Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jan 17;65(Pt 2):o321. doi: 10.1107/S1600536809001056

Benzyl­tributyl­ammonium 7-hydroxy­naphthalene-1-sulfonate

Yohei Sato a, Kazuya Uta a, Jin Mizuguchi a,*
PMCID: PMC2968364  PMID: 21581926

Abstract

The title compound, C19H34N+·C10H7O4S, is a charge-control agent used for toners in electrophotography. The anions form one-dimensional chains by O—H⋯O hydrogen bonds in a zigzag fashion along the c axis between the OH group of one anion and the sulfonate O atom of a neighboring anion. One of the n-butyl chains of the cation is disordered over two sites in a 0.77:0.23 ratio.

Related literature

For the function of charge-control agents, see: Nash et al. (2001) and for the structure of benzyl­tributyl­ammonium 4-hydroxy­naphthalene-1-sulfonate, benzyl­tributyl­ammonium 6-hydroxy­naphthalene-2-sulfonate, and benzyl­tributyl­ammonium 4-hydroxy­naphthalene-2-sulfonate see: Mizuguchi et al. (2007), Uta et al. (2009), and Uta & Mizuguchi (2009), respectively.graphic file with name e-65-0o321-scheme1.jpg

Experimental

Crystal data

  • C19H34N+·C10H7O4S

  • M r = 499.70

  • Monoclinic, Inline graphic

  • a = 19.8286 (6) Å

  • b = 8.8549 (2) Å

  • c = 16.7501 (4) Å

  • β = 104.7570 (13)°

  • V = 2843.98 (13) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.27 mm−1

  • T = 296.1 K

  • 0.39 × 0.36 × 0.04 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.650, T max = 0.951

  • 24641 measured reflections

  • 5082 independent reflections

  • 2591 reflections with F 2 > 2σ(F 2)

  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.080

  • wR(F 2) = 0.291

  • S = 1.02

  • 5082 reflections

  • 328 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.71 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2006); program(s) used to solve structure: SIR2004 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: CrystalStructure.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809001056/bt2845sup1.cif

e-65-0o321-sup1.cif (27.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809001056/bt2845Isup2.hkl

e-65-0o321-Isup2.hkl (248.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4O⋯O1i 0.82 1.91 2.729 (3) 173

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors express their sincere thanks to Mr O. Yamate at Orient Chemical Industries, Ltd for the preparation of the sample.

supplementary crystallographic information

Comment

The title compound is a charge-control-agent used for toners in electrophotography. The background of the present study has been set out in our previous paper (Uta et al., 2009). We have previously investigated the crystal structure of three isomers of compound (I) in connection with the mechanism of their high melting points [benzyltributylammonium 4-hydroxynaphthalene-1-sulfonate (Mizuguchi et al., 2007); benzyltributylammonium 6-hydroxynaphthalene-2-sulfonate (Uta et al., 2009); benzyltributylammonium 4-hydroxynaphthalene-4-sulfonate (Uta & Mizuguchi, 2009)]. The anions in the two former isomers are found to form chains of O—H···O intermolecular hydrogen bonds between the OH group of one anion and the sulfonate O atom of the neighboring one. The present hydrogen-bond network ensures a high thermal stability of these compounds as characterized by the melting points of 462 and 433K, respectively. On the other hand, the last isomer was characterized by a hydrogen-bonded dimer of the anions through O–H···O hydrogen bonding (melting point: 451 K). The present paper describes again one-dimensional chains of O—H···O intermoleclar hydrogen bonds.

Fig. 1 shows the ORTEPIII plot of the title compound. The ions have no crystallographically imposed symmetry. Fig. 2 shows a hydrogen-bonded chain along the c axis between the OH group of one anion and the sulfonic O atom of the neighboring one. The present linear chain is typically characterized by a zigzag form which is simlar to the one in benzyltributylammonium 4-hydroxynaphthalene-1-sulfonate (Mizuguchi et al., 2007) rather than the one in benzyltributylammonium 6-hydroxynaphthalene-2-sulfonate, Uta et al., 2009).

Experimental

The title compound was obtained from Orient Chemical Industries, Ltd, and was recrystallized from an acetone solution. After 48 h, a number of colorless crystals were obtained in the form of platelets. The title compound has a melting point of 439 K.

Refinement

C15 was found to be disordered over two sites. The site occupancies for C15A/C15B refined to 0.77 (1)/0.23 (1). These atoms were refined anisotropically. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 (aromatic), 0.96 (methyl), or 0.97Å (methylene), and O—H = 0.82Å, and with Uiso(H) = 1.2Ueq(parent atom).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids and only the major component of the disordered atoms.

Fig. 2.

Fig. 2.

View of the hydrogen-bonded (dashed lines) chain running along the c axis. Only anions are shown for clarity.

Crystal data

C19H34N+·C10H7O4S F(000) = 1080.00
Mr = 499.70 Dx = 1.167 Mg m3
Monoclinic, P21/c Melting point: 439 K
Hall symbol: -P 2ybc Cu Kα radiation, λ = 1.54187 Å
a = 19.8286 (6) Å Cell parameters from 15029 reflections
b = 8.8549 (2) Å θ = 3.1–68.1°
c = 16.7501 (4) Å µ = 1.26 mm1
β = 104.7570 (13)° T = 296 K
V = 2843.98 (13) Å3 Platelet, colorless
Z = 4 0.39 × 0.36 × 0.04 mm

Data collection

Rigaku R-AXIS RAPID diffractometer 2591 reflections with F2 > 2σ(F2)
Detector resolution: 10.00 pixels mm-1 Rint = 0.042
ω scans θmax = 68.2°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −23→23
Tmin = 0.650, Tmax = 0.951 k = −10→10
24641 measured reflections l = −19→19
5082 independent reflections

Refinement

Refinement on F2 H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.080 w = 1/[σ2(Fo2) + (0.1837P)2 + 0.0926P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.291 (Δ/σ)max < 0.001
S = 1.02 Δρmax = 0.22 e Å3
5082 reflections Δρmin = −0.71 e Å3
328 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1 0.24745 (5) 0.42482 (10) 0.48273 (6) 0.0825 (3)
O1 0.26341 (15) 0.4863 (3) 0.40868 (16) 0.0995 (8)
O2 0.20862 (14) 0.5287 (2) 0.51959 (17) 0.1016 (8)
O3 0.21686 (15) 0.2769 (2) 0.46891 (16) 0.0996 (8)
O4 0.23117 (15) 0.1438 (3) 0.75592 (16) 0.1015 (8)
N1 0.19605 (14) 0.5894 (2) 0.83330 (18) 0.0780 (8)
C1 0.0228 (2) 0.5086 (5) 0.7653 (3) 0.1169 (14)
C2 −0.0426 (2) 0.5488 (7) 0.7173 (5) 0.143 (2)
C3 −0.0533 (3) 0.5852 (6) 0.6376 (4) 0.140 (2)
C4 0.0020 (3) 0.5824 (6) 0.6029 (4) 0.148 (2)
C5 0.0682 (2) 0.5447 (6) 0.6497 (3) 0.1181 (14)
C6 0.0800 (2) 0.5085 (4) 0.7324 (2) 0.0913 (11)
C7 0.1511 (2) 0.4632 (3) 0.7827 (2) 0.0884 (10)
C8 0.15890 (19) 0.6643 (3) 0.8909 (2) 0.0859 (10)
C9 0.1472 (2) 0.5662 (4) 0.9600 (2) 0.0980 (11)
C10 0.1022 (2) 0.6408 (5) 1.0078 (3) 0.1144 (14)
C11 0.0887 (2) 0.5487 (6) 1.0747 (3) 0.1406 (18)
C12 0.21187 (19) 0.7113 (4) 0.7765 (2) 0.0874 (10)
C13 0.2501 (2) 0.6592 (5) 0.7148 (3) 0.1122 (13)
C14 0.2834 (2) 0.7853 (6) 0.6794 (3) 0.1304 (15)
C15A 0.3514 (3) 0.8302 (9) 0.7319 (6) 0.144 0.77
C15B 0.3524 (8) 0.7787 (3) 0.6626 (18) 0.132 0.23
C16 0.26209 (19) 0.5147 (4) 0.8810 (2) 0.0901 (10)
C17 0.3155 (2) 0.6162 (4) 0.9349 (2) 0.1037 (12)
C18 0.3768 (2) 0.5210 (7) 0.9851 (4) 0.160 (2)
C19 0.4343 (3) 0.6114 (8) 1.0346 (5) 0.201 (3)
C20 0.32863 (19) 0.4039 (3) 0.5553 (2) 0.0806 (9)
C21 0.33489 (19) 0.3335 (3) 0.6343 (2) 0.0819 (9)
C22 0.27822 (19) 0.2672 (3) 0.6588 (2) 0.0805 (9)
C23 0.2876 (2) 0.2048 (4) 0.7355 (2) 0.0850 (9)
C24 0.3539 (2) 0.2060 (5) 0.7924 (2) 0.1034 (12)
C25 0.4082 (2) 0.2663 (5) 0.7697 (3) 0.1114 (13)
C26 0.4020 (2) 0.3316 (4) 0.6916 (2) 0.0989 (11)
C27 0.4596 (2) 0.3959 (6) 0.6690 (3) 0.1288 (17)
C28 0.4519 (2) 0.4577 (6) 0.5935 (4) 0.1329 (17)
C29 0.3867 (2) 0.4611 (5) 0.5372 (2) 0.1058 (12)
H1 0.0283 0.4821 0.8203 0.139*
H2 −0.0796 0.5492 0.7424 0.170*
H3 −0.0973 0.6106 0.6067 0.167*
H4 −0.0045 0.6068 0.5484 0.177*
H4O 0.2434 0.1103 0.8032 0.121*
H5 0.1055 0.5422 0.6251 0.141*
H7A 0.1765 0.4202 0.7459 0.105*
H7B 0.1458 0.3836 0.8209 0.105*
H8A 0.1143 0.7008 0.8585 0.101*
H8B 0.1861 0.7519 0.9151 0.101*
H9A 0.1250 0.4721 0.9369 0.117*
H9B 0.1916 0.5411 0.9975 0.117*
H10A 0.0577 0.6663 0.9691 0.136*
H10B 0.1241 0.7358 1.0294 0.136*
H11A 0.0687 0.4516 1.0548 0.207*
H11B 0.0590 0.5981 1.1033 0.207*
H11C 0.1333 0.5261 1.1159 0.207*
H12A 0.2382 0.7901 0.8102 0.103*
H12B 0.1674 0.7549 0.7463 0.103*
H13A 0.2859 0.5872 0.7415 0.132*
H13B 0.2183 0.6079 0.6697 0.132*
H14A 0.2892 0.7545 0.6259 0.157* 0.77
H14B 0.2526 0.8721 0.6708 0.157* 0.77
H14C 0.2510 0.8117 0.6274 0.157* 0.23
H14D 0.2847 0.8710 0.7158 0.157* 0.23
H15A 0.3817 0.7439 0.7426 0.216* 0.77
H15B 0.3456 0.8696 0.7831 0.216* 0.77
H15C 0.3715 0.9065 0.7043 0.216* 0.77
H15D 0.3827 0.7163 0.7032 0.198* 0.23
H15E 0.3715 0.8787 0.6649 0.198* 0.23
H15F 0.3481 0.7368 0.6087 0.198* 0.23
H16A 0.2833 0.4647 0.8418 0.106*
H16B 0.2495 0.4361 0.9152 0.106*
H17A 0.2948 0.6715 0.9730 0.124*
H17B 0.3325 0.6892 0.9015 0.124*
H18A 0.3603 0.4528 1.0208 0.188*
H18B 0.3948 0.4591 0.9465 0.188*
H19A 0.4543 0.6724 0.9988 0.294*
H19B 0.4697 0.5462 1.0666 0.294*
H19C 0.4170 0.6762 1.0708 0.294*
H22 0.2340 0.2664 0.6214 0.095*
H24 0.3590 0.1649 0.8447 0.124*
H25 0.4518 0.2655 0.8078 0.134*
H27 0.5033 0.3957 0.7065 0.152*
H28 0.4906 0.4970 0.5786 0.157*
H29 0.3824 0.5040 0.4856 0.126*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.1011 (7) 0.0675 (5) 0.0765 (6) 0.0067 (4) 0.0179 (5) −0.0039 (4)
O1 0.135 (2) 0.0933 (17) 0.0707 (16) −0.0029 (15) 0.0269 (14) 0.0052 (13)
O2 0.1169 (19) 0.0935 (16) 0.0903 (18) 0.0318 (15) 0.0192 (15) −0.0127 (14)
O3 0.1196 (19) 0.0722 (14) 0.0969 (19) −0.0055 (13) 0.0089 (15) −0.0042 (13)
O4 0.1150 (19) 0.1011 (18) 0.0881 (19) 0.0086 (15) 0.0251 (15) 0.0080 (14)
N1 0.0851 (18) 0.0645 (15) 0.083 (2) −0.0028 (13) 0.0197 (15) −0.0066 (13)
C1 0.099 (3) 0.132 (3) 0.122 (3) −0.014 (2) 0.034 (2) −0.002 (3)
C2 0.093 (3) 0.157 (4) 0.174 (6) −0.011 (3) 0.025 (3) −0.018 (4)
C3 0.108 (3) 0.146 (4) 0.141 (5) −0.017 (3) −0.015 (3) 0.000 (4)
C4 0.129 (4) 0.162 (5) 0.135 (5) −0.025 (3) −0.002 (4) 0.007 (3)
C5 0.115 (3) 0.141 (3) 0.097 (3) −0.021 (2) 0.023 (2) −0.011 (3)
C6 0.099 (2) 0.080 (2) 0.094 (3) −0.0181 (19) 0.023 (2) −0.017 (2)
C7 0.096 (2) 0.0723 (19) 0.095 (2) −0.0084 (18) 0.022 (2) −0.0098 (19)
C8 0.102 (2) 0.0730 (19) 0.090 (2) −0.0015 (18) 0.037 (2) −0.0101 (18)
C9 0.105 (2) 0.098 (2) 0.094 (3) −0.009 (2) 0.032 (2) −0.008 (2)
C10 0.119 (3) 0.120 (3) 0.120 (3) −0.018 (2) 0.060 (2) −0.011 (2)
C11 0.136 (3) 0.171 (4) 0.129 (4) −0.033 (3) 0.059 (3) −0.001 (3)
C12 0.099 (2) 0.0720 (19) 0.092 (2) −0.0100 (18) 0.025 (2) −0.0001 (18)
C13 0.128 (3) 0.107 (2) 0.114 (3) −0.013 (2) 0.054 (2) 0.000 (2)
C14 0.134 (3) 0.119 (3) 0.150 (4) −0.021 (2) 0.057 (2) 0.002 (2)
C15A 0.128 (4) 0.121 (4) 0.180 (8) −0.012 (3) 0.034 (4) −0.007 (5)
C15B 0.144 (10) 0.138 (13) 0.132 (14) −0.039 (9) 0.069 (10) −0.023 (12)
C16 0.087 (2) 0.081 (2) 0.099 (2) 0.0024 (19) 0.018 (2) −0.001 (2)
C17 0.095 (2) 0.101 (2) 0.104 (3) 0.008 (2) 0.005 (2) 0.004 (2)
C18 0.115 (3) 0.158 (4) 0.178 (5) 0.012 (3) −0.017 (3) −0.048 (4)
C19 0.130 (4) 0.204 (6) 0.228 (8) 0.025 (4) −0.028 (4) −0.061 (6)
C20 0.089 (2) 0.0734 (19) 0.079 (2) 0.0018 (16) 0.0193 (18) −0.0023 (17)
C21 0.087 (2) 0.0720 (19) 0.085 (2) 0.0074 (17) 0.0179 (19) −0.0082 (17)
C22 0.091 (2) 0.0735 (19) 0.074 (2) 0.0125 (17) 0.0158 (18) 0.0022 (17)
C23 0.097 (2) 0.075 (2) 0.081 (2) 0.0097 (18) 0.018 (2) −0.0014 (18)
C24 0.118 (3) 0.101 (2) 0.083 (2) 0.014 (2) 0.011 (2) 0.003 (2)
C25 0.105 (3) 0.120 (3) 0.097 (3) 0.006 (2) 0.002 (2) 0.007 (2)
C26 0.089 (2) 0.105 (2) 0.095 (2) 0.008 (2) 0.009 (2) 0.005 (2)
C27 0.084 (2) 0.175 (5) 0.117 (4) −0.003 (2) 0.006 (2) 0.017 (3)
C28 0.106 (3) 0.163 (4) 0.130 (4) −0.019 (3) 0.030 (3) 0.009 (3)
C29 0.097 (2) 0.115 (3) 0.103 (3) −0.004 (2) 0.020 (2) −0.002 (2)

Geometric parameters (Å, °)

S1—O1 1.461 (3) C5—H5 0.934
S1—O2 1.436 (3) C7—H7A 0.968
S1—O3 1.438 (2) C7—H7B 0.976
S1—C20 1.762 (3) C8—H8A 0.968
O4—C23 1.362 (5) C8—H8B 0.973
N1—C7 1.542 (4) C9—H9A 0.974
N1—C8 1.508 (5) C9—H9B 0.968
N1—C12 1.523 (4) C10—H10A 0.980
N1—C16 1.503 (4) C10—H10B 0.973
C1—C2 1.386 (7) C11—H11A 0.970
C1—C6 1.383 (7) C11—H11B 0.953
C2—C3 1.337 (11) C11—H11C 0.993
C3—C4 1.366 (11) C12—H12A 0.963
C4—C5 1.387 (7) C12—H12B 0.978
C5—C6 1.383 (7) C13—H13A 0.974
C6—C7 1.500 (5) C13—H13B 0.966
C8—C9 1.513 (5) C14—H14A 0.970
C9—C10 1.495 (6) C14—H14B 0.970
C10—C11 1.466 (7) C14—H14C 0.970
C12—C13 1.501 (6) C14—H14D 0.970
C13—C14 1.496 (7) C15A—H15A 0.960
C14—C15A 1.465 C15A—H15B 0.960
C14—C15B 1.465 C15A—H15C 0.960
C16—C17 1.502 (5) C15B—H15D 0.960
C17—C18 1.542 (6) C15B—H15E 0.960
C18—C19 1.465 (8) C15B—H15F 0.960
C20—C21 1.440 (5) C16—H16A 0.972
C20—C29 1.361 (6) C16—H16B 0.973
C21—C22 1.418 (5) C17—H17A 0.974
C21—C26 1.429 (5) C17—H17B 0.969
C22—C23 1.367 (5) C18—H18A 0.965
C23—C24 1.414 (5) C18—H18B 0.981
C24—C25 1.341 (7) C19—H19A 0.965
C25—C26 1.407 (6) C19—H19B 0.960
C26—C27 1.412 (7) C19—H19C 0.960
C27—C28 1.351 (8) C22—H22 0.938
C28—C29 1.393 (6) C24—H24 0.930
O4—H4O 0.821 C25—H25 0.934
C1—H1 0.930 C27—H27 0.931
C2—H2 0.934 C28—H28 0.931
C3—H3 0.922 C29—H29 0.927
C4—H4 0.915
O1···O4i 2.729 (3) O3···H9Bi 2.920
O4···O1ii 2.729 (3) O3···H16Bi 2.254
S1···H3iii 2.989 O4···H7A 2.665
O1···H4Oi 1.912 O4···H14Bv 2.883
O1···H8Biv 2.796 O4···H14Dv 2.789
O1···H12Aiv 2.544 C15A···H27vi 2.861
O1···H24i 2.751 C15B···H19Civ 2.275
O2···H3iii 2.914 C19···H15Evii 2.778
O2···H8Biv 2.576 C19···H15Fvii 2.712
O2···H10Biv 2.706 C23···H7A 2.952
O2···H13B 2.571 C23···H14Dv 2.973
O2···H14A 2.876 C23···H16A 2.924
O3···H3iii 2.586 C24···H15Bv 2.986
O3···H7Bi 2.893 C24···H16A 2.913
O3···H9Ai 2.822 C29···H15F 2.906
O1—S1—O2 112.46 (16) C9—C10—H10B 108.1
O1—S1—O3 112.13 (16) C11—C10—H10A 108.9
O1—S1—C20 105.50 (18) C11—C10—H10B 110.4
O2—S1—O3 113.73 (18) H10A—C10—H10B 106.8
O2—S1—C20 105.46 (17) C10—C11—H11A 111.7
O3—S1—C20 106.79 (15) C10—C11—H11B 112.6
C7—N1—C8 111.2 (2) C10—C11—H11C 109.8
C7—N1—C12 110.7 (2) H11A—C11—H11B 109.2
C7—N1—C16 106.1 (2) H11A—C11—H11C 106.0
C8—N1—C12 107.4 (2) H11B—C11—H11C 107.2
C8—N1—C16 110.8 (2) N1—C12—H12A 108.4
C12—N1—C16 110.7 (2) N1—C12—H12B 107.6
C2—C1—C6 120.7 (5) C13—C12—H12A 109.4
C1—C2—C3 121.8 (6) C13—C12—H12B 108.1
C2—C3—C4 118.7 (5) H12A—C12—H12B 107.4
C3—C4—C5 120.7 (6) C12—C13—H13A 108.8
C4—C5—C6 121.1 (5) C12—C13—H13B 109.8
C1—C6—C5 116.9 (3) C14—C13—H13A 109.1
C1—C6—C7 121.7 (4) C14—C13—H13B 107.9
C5—C6—C7 121.3 (4) H13A—C13—H13B 107.8
N1—C7—C6 116.4 (2) C13—C14—H14A 108.9
N1—C8—C9 115.6 (2) C13—C14—H14B 108.9
C8—C9—C10 112.6 (3) C13—C14—H14C 106.1
C9—C10—C11 114.4 (4) C13—C14—H14D 106.1
N1—C12—C13 115.6 (3) C15A—C14—H14A 108.9
C12—C13—C14 113.3 (3) C15A—C14—H14B 108.9
C13—C14—C15A 113.3 C15B—C14—H14C 106.1
C13—C14—C15B 125.1 C15B—C14—H14D 106.1
N1—C16—C17 116.2 (2) H14A—C14—H14B 107.7
C16—C17—C18 109.7 (3) H14C—C14—H14D 106.3
C17—C18—C19 113.7 (5) C14—C15A—H15A 109.5
S1—C20—C21 122.0 (2) C14—C15A—H15B 109.5
S1—C20—C29 118.9 (3) C14—C15A—H15C 109.5
C21—C20—C29 119.1 (3) H15A—C15A—H15B 109.5
C20—C21—C22 123.8 (3) H15A—C15A—H15C 109.5
C20—C21—C26 118.0 (3) H15B—C15A—H15C 109.5
C22—C21—C26 118.2 (3) C14—C15B—H15D 109.5
C21—C22—C23 120.8 (3) C14—C15B—H15E 109.5
O4—C23—C22 118.2 (3) C14—C15B—H15F 109.5
O4—C23—C24 121.1 (3) H15D—C15B—H15E 109.5
C22—C23—C24 120.7 (4) H15D—C15B—H15F 109.5
C23—C24—C25 119.2 (4) H15E—C15B—H15F 109.5
C24—C25—C26 122.8 (3) N1—C16—H16A 107.9
C21—C26—C25 118.3 (4) N1—C16—H16B 108.0
C21—C26—C27 119.6 (4) C17—C16—H16A 108.6
C25—C26—C27 122.0 (3) C17—C16—H16B 108.8
C26—C27—C28 120.5 (4) H16A—C16—H16B 107.0
C27—C28—C29 120.5 (5) C16—C17—H17A 110.1
C20—C29—C28 122.2 (4) C16—C17—H17B 110.4
C23—O4—H4O 109.0 C18—C17—H17A 108.8
C2—C1—H1 119.7 C18—C17—H17B 109.7
C6—C1—H1 119.6 H17A—C17—H17B 108.0
C1—C2—H2 117.8 C17—C18—H18A 109.5
C3—C2—H2 120.3 C17—C18—H18B 108.4
C2—C3—H3 120.5 C19—C18—H18A 109.3
C4—C3—H3 120.8 C19—C18—H18B 108.5
C3—C4—H4 119.7 H18A—C18—H18B 107.3
C5—C4—H4 119.6 C18—C19—H19A 109.8
C4—C5—H5 119.9 C18—C19—H19B 109.9
C6—C5—H5 119.1 C18—C19—H19C 109.4
N1—C7—H7A 108.2 H19A—C19—H19B 109.1
N1—C7—H7B 107.9 H19A—C19—H19C 109.1
C6—C7—H7A 108.3 H19B—C19—H19C 109.5
C6—C7—H7B 108.6 C21—C22—H22 118.9
H7A—C7—H7B 107.1 C23—C22—H22 120.3
N1—C8—H8A 108.3 C23—C24—H24 119.4
N1—C8—H8B 108.0 C25—C24—H24 121.4
C9—C8—H8A 108.9 C24—C25—H25 118.2
C9—C8—H8B 108.4 C26—C25—H25 119.0
H8A—C8—H8B 107.4 C26—C27—H27 119.6
C8—C9—H9A 109.2 C28—C27—H27 119.8
C8—C9—H9B 109.7 C27—C28—H28 119.7
C10—C9—H9A 108.7 C29—C28—H28 119.8
C10—C9—H9B 108.8 C20—C29—H29 118.5
H9A—C9—H9B 107.7 C28—C29—H29 119.3
C9—C10—H10A 107.9 C14—H14A—C15B 80.7
O1—S1—C20—C21 −174.5 (2) C8—C9—C10—C11 179.1 (3)
O1—S1—C20—C29 8.0 (3) N1—C12—C13—C14 −162.1 (3)
O2—S1—C20—C21 66.3 (3) C12—C13—C14—C15A 82.9
O2—S1—C20—C29 −111.2 (3) C12—C13—C14—C15B 140.1
O3—S1—C20—C21 −55.1 (3) N1—C16—C17—C18 175.1 (4)
O3—S1—C20—C29 127.5 (3) C16—C17—C18—C19 175.3 (5)
C7—N1—C8—C9 66.7 (3) S1—C20—C21—C22 4.1 (5)
C8—N1—C7—C6 56.5 (4) S1—C20—C21—C26 −175.4 (2)
C7—N1—C12—C13 −59.3 (3) S1—C20—C29—C28 175.7 (4)
C12—N1—C7—C6 −62.8 (4) C21—C20—C29—C28 −1.8 (6)
C7—N1—C16—C17 179.2 (3) C29—C20—C21—C22 −178.5 (3)
C16—N1—C7—C6 177.1 (3) C29—C20—C21—C26 2.1 (5)
C8—N1—C12—C13 179.1 (2) C20—C21—C22—C23 −178.7 (3)
C12—N1—C8—C9 −172.1 (2) C20—C21—C26—C25 178.5 (3)
C8—N1—C16—C17 −60.0 (4) C20—C21—C26—C27 −0.9 (6)
C16—N1—C8—C9 −51.0 (3) C22—C21—C26—C25 −1.0 (5)
C12—N1—C16—C17 59.1 (4) C22—C21—C26—C27 179.6 (4)
C16—N1—C12—C13 58.0 (3) C26—C21—C22—C23 0.7 (5)
C2—C1—C6—C5 −2.3 (6) C21—C22—C23—O4 179.5 (3)
C2—C1—C6—C7 −179.1 (4) C21—C22—C23—C24 0.5 (5)
C6—C1—C2—C3 1.7 (8) O4—C23—C24—C25 179.6 (4)
C1—C2—C3—C4 0.0 (8) C22—C23—C24—C25 −1.5 (6)
C2—C3—C4—C5 −1.0 (9) C23—C24—C25—C26 1.2 (7)
C3—C4—C5—C6 0.2 (6) C24—C25—C26—C21 0.0 (5)
C4—C5—C6—C1 1.4 (7) C24—C25—C26—C27 179.4 (4)
C4—C5—C6—C7 178.2 (4) C21—C26—C27—C28 −0.6 (7)
C1—C6—C7—N1 −87.5 (4) C25—C26—C27—C28 −180.0 (4)
C5—C6—C7—N1 95.9 (4) C26—C27—C28—C29 1.0 (9)
N1—C8—C9—C10 −172.6 (2) C27—C28—C29—C20 0.2 (7)

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) x, −y+1/2, z+1/2; (iii) −x, −y+1, −z+1; (iv) x, −y+3/2, z−1/2; (v) x, y−1, z; (vi) −x+1, y+1/2, −z+3/2; (vii) x, −y+3/2, z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O4—H4O···O1ii 0.82 1.91 2.729 (3) 173

Symmetry codes: (ii) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2845).

References

  1. Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst.36, 1103.
  2. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.
  3. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  4. Mizuguchi, J., Sato, Y., Uta, K. & Sato, K. (2007). Acta Cryst. E63, o2509–o2510.
  5. Nash, R. J., Grande, M. L. & Muller, R. N. (2001). Proceedings of the 7th International Conference on Advances in Non-Impact Printing Technology, pp. 358–364.
  6. Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  7. Rigaku/MSC (2006). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Uta, K. & Mizuguchi, J. (2009). Acta Cryst. E65, o320. [DOI] [PMC free article] [PubMed]
  10. Uta, K., Sato, Y. & Mizuguchi, J. (2009). Acta Cryst E65, o319. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809001056/bt2845sup1.cif

e-65-0o321-sup1.cif (27.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809001056/bt2845Isup2.hkl

e-65-0o321-Isup2.hkl (248.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES