2—C3 −1.7 (3) C14—C9—C10—C11 179.4 (3)
S1—C1—C2—C3 177.83 (19) C9—C10—C11—C12 −1.4 (5)
C1—C2—C3—C4 1.1 (4) C10—C11—C12—C7 1.6 (4)
C2—C3—C4—C5 1.0 (4) C8—C7—C12—C11 −0.5 (4)
C3—C4—C5—C6 −2.5 (4) N1—C7—C12—C11 −178.6 (2)
C2—C1—C6—C5 0.2 (4) C8—C7—N1—S1 95.3 (2)
S1—C1—C6—C5 −179.3 (2) C12—C7—N1—S1 −86.4 (2)
C4—C5—C6—C1 1.9 (4) C7—N1—S1—O1 −45.5 (2)
C12—C7—C8—C9 −0.8 (3) C7—N1—S1—O2 −175.20 (17)
N1—C7—C8—C9 177.31 (19) C7—N1—S1—C1 70.97 (19)
C12—C7—C8—C13 −179.5 (2) C6—C1—S1—O1 −1.1 (2)
N1—C7—C8—C13 −1.4 (3) C2—C1—S1—O1 179.35 (17)
C7—C8—C9—C10 1.1 (3) C6—C1—S1—O2 129.3 (2)
C13—C8—C9—C10 179.7 (2) C2—C1—S1—O2 −50.2 (2)
C7—C8—C9—C14 −178.3 (2) C6—C1—S1—N1 −117.7 (2)
C13—C8—C9—C14 0.3 (3) C2—C1—S1—N1 62.79 (19)
C8—C9—C10—C11 0.0 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O2i 0.84 (3) 2.10 (3) 2.936 (2) 176 (2)

Symmetry codes: (i) x+1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2853).

References

  1. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  2. Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632. [DOI] [PubMed]
  3. Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008a). Acta Cryst. E64, o1691. [DOI] [PMC free article] [PubMed]
  4. Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008b). Acta Cryst. E64, o1692. [DOI] [PMC free article] [PubMed]
  5. Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008c). Acta Cryst. E64, o2190. [DOI] [PMC free article] [PubMed]
  6. Gowda, B. T., Shetty, M. & Jayalakshmi, K. L. (2005). Z. Naturforsch. Teil A, 60, 106–112.
  7. Oxford Diffraction (2004). CrysAlis CCD Oxford Diffraction Ltd, Köln, Germany.
  8. Oxford Diffraction (2007). CrysAlis RED Oxford Diffraction Ltd, Köln, Germany.
  9. Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809002098/bt2853sup1.cif

e-65-0o366-sup1.cif (17.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809002098/bt2853Isup2.hkl

e-65-0o366-Isup2.hkl (128.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES