Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jan 8;65(Pt 2):m142. doi: 10.1107/S1600536808044061

[(2-Morpholinoeth­yl)(2-pyridylmethyl­ene)amine]dithio­cyanato­zinc(II)

Bang-Hong Cai a,*
PMCID: PMC2968346  PMID: 21581757

Abstract

The title compound, [Zn(NCS)2(C12H17N3O)], was prepared by the reaction of zinc acetate with pyridine-2-carbaldehyde, 2-morpholinoethyl­amine and ammonium thio­cyanate in an ethanol solution. The ZnII atom is five coordinate with a distorted trigonal–bipyramidal geometry, coordinating with three N atoms of the Schiff base (2-morpholinoeth­yl)(2-pyridylmethyl­idene)amine and two N atoms from two thio­cyanate ligands. The morpholine ring adopts a chair configuration.

Related literature

For background literature on Schiff base complexes, see: Costes et al. (2002); Erxleben (2001); Lacroix et al. (1996); Odoko et al. (2006); Ali et al. (2006). For literature on related zinc(II) complexes, see: Li et al. (2008); Eltayeb et al. (2007); Ali et al. (2008); Zhang & Wang (2007).graphic file with name e-65-0m142-scheme1.jpg

Experimental

Crystal data

  • [Zn(NCS)2(C12H17N3O)]

  • M r = 400.82

  • Triclinic, Inline graphic

  • a = 8.185 (2) Å

  • b = 8.654 (2) Å

  • c = 13.368 (4) Å

  • α = 98.439 (3)°

  • β = 102.587 (3)°

  • γ = 102.501 (3)°

  • V = 883.3 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.64 mm−1

  • T = 298 (2) K

  • 0.23 × 0.23 × 0.20 mm

Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.705, T max = 0.736

  • 7386 measured reflections

  • 3770 independent reflections

  • 2989 reflections with I > 2σ(I)

  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.124

  • S = 1.04

  • 3770 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.47 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808044061/su2087sup1.cif

e-65-0m142-sup1.cif (16.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808044061/su2087Isup2.hkl

e-65-0m142-Isup2.hkl (184.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author is grateful to Jiaying University for financial support.

supplementary crystallographic information

Comment

Schiff bases are extremely interesting ligands and many have been used to form a large number of metal complexes (Costes et al., 2002; Erxleben, 2001; Lacroix et al., 1996; Odoko et al., 2006; Ali et al., 2006). As a continuation of our work in this area, we report herein the crystal structure of a new zinc(II) complex of the Schiff base (2-morpholin-4-ylethyl)-(1-pyridin-2-ylmethylidene)amine and ammonium thiocyanate, (I).

The molecular structure of complex (I) is illustrated in Fig. 1. The ZnII atom is five-coordinate in a trigonal-bipyramidal geometry, coordinating with three N-atoms of the Schiff base ligand and two N-atoms from two thiocyanate ligands. All the coordinate bond lengths are typical and comparable with those in the similar zinc(II) complexes (Li et al., 2008; Eltayeb et al., 2007; Ali et al., 2008; Zhang & Wang, 2007). As expected, the morpholine ring adopts a chair configuration.

Experimental

Pyridine-2-carbaldehyde (0.1 mmol, 10.7 mg), 2-morpholin-4-ylethylamine (0.1 mmol, 13.0 mg), ammonium thiocyanate (0.2 mmol, 15.2 mg), and zinc acetate dihydrate (0.1 mmol, 22.0 mg) were mixed in an ethanol solution (20 ml). The mixture was stirred for 2 h at room temperature, giving a colorless solution. Single-crystals were formed by gradual evaporation of the solution in air after several days.

Refinement

H atoms were placed in calculated positions and treated as riding atoms: C–H = 0.93 - 0.97 Å, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the compound (I), showing 30% probability displacement ellipsoids.

Crystal data

[Zn(NCS)2(C12H17N3O)] Z = 2
Mr = 400.82 F(000) = 412
Triclinic, P1 Dx = 1.507 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.185 (2) Å Cell parameters from 2675 reflections
b = 8.654 (2) Å θ = 2.4–25.0°
c = 13.368 (4) Å µ = 1.64 mm1
α = 98.439 (3)° T = 298 K
β = 102.587 (3)° Block, colorless
γ = 102.501 (3)° 0.23 × 0.23 × 0.20 mm
V = 883.3 (4) Å3

Data collection

Bruker SMART 1000 CCD area-detector diffractometer 3770 independent reflections
Radiation source: fine-focus sealed tube 2989 reflections with I > 2σ(I)
graphite Rint = 0.031
ω scans θmax = 27.0°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −10→10
Tmin = 0.705, Tmax = 0.736 k = −11→10
7386 measured reflections l = −17→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.064P)2 + 0.1459P] where P = (Fo2 + 2Fc2)/3
3770 reflections (Δ/σ)max = 0.001
208 parameters Δρmax = 0.57 e Å3
0 restraints Δρmin = −0.47 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.87080 (4) 0.35121 (4) 0.23426 (3) 0.04844 (15)
S1 0.75132 (16) 0.05952 (14) −0.10471 (7) 0.0759 (3)
S2 1.40376 (14) 0.73452 (15) 0.38080 (9) 0.0854 (4)
O1 1.1836 (4) 0.1269 (4) 0.4455 (2) 0.0791 (8)
N1 0.7747 (4) 0.5343 (3) 0.1472 (2) 0.0551 (7)
N2 0.6437 (3) 0.3649 (3) 0.2720 (2) 0.0552 (7)
N3 0.8546 (3) 0.1714 (3) 0.3427 (2) 0.0493 (6)
N4 0.8437 (4) 0.1978 (4) 0.1048 (2) 0.0662 (8)
N5 1.0969 (4) 0.5041 (4) 0.2956 (3) 0.0793 (10)
C1 0.6221 (4) 0.5515 (4) 0.1613 (3) 0.0531 (8)
C2 0.5377 (5) 0.6554 (4) 0.1166 (3) 0.0622 (9)
H2 0.4323 0.6652 0.1285 0.075*
C3 0.6133 (5) 0.7444 (4) 0.0539 (3) 0.0662 (10)
H3 0.5592 0.8155 0.0223 0.079*
C4 0.7674 (5) 0.7276 (4) 0.0385 (3) 0.0690 (10)
H4 0.8204 0.7867 −0.0038 0.083*
C5 0.8445 (5) 0.6212 (4) 0.0866 (3) 0.0648 (9)
H5 0.9503 0.6103 0.0759 0.078*
C6 0.5531 (4) 0.4478 (4) 0.2283 (3) 0.0603 (9)
H6 0.4434 0.4439 0.2382 0.072*
C7 0.5856 (5) 0.2577 (6) 0.3393 (3) 0.0776 (12)
H7A 0.4603 0.2194 0.3188 0.093*
H7B 0.6214 0.3151 0.4117 0.093*
C8 0.6656 (5) 0.1177 (5) 0.3275 (3) 0.0730 (11)
H8A 0.6415 0.0524 0.3782 0.088*
H8B 0.6134 0.0506 0.2581 0.088*
C9 0.9411 (5) 0.2391 (4) 0.4547 (3) 0.0612 (9)
H9A 0.8978 0.1647 0.4962 0.073*
H9B 0.9127 0.3402 0.4752 0.073*
C10 1.1332 (5) 0.2682 (5) 0.4768 (3) 0.0723 (11)
H10A 1.1776 0.3503 0.4404 0.087*
H10B 1.1840 0.3088 0.5513 0.087*
C11 1.1103 (5) 0.0677 (5) 0.3379 (3) 0.0757 (11)
H11A 1.1471 −0.0283 0.3162 0.091*
H11B 1.1522 0.1484 0.2998 0.091*
C12 0.9161 (5) 0.0269 (4) 0.3108 (3) 0.0639 (9)
H12A 0.8704 −0.0134 0.2360 0.077*
H12B 0.8735 −0.0576 0.3460 0.077*
C13 0.8047 (4) 0.1408 (4) 0.0181 (3) 0.0504 (7)
C14 1.2216 (5) 0.6003 (4) 0.3288 (3) 0.0560 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.0390 (2) 0.0533 (2) 0.0485 (2) 0.00680 (15) 0.01199 (15) 0.00305 (16)
S1 0.0891 (7) 0.0910 (7) 0.0462 (5) 0.0300 (6) 0.0125 (5) 0.0066 (5)
S2 0.0656 (6) 0.0863 (7) 0.0827 (7) −0.0173 (5) 0.0278 (6) −0.0084 (6)
O1 0.0664 (17) 0.090 (2) 0.0778 (19) 0.0235 (15) 0.0049 (14) 0.0222 (16)
N1 0.0487 (15) 0.0542 (16) 0.0604 (17) 0.0143 (12) 0.0129 (13) 0.0061 (13)
N2 0.0465 (15) 0.0640 (16) 0.0577 (17) 0.0151 (13) 0.0190 (13) 0.0100 (14)
N3 0.0469 (14) 0.0472 (14) 0.0473 (14) 0.0036 (11) 0.0098 (11) 0.0060 (11)
N4 0.083 (2) 0.0677 (19) 0.0506 (17) 0.0277 (16) 0.0191 (15) 0.0057 (15)
N5 0.0497 (17) 0.077 (2) 0.090 (3) −0.0094 (16) −0.0065 (17) 0.0269 (19)
C1 0.0496 (18) 0.0513 (18) 0.0517 (19) 0.0153 (14) 0.0064 (14) −0.0036 (14)
C2 0.056 (2) 0.059 (2) 0.067 (2) 0.0235 (16) 0.0071 (17) −0.0023 (17)
C3 0.072 (2) 0.0517 (19) 0.068 (2) 0.0210 (17) 0.0016 (19) 0.0079 (17)
C4 0.070 (2) 0.058 (2) 0.077 (3) 0.0139 (18) 0.017 (2) 0.0159 (19)
C5 0.055 (2) 0.063 (2) 0.080 (3) 0.0176 (17) 0.0196 (18) 0.0153 (19)
C6 0.0466 (18) 0.070 (2) 0.063 (2) 0.0184 (16) 0.0179 (16) 0.0011 (18)
C7 0.053 (2) 0.107 (3) 0.086 (3) 0.018 (2) 0.034 (2) 0.038 (2)
C8 0.051 (2) 0.078 (3) 0.084 (3) −0.0047 (18) 0.0138 (19) 0.031 (2)
C9 0.074 (2) 0.0553 (19) 0.0471 (19) 0.0103 (17) 0.0135 (17) 0.0017 (15)
C10 0.071 (2) 0.070 (2) 0.057 (2) 0.0043 (19) −0.0076 (18) 0.0106 (18)
C11 0.075 (3) 0.085 (3) 0.081 (3) 0.035 (2) 0.031 (2) 0.022 (2)
C12 0.082 (3) 0.0477 (18) 0.055 (2) 0.0115 (17) 0.0100 (18) 0.0070 (16)
C13 0.0516 (18) 0.0499 (17) 0.057 (2) 0.0198 (14) 0.0182 (15) 0.0183 (16)
C14 0.061 (2) 0.064 (2) 0.0527 (19) 0.0207 (17) 0.0245 (17) 0.0200 (16)

Geometric parameters (Å, °)

Zn1—N5 1.951 (3) C3—C4 1.356 (6)
Zn1—N4 1.959 (3) C3—H3 0.9300
Zn1—N2 2.051 (3) C4—C5 1.381 (5)
Zn1—N1 2.273 (3) C4—H4 0.9300
Zn1—N3 2.279 (3) C5—H5 0.9300
S1—C13 1.611 (4) C6—H6 0.9300
S2—C14 1.618 (4) C7—C8 1.501 (6)
O1—C11 1.401 (5) C7—H7A 0.9700
O1—C10 1.409 (5) C7—H7B 0.9700
N1—C5 1.319 (5) C8—H8A 0.9700
N1—C1 1.339 (4) C8—H8B 0.9700
N2—C6 1.253 (4) C9—C10 1.492 (5)
N2—C7 1.462 (5) C9—H9A 0.9700
N3—C8 1.475 (4) C9—H9B 0.9700
N3—C9 1.479 (4) C10—H10A 0.9700
N3—C12 1.486 (4) C10—H10B 0.9700
N4—C13 1.137 (4) C11—C12 1.500 (6)
N5—C14 1.122 (4) C11—H11A 0.9700
C1—C2 1.375 (5) C11—H11B 0.9700
C1—C6 1.471 (5) C12—H12A 0.9700
C2—C3 1.374 (6) C12—H12B 0.9700
C2—H2 0.9300
N5—Zn1—N4 117.35 (16) N2—C6—H6 120.4
N5—Zn1—N2 126.27 (15) C1—C6—H6 120.4
N4—Zn1—N2 114.94 (12) N2—C7—C8 107.8 (3)
N5—Zn1—N1 91.02 (12) N2—C7—H7A 110.1
N4—Zn1—N1 93.10 (12) C8—C7—H7A 110.1
N2—Zn1—N1 74.60 (11) N2—C7—H7B 110.1
N5—Zn1—N3 104.43 (12) C8—C7—H7B 110.1
N4—Zn1—N3 97.98 (11) H7A—C7—H7B 108.5
N2—Zn1—N3 79.39 (11) N3—C8—C7 112.0 (3)
N1—Zn1—N3 153.98 (10) N3—C8—H8A 109.2
C11—O1—C10 109.3 (3) C7—C8—H8A 109.2
C5—N1—C1 117.5 (3) N3—C8—H8B 109.2
C5—N1—Zn1 130.3 (2) C7—C8—H8B 109.2
C1—N1—Zn1 112.2 (2) H8A—C8—H8B 107.9
C6—N2—C7 123.2 (3) N3—C9—C10 112.0 (3)
C6—N2—Zn1 119.9 (2) N3—C9—H9A 109.2
C7—N2—Zn1 116.5 (2) C10—C9—H9A 109.2
C8—N3—C9 110.1 (3) N3—C9—H9B 109.2
C8—N3—C12 107.7 (3) C10—C9—H9B 109.2
C9—N3—C12 107.8 (3) H9A—C9—H9B 107.9
C8—N3—Zn1 100.9 (2) O1—C10—C9 112.2 (3)
C9—N3—Zn1 115.6 (2) O1—C10—H10A 109.2
C12—N3—Zn1 114.3 (2) C9—C10—H10A 109.2
C13—N4—Zn1 159.8 (3) O1—C10—H10B 109.2
C14—N5—Zn1 175.1 (3) C9—C10—H10B 109.2
N1—C1—C2 123.0 (3) H10A—C10—H10B 107.9
N1—C1—C6 113.7 (3) O1—C11—C12 111.9 (3)
C2—C1—C6 123.3 (3) O1—C11—H11A 109.2
C3—C2—C1 118.2 (3) C12—C11—H11A 109.2
C3—C2—H2 120.9 O1—C11—H11B 109.2
C1—C2—H2 120.9 C12—C11—H11B 109.2
C4—C3—C2 119.4 (3) H11A—C11—H11B 107.9
C4—C3—H3 120.3 N3—C12—C11 110.8 (3)
C2—C3—H3 120.3 N3—C12—H12A 109.5
C3—C4—C5 118.9 (4) C11—C12—H12A 109.5
C3—C4—H4 120.6 N3—C12—H12B 109.5
C5—C4—H4 120.6 C11—C12—H12B 109.5
N1—C5—C4 123.0 (4) H12A—C12—H12B 108.1
N1—C5—H5 118.5 N4—C13—S1 179.4 (3)
C4—C5—H5 118.5 N5—C14—S2 177.4 (3)
N2—C6—C1 119.3 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2087).

References

  1. Ali, H. M., Mohamed Mustafa, M. I., Rizal, M. R. & Ng, S. W. (2008). Acta Cryst. E64, m421. [DOI] [PMC free article] [PubMed]
  2. Ali, H. M., Puvaneswary, S. & Ng, S. W. (2006). Acta Cryst. E62, m2737–m2738.
  3. Bruker (2002). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Costes, J.-P., Clemente-Juan, J. M., Dahan, F., Dumestre, F. & Tuchagues, J.-P. (2002). Inorg. Chem.41, 2886–2891. [DOI] [PubMed]
  5. Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007). Acta Cryst. E63, m2024–m2025.
  6. Erxleben, A. (2001). Inorg. Chem.40, 208–213. [DOI] [PubMed]
  7. Lacroix, P. G., Di Bella, S. & Ledoux, I. (1996). Chem. Mater.8, 541–545.
  8. Li, H.-Q., Xian, H.-D., Liu, J.-F. & Zhao, G.-L. (2008). Acta Cryst. E64, m1495. [DOI] [PMC free article] [PubMed]
  9. Odoko, M., Tsuchida, N. & Okabe, N. (2006). Acta Cryst. E62, m710–m711.
  10. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Zhang, Q.-W. & Wang, G.-X. (2007). Acta Cryst. E63, m652–m653.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808044061/su2087sup1.cif

e-65-0m142-sup1.cif (16.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808044061/su2087Isup2.hkl

e-65-0m142-Isup2.hkl (184.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES