Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jan 23;65(Pt 2):m211–m212. doi: 10.1107/S1600536809001895

catena-Poly[[bis­(5-chloro-2-nitro­benzoato)copper(II)]-bis­(μ-5-chloro-2-nitro­benzoato)]

Eng Khoon Lim a, Siang Guan Teoh a, Ibrahim Abdul Razak b,, Hoong-Kun Fun b,*
PMCID: PMC2968352  PMID: 21581807

Abstract

In the title compound, [Cu2(C7H3ClNO4)4]n, the coordination geometry around each CuII ion is distorted square-pyramidal. The CuO5 coordination is formed by five O atoms from the carboxyl­ate groups of five 5-chloro-2-nitro­benzoate ligands. This coordination leads to the formation of centrosymmetric binuclear units which are edge-shared, forming a linear chain along the a axis, with the CuII ions alternately separated by 2.5891 (4) and 3.1763 (4) Å. The chains are inter­connected into a three-dimensional network by C—H⋯O inter­actions.

Related literature

For general background, see: Balaraman et al. (2006); Tomoya et al. (2005). For bond-length data, see: Allen et al. (1987). For related structures, see: Kabbani et al. (2004); Stachová et al. (2004).graphic file with name e-65-0m211-scheme1.jpg

Experimental

Crystal data

  • [Cu2(C7H3ClNO4)4]

  • M r = 929.30

  • Triclinic, Inline graphic

  • a = 5.0353 (1) Å

  • b = 11.8001 (3) Å

  • c = 13.8595 (3) Å

  • α = 84.539 (2)°

  • β = 85.553 (1)°

  • γ = 85.610 (2)°

  • V = 815.30 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.72 mm−1

  • T = 100.0 (1) K

  • 0.47 × 0.21 × 0.08 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.498, T max = 0.875

  • 11613 measured reflections

  • 4656 independent reflections

  • 3994 reflections with I > 2σ(I)

  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.116

  • S = 1.10

  • 4656 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.72 e Å−3

  • Δρmin = −1.04 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809001895/ci2748sup1.cif

e-65-0m211-sup1.cif (20.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809001895/ci2748Isup2.hkl

e-65-0m211-Isup2.hkl (228.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Cu1—O5 1.942 (2)
Cu1—O6i 1.946 (2)
Cu1—O2ii 1.950 (2)
Cu1—O1iii 2.008 (2)
Cu1—O1 2.165 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O4iv 0.93 2.44 3.254 (3) 146
C11—H11A⋯O8v 0.93 2.46 3.384 (3) 172
C14—H14A⋯O4i 0.93 2.54 3.417 (3) 156

Symmetry codes: (i) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

HKF thanks the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312.

supplementary crystallographic information

Comment

The ability to induce DNA cleavage in the presence of H2O2 and reductants by phenanthroline-based copper complexes such as [Cu(imda)(5,6-dmp)] (where 5,6-dmp is 5,6-dimethyl-1,10-phenanthroline) and [Cu(N,N'-dialkyl-1,10-phenanthroline -2,9-dimethanamine)] (Balaraman et al., 2006; Tomoya et al., 2005) have driven us to investigate the DNA cleavage ability of benzoic acid-based copper complexes. Several benzoic acid-based copper complexes have been prepared in our laboratory and their DNA cleavage abilities are further investigated. In this paper, we report the crystal structure of the title compound.

In the title compound, the coordination geometry around each CuII ion can be described as square-pyramidal, formed by five O atoms from the carboxylate groups of five 5-chloro-2-nitrobenzoate ligands. The basal plane positions are occupied by atoms O5, O6A, O2B and O1C with an average Cu—O bond length of 1.962 (2) Å. The apical position is occupied by atom O1 (Fig.1). The Cu1 atom is displaced away from the basal plane by 0.1689 (3) Å and the Cu—Cu(-x,-y,1 - z) separation is 2.5891 (4) Å. Similar CuO5 coordination were observed in related structures reported by Kabbani et al. (2004) and Stachová et al. (2004). The CuO5 square pyramids are edge-shared to form a linear polymeric chain along the a axis. In the chain, the CuII ions are alternately separated by 2.5891 (4) and 3.1763 (4) Å.

Bond lengths of the ligands have normal values (Allen et al., 1987). The dihedral angle between nitro groups and the benzene rings are: C1–C6/N1/O3/O4 = 12.0 (3)° and C9–C14/N2/O7/O8 = 65.1 (3)°.

The polymeric chains are interconnected through C—H···O intramolecular interactions, forming a three-dimensional network (Table 2 and Fig. 2).

Experimental

An ethanol solution (50 ml) of 5-chloro-2-nitrobenzoic acid (4.84 g, 0.024 mol) was added to a solution of copper(II) sulfate pentahydrate (3.00 g, 0.012 mol) in ethanol (50 ml) and the mixture was stirred and refluxed for 2 h. The resulting solution was filtered and left to cool down to room temperature. After a few days of slow evaporation, blue crystals suitable for X-ray analysis were collected.

Refinement

All H atoms were positioned geometrically and refined using a riding model with C-H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

Part of the polymeric chain of the title compound, showing the coordination environment of the Cu atom and with displacement ellipsoids drawn at the 50% probability level. H-atoms are omitted for clarity. Symmetry codes: (A) -x, -y, 1-z; (B) x-1, y, z; (C) 1-x, -y, 1-z.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed down the a axis. Hydrogen bonds are shown as dashed lines.

Crystal data

[Cu2(C7H3ClNO4)4] Z = 1
Mr = 929.30 F(000) = 462
Triclinic, P1 Dx = 1.893 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 5.0353 (1) Å Cell parameters from 4198 reflections
b = 11.8001 (3) Å θ = 2.4–33.5°
c = 13.8595 (3) Å µ = 1.72 mm1
α = 84.539 (2)° T = 100 K
β = 85.553 (1)° Plate, blue
γ = 85.610 (2)° 0.47 × 0.21 × 0.08 mm
V = 815.30 (3) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer 4656 independent reflections
Radiation source: fine-focus sealed tube 3994 reflections with I > 2σ(I)
graphite Rint = 0.034
φ and ω scans θmax = 30.0°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −7→7
Tmin = 0.498, Tmax = 0.875 k = −16→16
11613 measured reflections l = −19→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116 H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0656P)2 + 0.3146P] where P = (Fo2 + 2Fc2)/3
4656 reflections (Δ/σ)max = 0.001
244 parameters Δρmax = 0.72 e Å3
0 restraints Δρmin = −1.04 e Å3

Special details

Experimental. The data was collected with the Oxford Cryosystem Cobra low-temperature attachment
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.21339 (5) 0.05196 (2) 0.471444 (19) 0.01008 (9)
Cl1 0.39928 (16) 0.36470 (6) 0.09685 (5) 0.02730 (16)
Cl2 −0.29870 (15) −0.38843 (6) 0.13820 (5) 0.02494 (16)
O1 0.6289 (3) 0.09053 (14) 0.45747 (12) 0.0112 (3)
O2 1.0009 (3) 0.17993 (14) 0.40983 (12) 0.0130 (3)
O3 0.6319 (4) 0.29482 (16) 0.56079 (13) 0.0190 (4)
O4 0.2829 (4) 0.41394 (17) 0.56834 (15) 0.0242 (4)
O5 0.2124 (3) −0.02541 (15) 0.35393 (12) 0.0138 (3)
O6 −0.1564 (3) −0.11767 (15) 0.40442 (12) 0.0141 (3)
O7 0.1420 (4) 0.10970 (17) 0.17610 (15) 0.0247 (4)
O8 0.5268 (4) 0.0237 (2) 0.13998 (16) 0.0283 (5)
N1 0.4497 (4) 0.35283 (18) 0.52330 (16) 0.0162 (4)
N2 0.2865 (4) 0.02437 (19) 0.16027 (15) 0.0172 (4)
C1 0.4307 (5) 0.3520 (2) 0.41832 (17) 0.0138 (4)
C2 0.2609 (5) 0.4338 (2) 0.3721 (2) 0.0191 (5)
H2A 0.1571 0.4864 0.4073 0.023*
C3 0.2481 (5) 0.4361 (2) 0.2728 (2) 0.0215 (5)
H3A 0.1339 0.4899 0.2403 0.026*
C4 0.4063 (5) 0.3577 (2) 0.22185 (19) 0.0191 (5)
C5 0.5750 (5) 0.2744 (2) 0.26839 (18) 0.0150 (4)
H5A 0.6780 0.2219 0.2329 0.018*
C6 0.5877 (4) 0.2705 (2) 0.36849 (18) 0.0128 (4)
C7 0.7537 (4) 0.1749 (2) 0.41697 (16) 0.0116 (4)
C8 0.0272 (4) −0.0881 (2) 0.34205 (17) 0.0125 (4)
C9 0.0247 (5) −0.1317 (2) 0.24379 (17) 0.0131 (4)
C10 0.1569 (5) −0.0832 (2) 0.16019 (18) 0.0156 (5)
C11 0.1618 (5) −0.1279 (2) 0.07137 (19) 0.0209 (5)
H11A 0.2577 −0.0948 0.0173 0.025*
C12 0.0212 (5) −0.2231 (2) 0.06434 (19) 0.0217 (5)
H12A 0.0200 −0.2545 0.0053 0.026*
C13 −0.1169 (5) −0.2706 (2) 0.14635 (19) 0.0187 (5)
C14 −0.1152 (5) −0.2281 (2) 0.23593 (18) 0.0168 (5)
H14A −0.2060 −0.2632 0.2903 0.020*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.00866 (14) 0.01013 (15) 0.01168 (15) −0.00058 (9) −0.00121 (9) −0.00174 (10)
Cl1 0.0418 (4) 0.0235 (3) 0.0178 (3) −0.0067 (3) −0.0126 (3) 0.0037 (2)
Cl2 0.0375 (4) 0.0189 (3) 0.0210 (3) −0.0106 (3) −0.0089 (3) −0.0029 (2)
O1 0.0094 (7) 0.0094 (8) 0.0142 (7) 0.0000 (6) −0.0016 (6) 0.0014 (6)
O2 0.0087 (7) 0.0118 (8) 0.0181 (8) 0.0005 (6) −0.0013 (6) 0.0012 (6)
O3 0.0224 (9) 0.0174 (9) 0.0175 (9) 0.0029 (7) −0.0051 (7) −0.0030 (7)
O4 0.0250 (10) 0.0228 (10) 0.0237 (10) 0.0053 (8) 0.0051 (8) −0.0068 (8)
O5 0.0148 (8) 0.0154 (8) 0.0120 (7) −0.0021 (6) −0.0019 (6) −0.0032 (6)
O6 0.0135 (7) 0.0151 (8) 0.0144 (8) −0.0012 (6) −0.0007 (6) −0.0049 (6)
O7 0.0288 (10) 0.0179 (10) 0.0275 (10) −0.0044 (8) −0.0037 (8) −0.0001 (8)
O8 0.0184 (9) 0.0366 (12) 0.0305 (11) −0.0099 (8) 0.0025 (8) −0.0026 (9)
N1 0.0169 (9) 0.0138 (10) 0.0181 (10) −0.0024 (7) 0.0002 (8) −0.0021 (8)
N2 0.0204 (10) 0.0178 (11) 0.0137 (9) −0.0049 (8) −0.0012 (8) −0.0004 (8)
C1 0.0140 (10) 0.0113 (11) 0.0164 (11) −0.0027 (8) −0.0004 (8) −0.0023 (8)
C2 0.0167 (11) 0.0139 (12) 0.0264 (13) −0.0007 (9) −0.0003 (9) −0.0013 (10)
C3 0.0182 (11) 0.0162 (12) 0.0299 (14) 0.0012 (9) −0.0099 (10) 0.0040 (10)
C4 0.0229 (12) 0.0191 (13) 0.0164 (11) −0.0073 (10) −0.0057 (9) 0.0014 (9)
C5 0.0178 (11) 0.0127 (11) 0.0149 (11) −0.0032 (8) −0.0024 (8) −0.0005 (8)
C6 0.0100 (9) 0.0100 (10) 0.0185 (11) −0.0021 (8) −0.0015 (8) 0.0002 (8)
C7 0.0136 (10) 0.0113 (10) 0.0104 (9) −0.0026 (8) −0.0001 (8) −0.0033 (8)
C8 0.0126 (10) 0.0114 (11) 0.0138 (10) 0.0001 (8) −0.0018 (8) −0.0022 (8)
C9 0.0132 (10) 0.0134 (11) 0.0132 (10) −0.0001 (8) −0.0025 (8) −0.0032 (8)
C10 0.0149 (10) 0.0146 (11) 0.0176 (11) −0.0027 (8) −0.0012 (8) −0.0010 (9)
C11 0.0232 (12) 0.0250 (14) 0.0145 (11) −0.0040 (10) −0.0002 (9) −0.0012 (10)
C12 0.0273 (13) 0.0242 (14) 0.0151 (11) −0.0021 (10) −0.0033 (10) −0.0078 (10)
C13 0.0222 (12) 0.0157 (12) 0.0197 (12) −0.0031 (9) −0.0063 (9) −0.0033 (9)
C14 0.0196 (11) 0.0153 (12) 0.0155 (11) −0.0029 (9) −0.0016 (9) 0.0000 (9)

Geometric parameters (Å, °)

Cu1—O5 1.942 (2) C1—C2 1.384 (4)
Cu1—O6i 1.946 (2) C1—C6 1.397 (3)
Cu1—O2ii 1.950 (2) C2—C3 1.381 (4)
Cu1—O1iii 2.008 (2) C2—H2A 0.93
Cu1—O1 2.165 (2) C3—C4 1.383 (4)
Cu1—Cu1i 2.5891 (5) C3—H3A 0.93
Cl1—C4 1.729 (3) C4—C5 1.393 (4)
Cl2—C13 1.739 (3) C5—C6 1.390 (3)
O1—C7 1.279 (3) C5—H5A 0.93
O1—Cu1iii 2.0075 (17) C6—C7 1.490 (3)
O2—C7 1.246 (3) C8—C9 1.502 (3)
O2—Cu1iv 1.9501 (17) C9—C10 1.388 (3)
O3—N1 1.221 (3) C9—C14 1.400 (3)
O4—N1 1.236 (3) C10—C11 1.382 (3)
O5—C8 1.263 (3) C11—C12 1.388 (4)
O6—C8 1.262 (3) C11—H11A 0.93
O6—Cu1i 1.9459 (16) C12—C13 1.380 (4)
O7—N2 1.223 (3) C12—H12A 0.93
O8—N2 1.220 (3) C13—C14 1.383 (3)
N1—C1 1.466 (3) C14—H14A 0.93
N2—C10 1.472 (3)
O5—Cu1—O6i 170.11 (7) C4—C3—H3A 120.3
O5—Cu1—O2ii 88.98 (7) C3—C4—C5 121.7 (2)
O6i—Cu1—O2ii 90.41 (7) C3—C4—Cl1 119.2 (2)
O5—Cu1—O1iii 90.80 (7) C5—C4—Cl1 119.1 (2)
O6i—Cu1—O1iii 88.11 (7) C6—C5—C4 119.3 (2)
O2ii—Cu1—O1iii 170.10 (6) C6—C5—H5A 120.3
O5—Cu1—O1 97.86 (7) C4—C5—H5A 120.3
O6i—Cu1—O1 91.67 (6) C5—C6—C1 118.1 (2)
O2ii—Cu1—O1 108.91 (7) C5—C6—C7 117.9 (2)
O1iii—Cu1—O1 80.92 (7) C1—C6—C7 123.9 (2)
O5—Cu1—Cu1i 85.61 (5) O2—C7—O1 125.4 (2)
O6i—Cu1—Cu1i 84.53 (5) O2—C7—C6 118.2 (2)
O2ii—Cu1—Cu1i 90.98 (5) O1—C7—C6 116.31 (19)
O1iii—Cu1—Cu1i 79.14 (5) O6—C8—O5 126.5 (2)
O1—Cu1—Cu1i 159.80 (5) O6—C8—C9 116.6 (2)
C7—O1—Cu1iii 127.17 (15) O5—C8—C9 116.8 (2)
C7—O1—Cu1 133.75 (15) C10—C9—C14 117.8 (2)
Cu1iii—O1—Cu1 99.07 (7) C10—C9—C8 123.8 (2)
C7—O2—Cu1iv 117.23 (15) C14—C9—C8 118.4 (2)
C8—O5—Cu1 120.91 (15) C11—C10—C9 122.9 (2)
C8—O6—Cu1i 121.94 (15) C11—C10—N2 115.9 (2)
O3—N1—O4 123.8 (2) C9—C10—N2 121.1 (2)
O3—N1—C1 118.2 (2) C10—C11—C12 118.8 (2)
O4—N1—C1 118.0 (2) C10—C11—H11A 120.6
O8—N2—O7 124.6 (2) C12—C11—H11A 120.6
O8—N2—C10 118.2 (2) C13—C12—C11 119.0 (2)
O7—N2—C10 117.1 (2) C13—C12—H12A 120.5
C2—C1—C6 122.5 (2) C11—C12—H12A 120.5
C2—C1—N1 118.5 (2) C12—C13—C14 122.2 (2)
C6—C1—N1 119.0 (2) C12—C13—Cl2 119.5 (2)
C3—C2—C1 118.9 (2) C14—C13—Cl2 118.3 (2)
C3—C2—H2A 120.6 C13—C14—C9 119.3 (2)
C1—C2—H2A 120.6 C13—C14—H14A 120.4
C2—C3—C4 119.5 (3) C9—C14—H14A 120.4
C2—C3—H3A 120.3
O5—Cu1—O1—C7 89.7 (2) Cu1iii—O1—C7—O2 4.5 (3)
O6i—Cu1—O1—C7 −92.9 (2) Cu1—O1—C7—O2 −174.59 (15)
O2ii—Cu1—O1—C7 −1.9 (2) Cu1iii—O1—C7—C6 179.81 (14)
O1iii—Cu1—O1—C7 179.3 (2) Cu1—O1—C7—C6 0.7 (3)
Cu1i—Cu1—O1—C7 −171.52 (14) C5—C6—C7—O2 76.9 (3)
O5—Cu1—O1—Cu1iii −89.55 (8) C1—C6—C7—O2 −107.4 (3)
O6i—Cu1—O1—Cu1iii 87.82 (8) C5—C6—C7—O1 −98.7 (2)
O2ii—Cu1—O1—Cu1iii 178.83 (6) C1—C6—C7—O1 77.0 (3)
O1iii—Cu1—O1—Cu1iii 0.000 (2) Cu1i—O6—C8—O5 8.8 (3)
Cu1i—Cu1—O1—Cu1iii 9.18 (17) Cu1i—O6—C8—C9 −171.10 (15)
O2ii—Cu1—O5—C8 −88.27 (18) Cu1—O5—C8—O6 −7.7 (3)
O1iii—Cu1—O5—C8 81.83 (18) Cu1—O5—C8—C9 172.23 (15)
O1—Cu1—O5—C8 162.78 (18) O6—C8—C9—C10 160.5 (2)
Cu1i—Cu1—O5—C8 2.79 (17) O5—C8—C9—C10 −19.5 (4)
O3—N1—C1—C2 −167.1 (2) O6—C8—C9—C14 −20.7 (3)
O4—N1—C1—C2 11.5 (3) O5—C8—C9—C14 159.4 (2)
O3—N1—C1—C6 11.7 (3) C14—C9—C10—C11 −1.9 (4)
O4—N1—C1—C6 −169.6 (2) C8—C9—C10—C11 177.0 (2)
C6—C1—C2—C3 −0.8 (4) C14—C9—C10—N2 174.1 (2)
N1—C1—C2—C3 177.9 (2) C8—C9—C10—N2 −7.1 (4)
C1—C2—C3—C4 −0.6 (4) O8—N2—C10—C11 −64.3 (3)
C2—C3—C4—C5 1.5 (4) O7—N2—C10—C11 112.1 (3)
C2—C3—C4—Cl1 −177.4 (2) O8—N2—C10—C9 119.4 (3)
C3—C4—C5—C6 −0.8 (4) O7—N2—C10—C9 −64.1 (3)
Cl1—C4—C5—C6 178.02 (18) C9—C10—C11—C12 2.3 (4)
C4—C5—C6—C1 −0.6 (3) N2—C10—C11—C12 −173.9 (2)
C4—C5—C6—C7 175.3 (2) C10—C11—C12—C13 −0.6 (4)
C2—C1—C6—C5 1.5 (3) C11—C12—C13—C14 −1.5 (4)
N1—C1—C6—C5 −177.3 (2) C11—C12—C13—Cl2 178.9 (2)
C2—C1—C6—C7 −174.2 (2) C12—C13—C14—C9 1.8 (4)
N1—C1—C6—C7 7.0 (3) Cl2—C13—C14—C9 −178.53 (19)
Cu1iv—O2—C7—O1 −3.4 (3) C10—C9—C14—C13 −0.2 (4)
Cu1iv—O2—C7—C6 −178.60 (15) C8—C9—C14—C13 −179.1 (2)

Symmetry codes: (i) −x, −y, −z+1; (ii) x−1, y, z; (iii) −x+1, −y, −z+1; (iv) x+1, y, z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C2—H2A···O4v 0.93 2.44 3.254 (3) 146
C11—H11A···O8vi 0.93 2.46 3.384 (3) 172
C14—H14A···O4i 0.93 2.54 3.417 (3) 156

Symmetry codes: (v) −x, −y+1, −z+1; (vi) −x+1, −y, −z; (i) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2748).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkins Trans. 2, pp. S1–19.
  2. Balaraman, S., Venugopal, R., Palanisamy, U. M., Helen, S. & Mallayan, P. (2006). J. Inorg. Biochem.100, 316–330.
  3. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Kabbani, A. T., Zaworotko, M. J., Abourahma, H., Walsh, R. D. B. & Hammud, H. H. (2004). J. Chem. Crystallogr.11, 749–756.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  7. Stachová, P., Valigura, D., Koman, M., Melník, M., Korabik, M., Mrozińki, J. & Glowiak, T. (2004). Polyhedron, 23, 1303–1308.
  8. Tomoya, H., Yuko, K., Eriko, E., Takashi, S., Hidekazu, A., Makoto, C., Pitchumony, T. S. & Mallayan, P. (2005). J. Inorg. Biochem.99, 1205–1219.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809001895/ci2748sup1.cif

e-65-0m211-sup1.cif (20.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809001895/ci2748Isup2.hkl

e-65-0m211-Isup2.hkl (228.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES