Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jan 8;65(Pt 2):o223. doi: 10.1107/S1600536808043511

1,4-Bis(6-chloro­pyrimidin-4-yl­oxy)benzene

Wen Ma a,*, Hongyan Li b
PMCID: PMC2968353  PMID: 21581841

Abstract

In the title compound, C14H8Cl2N4O2, all atoms of the 6-chloro­pyrimidin-4-yl­oxy group and the C atoms at the para positions of the central benzene ring lie on a crystallographic mirror plane. The complete benzene ring is generated by the mirror plane and hence the dihedral angles between the pyrimidine rings and the benzene ring are exactly 90°. The crystal structure is stabilized by weak C—H⋯O and C—H⋯N hydrogen bonds.

Related literature

For background information, see: Halim et al. (1999); Meng & Huang (2000); Maes et al. (2003); Friend et al. (1999).graphic file with name e-65-0o223-scheme1.jpg

Experimental

Crystal data

  • C14H8Cl2N4O2

  • M r = 335.14

  • Monoclinic, Inline graphic

  • a = 19.0760 (5) Å

  • b = 6.9693 (2) Å

  • c = 10.7893 (3) Å

  • β = 93.301 (3)°

  • V = 1432.02 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.47 mm−1

  • T = 298 (2) K

  • 0.20 × 0.10 × 0.10 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: none

  • 6918 measured reflections

  • 1372 independent reflections

  • 1156 reflections with I > 2σ(I)’

  • R int = 0.050

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.105

  • S = 1.07

  • 1372 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808043511/lh2746sup1.cif

e-65-0o223-sup1.cif (16.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808043511/lh2746Isup2.hkl

e-65-0o223-Isup2.hkl (67.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O2i 0.93 2.57 3.463 (3) 161
C3—H3⋯N2ii 0.93 2.48 3.355 (3) 157

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by Henan Education Government of China (grant No. 2006150023).

supplementary crystallographic information

Comment

In recent publications it has been shown that polymers consisting of heterocyclic building blocks can be used in organic light-emitting diodes (LEDs) because of their electroluminescent properties. (Halim et al., 1999; Friend et al.,1999; Meng & Huang, 2000; Maes et al., 2003). We report here the synthesis and crystal structure the title compound (I) (Fig. 1). All atoms of the 6-chloropyrimidin-4-yloxy group and the C atoms at the para positions of the central benzene ring lie on a crystallographic mirror plane. The symmetry complete benzene ring is generated by the mirror plane and hence the dihedral angles between the pyrimidine rings and the benzene ring are exactly 90°. The crystal packing is stabilized by weak intermolecular hydrogen bonds interactions. Each molecule acts as a donor and acceptor to form C–H···O and C–H···N hydrogen bonds with two other symmetry related molecules, forming a chain run parallel to [101] (Fig. 2; Table 2).

Experimental

Hydroquinone 0.55 g(5 mmol) was dissolved in 50 ml CH3CN, the solution was stirred at room temperature for 0.5 h with an excess of anhydrous K2CO3(2.5 equiv.). After another 0.5 h of reflux, 4,6-dichloropyrimidine2.59 g (10 mmol) in 20 ml CH3CN was added and the mixture was refluxed for 4 h. After evaporation of the solvent, water was added and the mixture was extracted with CH2Cl2 and dried over MgSO4. The products were purified by column chromatography (hexanes/ethyl acetate, 5:1) and obtained as white solids. Colourless block-shapped crystals were obtained by evaporation of CH2Cl2.

Refinement

After being located in the difference map, all H-atoms were fixed geometrically at ideal positions and allowed to ride on the parent C atoms with C—H = 0.93Å and Uiso(H)= 1.2Ueq.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 20% probability level [Symmetry codes: (a) x,-y,z].

Fig. 2.

Fig. 2.

Part of the crystal structure with hydrogen bonds shown by dashed lines.

Crystal data

C14H8Cl2N4O2 F(000) = 680
Mr = 335.14 Dx = 1.555 Mg m3
Monoclinic, C2/m Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2y Cell parameters from 3581 reflections
a = 19.0760 (5) Å θ = 2.8–27.8°
b = 6.9693 (2) Å µ = 0.47 mm1
c = 10.7893 (3) Å T = 298 K
β = 93.301 (3)° Block, colorless
V = 1432.02 (7) Å3 0.20 × 0.10 × 0.10 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer 1156 reflections with I > 2σ(I)'
Radiation source: fine-focus sealed tube Rint = 0.050
graphite θmax = 25.0°, θmin = 1.9°
φ and ω scans h = −22→22
6918 measured reflections k = −8→7
1372 independent reflections l = −12→12

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037 H-atom parameters constrained
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0635P)2 + 0.2906P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max < 0.001
1372 reflections Δρmax = 0.22 e Å3
128 parameters Δρmin = −0.25 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0062 (13)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.34316 (10) 0.0000 0.22381 (18) 0.0495 (5)
H1 0.3002 0.0000 0.1786 0.059*
C2 0.40565 (11) 0.0000 0.16857 (19) 0.0543 (6)
C3 0.46576 (12) 0.0000 0.3504 (2) 0.0666 (7)
H3 0.5089 0.0000 0.3950 0.080*
C4 0.34857 (11) 0.0000 0.35261 (19) 0.0467 (5)
C5 0.22554 (11) 0.0000 0.36269 (19) 0.0512 (6)
C6 0.19419 (8) 0.1719 (3) 0.33512 (14) 0.0589 (4)
H6 0.2162 0.2867 0.3578 0.071*
C7 0.12865 (9) 0.1712 (3) 0.27244 (15) 0.0636 (5)
H7 0.1058 0.2859 0.2523 0.076*
C8 0.09825 (11) 0.0000 0.24084 (19) 0.0581 (7)
C9 −0.02669 (11) 0.0000 0.21792 (19) 0.0529 (6)
C10 −0.08588 (12) 0.0000 0.1385 (2) 0.0570 (6)
H10 −0.0839 0.0000 0.0526 0.068*
C11 −0.14794 (11) 0.0000 0.1964 (2) 0.0525 (5)
C12 −0.09188 (11) 0.0000 0.3830 (2) 0.0553 (6)
H12 −0.0939 0.0000 0.4689 0.066*
Cl1 0.40498 (4) 0.0000 0.00858 (5) 0.0916 (3)
Cl2 −0.22616 (3) 0.0000 0.10747 (6) 0.0829 (3)
N1 0.46804 (10) 0.0000 0.22748 (18) 0.0676 (6)
N2 0.40951 (9) 0.0000 0.41739 (17) 0.0572 (5)
N3 −0.02774 (9) 0.0000 0.33990 (16) 0.0533 (5)
N4 −0.15287 (9) 0.0000 0.31826 (17) 0.0566 (5)
O1 0.29285 (8) 0.0000 0.42430 (14) 0.0619 (5)
O2 0.03558 (8) 0.0000 0.16482 (14) 0.0793 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0393 (11) 0.0687 (14) 0.0399 (11) 0.000 −0.0027 (9) 0.000
C2 0.0453 (12) 0.0777 (15) 0.0400 (11) 0.000 0.0022 (9) 0.000
C3 0.0407 (12) 0.109 (2) 0.0495 (13) 0.000 −0.0062 (10) 0.000
C4 0.0421 (11) 0.0573 (12) 0.0403 (10) 0.000 0.0002 (8) 0.000
C5 0.0397 (11) 0.0797 (16) 0.0345 (10) 0.000 0.0054 (8) 0.000
C6 0.0543 (9) 0.0708 (11) 0.0520 (9) −0.0059 (8) 0.0062 (7) 0.0019 (8)
C7 0.0528 (9) 0.0824 (12) 0.0561 (9) 0.0116 (9) 0.0073 (7) 0.0109 (9)
C8 0.0390 (11) 0.102 (2) 0.0340 (10) 0.000 0.0072 (8) 0.000
C9 0.0434 (11) 0.0779 (15) 0.0378 (11) 0.000 0.0067 (9) 0.000
C10 0.0484 (12) 0.0836 (16) 0.0389 (11) 0.000 0.0011 (9) 0.000
C11 0.0440 (11) 0.0612 (14) 0.0519 (12) 0.000 −0.0009 (9) 0.000
C12 0.0515 (13) 0.0762 (16) 0.0389 (11) 0.000 0.0078 (9) 0.000
Cl1 0.0605 (4) 0.1762 (9) 0.0387 (4) 0.000 0.0072 (3) 0.000
Cl2 0.0467 (4) 0.1308 (7) 0.0695 (5) 0.000 −0.0106 (3) 0.000
N1 0.0415 (10) 0.1109 (17) 0.0503 (11) 0.000 0.0013 (9) 0.000
N2 0.0441 (10) 0.0836 (14) 0.0429 (9) 0.000 −0.0057 (8) 0.000
N3 0.0452 (10) 0.0774 (13) 0.0375 (9) 0.000 0.0050 (8) 0.000
N4 0.0447 (10) 0.0750 (13) 0.0509 (11) 0.000 0.0095 (8) 0.000
O1 0.0430 (8) 0.1051 (13) 0.0376 (7) 0.000 0.0019 (6) 0.000
O2 0.0403 (9) 0.1598 (19) 0.0379 (8) 0.000 0.0040 (7) 0.000

Geometric parameters (Å, °)

C1—C2 1.363 (3) C7—C8 1.361 (2)
C1—C4 1.388 (3) C7—H7 0.9300
C1—H1 0.9300 C8—C7i 1.361 (2)
C2—N1 1.317 (3) C8—O2 1.410 (3)
C2—Cl1 1.725 (2) C9—N3 1.317 (3)
C3—N2 1.328 (3) C9—O2 1.348 (3)
C3—N1 1.329 (3) C9—C10 1.377 (3)
C3—H3 0.9300 C10—C11 1.370 (3)
C4—N2 1.322 (3) C10—H10 0.9300
C4—O1 1.350 (2) C11—N4 1.323 (3)
C5—C6i 1.364 (2) C11—Cl2 1.727 (2)
C5—C6 1.364 (2) C12—N4 1.322 (3)
C5—O1 1.411 (3) C12—N3 1.334 (3)
C6—C7 1.387 (2) C12—H12 0.9300
C6—H6 0.9300
C2—C1—C4 114.92 (19) C7i—C8—C7 122.4 (2)
C2—C1—H1 122.5 C7i—C8—O2 118.70 (11)
C4—C1—H1 122.5 C7—C8—O2 118.70 (11)
N1—C2—C1 125.3 (2) N3—C9—O2 119.27 (19)
N1—C2—Cl1 115.94 (16) N3—C9—C10 124.21 (19)
C1—C2—Cl1 118.76 (17) O2—C9—C10 116.52 (19)
N2—C3—N1 128.1 (2) C11—C10—C9 114.6 (2)
N2—C3—H3 115.9 C11—C10—H10 122.7
N1—C3—H3 115.9 C9—C10—H10 122.7
N2—C4—O1 113.24 (18) N4—C11—C10 124.4 (2)
N2—C4—C1 122.83 (19) N4—C11—Cl2 116.32 (17)
O1—C4—C1 123.93 (19) C10—C11—Cl2 119.24 (18)
C6i—C5—C6 122.8 (2) N4—C12—N3 127.8 (2)
C6i—C5—O1 118.57 (10) N4—C12—H12 116.1
C6—C5—O1 118.57 (10) N3—C12—H12 116.1
C5—C6—C7 118.36 (17) C2—N1—C3 113.6 (2)
C5—C6—H6 120.8 C4—N2—C3 115.20 (19)
C7—C6—H6 120.8 C9—N3—C12 114.53 (19)
C8—C7—C6 118.97 (17) C12—N4—C11 114.45 (18)
C8—C7—H7 120.5 C4—O1—C5 117.07 (16)
C6—C7—H7 120.5 C9—O2—C8 119.40 (16)
C4—C1—C2—N1 0.0 C1—C4—N2—C3 0.0
C4—C1—C2—Cl1 180.0 N1—C3—N2—C4 0.0
C2—C1—C4—N2 0.0 O2—C9—N3—C12 180.0
C2—C1—C4—O1 180.0 C10—C9—N3—C12 0.0
C6i—C5—C6—C7 −2.3 (3) N4—C12—N3—C9 0.0
O1—C5—C6—C7 178.76 (14) N3—C12—N4—C11 0.0
C5—C6—C7—C8 −0.1 (3) C10—C11—N4—C12 0.0
C6—C7—C8—C7i 2.4 (3) Cl2—C11—N4—C12 180.0
C6—C7—C8—O2 −172.75 (14) N2—C4—O1—C5 180.0
N3—C9—C10—C11 0.0 C1—C4—O1—C5 0.0
O2—C9—C10—C11 180.0 C6i—C5—O1—C4 90.53 (16)
C9—C10—C11—N4 0.0 C6—C5—O1—C4 −90.53 (16)
C9—C10—C11—Cl2 180.0 N3—C9—O2—C8 0.0
C1—C2—N1—C3 0.0 C10—C9—O2—C8 180.0
Cl1—C2—N1—C3 180.0 C7i—C8—O2—C9 92.31 (16)
N2—C3—N1—C2 0.0 C7—C8—O2—C9 −92.31 (16)
O1—C4—N2—C3 180.0

Symmetry codes: (i) x, −y, z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C10—H10···O2ii 0.93 2.57 3.463 (3) 161
C3—H3···N2iii 0.93 2.48 3.355 (3) 157

Symmetry codes: (ii) −x, y, −z; (iii) −x+1, y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2746).

References

  1. Bruker (2007). SAINT-Plus and SMART Bruker AXS, Inc., Madison, Wisconsin, USA.
  2. Friend, R. H., Gymer, R. W., Holmes, A. B., Burrroughes, J. H., Marks, R. N., Taliani, C., Bradley, D. C. C., Dos Santos, D. A., Brédas, J. L., Lögdlund, M. & Salaneck, W. R. (1999). Nature (London), 397, 121–C128.
  3. Halim, M., Pillow, J. N. G., Samuel, I. D. W. & Burn, P. L. (1999). Adv. Mater.11, 371–C374.
  4. Maes, W., Amabilino, D. B. & Dehaen, W. (2003). Tetrahedron, 59, 3937–C3943.
  5. Meng, H. & Huang, W. J. (2000). Org. Chem.65, 3894–C3901. [DOI] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808043511/lh2746sup1.cif

e-65-0o223-sup1.cif (16.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808043511/lh2746Isup2.hkl

e-65-0o223-Isup2.hkl (67.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES