Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jan 10;65(Pt 2):o277. doi: 10.1107/S1600536809000117

N-(3-Bromo-1,4-dioxo-1,4-dihydro-2-naphth­yl)-4-fluoro-N-(4-fluoro­benzo­yl)benzamide

Emmanuel S Akinboye a, Ray J Butcher a,*, Dwayne A Wright a, Yakini Brandy a, Oladapo Bakare a
PMCID: PMC2968378  PMID: 21581890

Abstract

In the title compound, C24H12BrF2NO4, synthesized from 2-amino-3-bromo-1,4-naphthoquinone and 4-fluoro­benzoyl chloride, the two p-fluoro­phenyl rings are inclined at 73.9 (1) and 73.6 (1)° to the naphthoquinone ring system. The two imido carbonyl O atoms are anti to each other, while the fluoro­phenyl rings are located opposite each other, connected to the imide group in a funnel-like arrangement. This conformation allows the fluorine groups be oriented slightly away from each other. An examination of the packing shows a close inter­molecular F⋯O contact of 2.982 (5) Å and a Br⋯O contact of 2.977 (4) Å. In addition, the mol­ecules are linked by weak inter­molecular C—H⋯O and C—H⋯F inter­actions.

Related literature

For similar structures, see: Lien et al. (1997); Huang et al. (2005); Bakare et al. (2003); Akinboye et al. (2009); Win et al. (2005); Rubin-Preminger et al. (2004). For general background, see: Berhe et al. (2008).graphic file with name e-65-0o277-scheme1.jpg

Experimental

Crystal data

  • C24H12BrF2NO4

  • M r = 496.26

  • Monoclinic, Inline graphic

  • a = 14.5931 (3) Å

  • b = 6.6471 (1) Å

  • c = 20.6324 (4) Å

  • β = 98.407 (2)°

  • V = 1979.88 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 3.30 mm−1

  • T = 200 (2) K

  • 0.53 × 0.48 × 0.32 mm

Data collection

  • Oxford Diffraction Gemini R diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) T min = 0.230, T max = 0.348

  • 7835 measured reflections

  • 3802 independent reflections

  • 3362 reflections with I > 2σ(I)

  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056

  • wR(F 2) = 0.158

  • S = 1.14

  • 3802 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 1.29 e Å−3

  • Δρmin = −0.51 e Å−3

Data collection: CrysAlisPro (Oxford Diffraction, 2007); cell refinement: CrysAlisPro; data reduction: CrysAlisPro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809000117/bq2117sup1.cif

e-65-0o277-sup1.cif (21.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809000117/bq2117Isup2.hkl

e-65-0o277-Isup2.hkl (186.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯O1Bi 0.95 2.56 3.297 (6) 135
C4—H4A⋯F1Aii 0.95 2.40 3.266 (6) 151

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

supplementary crystallographic information

Comment

We have developed some imido-substituted 2-chloro-1,4-naphthoquinones with cytotoxic activities on some cancer cell lines (Bakare et al., 2003; Berhe et al., 2008); and have recently reported on the crystal structure of N-(3-bromo-1,4-dioxo- 1,4-dihydro-naphthalen-2-yl)-2-chloro-N-(2-chloro-benzoyl)-benzamide (Akinboye et al., 2009). In continuation of our work, the title compound C24H12BrF2NO4, (I), was synthesized as a potential anticancer agent.

The crystal structure shows that the two p-fluorophenyl rings are inclined at 73.9 (1) and 73.6 (1)° to the naphthoquinone ring. The two imido carbonyl oxygen atoms are anti-to each other, while fluorophenyl rings are placed facing each other and connected to the imide moiety in a funnel-like arrangement. This conformation allowed the fluorine groups in the para position of each fluorophenyl ring to be oriented slightly away from each other. An examination of the packing shows a close contact between F1A and O2 at (1/2 - x, 1/2 + y, 1/2 - z) (2.982 (5)Å) and between C2 and O1B at (1/2 - x, -1/2 + y, 1/2 - z) (2.977 (4)Å). In addition, the molecules are linked by weak intermolecular C—H···O and C—H···F interactions (Table 1).

Experimental

To a solution 2-amino-3-bromo-1,4-naphthoquinone (300 mg, 1.19 mmol) in dry THF was added NaH (68.64 mg 2.86 mmol) and the mixture was stirred for 15 minutes. 4-Fluoro-benzoylchloride (0.35 ml, 2.86 mmol) was added thereafter and this mixture was stirred at room temperature for 16–24 hr under argon. The solvent was removed in vacuo and the solid residue was dissolved in dichloromethane (40 ml). The resultant solution was washed with water (3 x 15 ml), saturated NaCl solution (2 x 15 ml) and dried over anhydrous magnesium sulfate. The solvent was removed in vacuo and the residue recrystallized from ethyl acetate to obtain a yellow solid (391.0 g m). Further recrystallization was carried out in ethanol to furnish the title imide (340.2 mg, 57%).

Refinement

The methyl H atoms were constrained to an ideal geometry with C—H distances of 0.98 Å and Uiso(H) = 1.5Ueq(C), but each group was allowed to rotate freely about its C—C bond. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances in the range 0.95–1.00 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

View of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 20% probability level.

Fig. 2.

Fig. 2.

View of the packing viewed down the a axis. Dashed bonds show weak C—H···F interactions as well as the close Br···O intermolecular contact.

Crystal data

C24H12BrF2NO4 F(000) = 992
Mr = 496.26 Dx = 1.665 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2yn Cell parameters from 5844 reflections
a = 14.5931 (3) Å θ = 4.0–73.4°
b = 6.6471 (1) Å µ = 3.30 mm1
c = 20.6324 (4) Å T = 200 K
β = 98.407 (2)° Prism, pale yellow
V = 1979.88 (6) Å3 0.53 × 0.48 × 0.32 mm
Z = 4

Data collection

Oxford Diffraction Gemini R diffractometer 3802 independent reflections
Radiation source: fine-focus sealed tube 3362 reflections with I > 2σ(I)
graphite Rint = 0.023
Detector resolution: 10.5081 pixels mm-1 θmax = 73.6°, θmin = 4.0°
φ and ω scans h = −17→18
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) k = −8→5
Tmin = 0.230, Tmax = 0.348 l = −25→25
7835 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158 H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0639P)2 + 6.5199P] where P = (Fo2 + 2Fc2)/3
3802 reflections (Δ/σ)max < 0.001
289 parameters Δρmax = 1.29 e Å3
0 restraints Δρmin = −0.51 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br 0.22095 (3) 0.70099 (8) 0.19146 (2) 0.0444 (2)
F1A −0.2690 (2) 0.9709 (5) 0.41727 (16) 0.0599 (8)
F1B 0.1251 (3) 0.7110 (6) 0.52944 (16) 0.0752 (11)
O1 0.1976 (2) 0.7543 (6) 0.04619 (17) 0.0448 (8)
O2 −0.1290 (2) 0.8464 (5) 0.12723 (16) 0.0439 (8)
O1A −0.0683 (2) 0.4826 (5) 0.21656 (17) 0.0479 (8)
O1B 0.0933 (2) 1.0688 (5) 0.24341 (15) 0.0424 (7)
N 0.0163 (2) 0.7707 (6) 0.22161 (18) 0.0358 (8)
C1 0.1109 (3) 0.7445 (7) 0.1341 (2) 0.0330 (9)
C2 0.1213 (3) 0.7515 (6) 0.0634 (2) 0.0335 (9)
C3 0.0344 (3) 0.7515 (6) 0.0152 (2) 0.0336 (9)
C4 0.0391 (3) 0.7337 (7) −0.0509 (2) 0.0386 (10)
H4A 0.0976 0.7218 −0.0656 0.046*
C5 −0.0414 (4) 0.7333 (6) −0.0961 (2) 0.0404 (10)
H5A −0.0380 0.7208 −0.1415 0.048*
C6 −0.1272 (3) 0.7512 (7) −0.0744 (2) 0.0395 (10)
H6A −0.1824 0.7503 −0.1051 0.047*
C7 −0.1317 (3) 0.7702 (7) −0.0086 (2) 0.0375 (10)
H7A −0.1903 0.7830 0.0059 0.045*
C8 −0.0513 (3) 0.7706 (6) 0.0370 (2) 0.0333 (9)
C9 −0.0579 (3) 0.7970 (6) 0.1070 (2) 0.0343 (9)
C10 0.0287 (3) 0.7658 (6) 0.1550 (2) 0.0324 (9)
C1A −0.0557 (3) 0.6469 (7) 0.2405 (2) 0.0372 (10)
C2A −0.1127 (3) 0.7365 (7) 0.2871 (2) 0.0363 (9)
C3A −0.1389 (3) 0.9372 (7) 0.2822 (2) 0.0389 (10)
H3AA −0.1194 1.0199 0.2493 0.047*
C4A −0.1936 (3) 1.0168 (8) 0.3254 (2) 0.0424 (10)
H4AA −0.2131 1.1532 0.3222 0.051*
C5A −0.2187 (3) 0.8922 (9) 0.3732 (2) 0.0457 (11)
C6A −0.1944 (4) 0.6934 (8) 0.3788 (3) 0.0492 (12)
H6AA −0.2135 0.6120 0.4122 0.059*
C7A −0.1415 (3) 0.6137 (8) 0.3348 (2) 0.0444 (11)
H7AA −0.1248 0.4754 0.3371 0.053*
C1B 0.0646 (3) 0.9152 (7) 0.2643 (2) 0.0354 (9)
C2B 0.0816 (3) 0.8578 (8) 0.3349 (2) 0.0382 (10)
C3B 0.0772 (3) 1.0046 (8) 0.3817 (2) 0.0452 (11)
H3BA 0.0641 1.1397 0.3685 0.054*
C4B 0.0918 (4) 0.9575 (10) 0.4476 (3) 0.0529 (13)
H4BA 0.0880 1.0576 0.4799 0.063*
C5B 0.1121 (4) 0.7597 (10) 0.4649 (3) 0.0544 (14)
C6B 0.1210 (3) 0.6130 (9) 0.4200 (3) 0.0517 (13)
H6BA 0.1377 0.4798 0.4337 0.062*
C7B 0.1051 (3) 0.6619 (8) 0.3541 (2) 0.0430 (11)
H7BA 0.1103 0.5616 0.3220 0.052*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br 0.0270 (3) 0.0572 (4) 0.0469 (3) 0.0056 (2) −0.00134 (19) 0.0002 (2)
F1A 0.0519 (17) 0.068 (2) 0.0664 (19) 0.0020 (15) 0.0300 (15) −0.0024 (16)
F1B 0.084 (3) 0.098 (3) 0.0405 (17) −0.006 (2) −0.0033 (16) 0.0140 (17)
O1 0.0291 (15) 0.057 (2) 0.0496 (19) 0.0045 (14) 0.0103 (13) −0.0014 (16)
O2 0.0304 (15) 0.058 (2) 0.0429 (17) 0.0055 (15) 0.0043 (13) −0.0034 (15)
O1A 0.0466 (19) 0.0395 (19) 0.059 (2) −0.0065 (15) 0.0130 (16) −0.0070 (16)
O1B 0.0404 (17) 0.0418 (18) 0.0429 (17) −0.0065 (14) −0.0012 (13) −0.0001 (14)
N 0.0286 (17) 0.042 (2) 0.0366 (19) −0.0023 (15) 0.0036 (14) −0.0002 (15)
C1 0.0211 (18) 0.033 (2) 0.043 (2) 0.0010 (16) −0.0030 (16) −0.0005 (17)
C2 0.032 (2) 0.025 (2) 0.043 (2) 0.0023 (16) 0.0040 (17) −0.0023 (17)
C3 0.033 (2) 0.026 (2) 0.041 (2) 0.0018 (17) 0.0048 (17) 0.0015 (17)
C4 0.044 (3) 0.029 (2) 0.043 (2) 0.0020 (19) 0.0075 (19) 0.0007 (18)
C5 0.056 (3) 0.023 (2) 0.041 (2) 0.0026 (19) 0.006 (2) −0.0002 (17)
C6 0.045 (3) 0.027 (2) 0.043 (2) −0.0013 (19) −0.006 (2) 0.0010 (18)
C7 0.031 (2) 0.034 (2) 0.046 (2) 0.0018 (18) 0.0000 (18) 0.0016 (18)
C8 0.030 (2) 0.027 (2) 0.042 (2) −0.0008 (16) 0.0012 (17) 0.0009 (17)
C9 0.027 (2) 0.033 (2) 0.042 (2) −0.0026 (17) 0.0021 (17) 0.0000 (17)
C10 0.031 (2) 0.026 (2) 0.040 (2) −0.0008 (16) 0.0012 (17) 0.0000 (16)
C1A 0.030 (2) 0.042 (3) 0.039 (2) −0.0005 (19) 0.0017 (17) 0.0016 (19)
C2A 0.027 (2) 0.042 (2) 0.039 (2) −0.0057 (18) 0.0015 (17) 0.0000 (18)
C3A 0.030 (2) 0.046 (3) 0.040 (2) −0.0022 (19) 0.0029 (17) 0.0060 (19)
C4A 0.030 (2) 0.046 (3) 0.051 (3) 0.0027 (19) 0.0042 (19) 0.003 (2)
C5A 0.030 (2) 0.062 (3) 0.046 (3) −0.003 (2) 0.0092 (19) −0.002 (2)
C6A 0.045 (3) 0.051 (3) 0.055 (3) −0.005 (2) 0.015 (2) 0.009 (2)
C7A 0.039 (2) 0.041 (3) 0.054 (3) −0.004 (2) 0.009 (2) 0.004 (2)
C1B 0.0225 (18) 0.042 (3) 0.041 (2) −0.0030 (17) 0.0015 (16) −0.0013 (19)
C2B 0.0250 (19) 0.049 (3) 0.040 (2) −0.0066 (19) 0.0008 (16) 0.000 (2)
C3B 0.036 (2) 0.050 (3) 0.049 (3) −0.004 (2) 0.003 (2) −0.002 (2)
C4B 0.046 (3) 0.069 (4) 0.043 (3) −0.008 (3) 0.004 (2) −0.007 (2)
C5B 0.040 (3) 0.083 (4) 0.039 (3) −0.012 (3) −0.001 (2) 0.010 (3)
C6B 0.035 (2) 0.062 (3) 0.056 (3) 0.002 (2) −0.002 (2) 0.011 (3)
C7B 0.029 (2) 0.051 (3) 0.048 (3) 0.003 (2) −0.0004 (18) 0.002 (2)

Geometric parameters (Å, °)

Br—C1 1.873 (4) C9—C10 1.503 (6)
F1A—C5A 1.353 (6) C1A—C2A 1.486 (6)
F1B—C5B 1.356 (6) C2A—C3A 1.387 (7)
O1—C2 1.217 (5) C2A—C7A 1.390 (7)
O2—C9 1.218 (5) C3A—C4A 1.385 (7)
O1A—C1A 1.201 (6) C3A—H3AA 0.9500
O1B—C1B 1.207 (6) C4A—C5A 1.378 (7)
N—C10 1.412 (6) C4A—H4AA 0.9500
N—C1B 1.419 (6) C5A—C6A 1.369 (8)
N—C1A 1.433 (6) C6A—C7A 1.381 (7)
C1—C10 1.340 (6) C6A—H6AA 0.9500
C1—C2 1.489 (6) C7A—H7AA 0.9500
C2—C3 1.493 (6) C1B—C2B 1.492 (6)
C3—C4 1.382 (6) C2B—C3B 1.381 (7)
C3—C8 1.395 (6) C2B—C7B 1.390 (7)
C4—C5 1.388 (7) C3B—C4B 1.380 (7)
C4—H4A 0.9500 C3B—H3BA 0.9500
C5—C6 1.395 (7) C4B—C5B 1.383 (9)
C5—H5A 0.9500 C4B—H4BA 0.9500
C6—C7 1.374 (7) C5B—C6B 1.365 (9)
C6—H6A 0.9500 C6B—C7B 1.384 (7)
C7—C8 1.393 (6) C6B—H6BA 0.9500
C7—H7A 0.9500 C7B—H7BA 0.9500
C8—C9 1.473 (6)
C10—N—C1B 119.8 (4) C7A—C2A—C1A 118.6 (4)
C10—N—C1A 117.0 (4) C4A—C3A—C2A 119.9 (4)
C1B—N—C1A 122.5 (4) C4A—C3A—H3AA 120.0
C10—C1—C2 122.5 (4) C2A—C3A—H3AA 120.0
C10—C1—Br 122.5 (3) C5A—C4A—C3A 118.0 (5)
C2—C1—Br 115.0 (3) C5A—C4A—H4AA 121.0
O1—C2—C1 121.0 (4) C3A—C4A—H4AA 121.0
O1—C2—C3 122.0 (4) F1A—C5A—C6A 118.4 (5)
C1—C2—C3 117.0 (4) F1A—C5A—C4A 118.4 (5)
C4—C3—C8 120.1 (4) C6A—C5A—C4A 123.2 (5)
C4—C3—C2 119.9 (4) C5A—C6A—C7A 118.6 (5)
C8—C3—C2 120.0 (4) C5A—C6A—H6AA 120.7
C3—C4—C5 120.3 (4) C7A—C6A—H6AA 120.7
C3—C4—H4A 119.8 C6A—C7A—C2A 119.7 (5)
C5—C4—H4A 119.8 C6A—C7A—H7AA 120.1
C4—C5—C6 119.7 (4) C2A—C7A—H7AA 120.1
C4—C5—H5A 120.2 O1B—C1B—N 121.2 (4)
C6—C5—H5A 120.2 O1B—C1B—C2B 123.3 (4)
C7—C6—C5 120.0 (4) N—C1B—C2B 115.4 (4)
C7—C6—H6A 120.0 C3B—C2B—C7B 119.9 (4)
C5—C6—H6A 120.0 C3B—C2B—C1B 119.0 (4)
C6—C7—C8 120.7 (4) C7B—C2B—C1B 121.1 (4)
C6—C7—H7A 119.7 C4B—C3B—C2B 120.8 (5)
C8—C7—H7A 119.7 C4B—C3B—H3BA 119.6
C7—C8—C3 119.3 (4) C2B—C3B—H3BA 119.6
C7—C8—C9 119.6 (4) C3B—C4B—C5B 117.8 (5)
C3—C8—C9 121.1 (4) C3B—C4B—H4BA 121.1
O2—C9—C8 123.4 (4) C5B—C4B—H4BA 121.1
O2—C9—C10 119.2 (4) F1B—C5B—C6B 118.9 (6)
C8—C9—C10 117.4 (4) F1B—C5B—C4B 118.3 (5)
C1—C10—N 124.3 (4) C6B—C5B—C4B 122.8 (5)
C1—C10—C9 120.6 (4) C5B—C6B—C7B 118.7 (5)
N—C10—C9 115.0 (4) C5B—C6B—H6BA 120.6
O1A—C1A—N 119.0 (4) C7B—C6B—H6BA 120.6
O1A—C1A—C2A 124.3 (4) C6B—C7B—C2B 119.9 (5)
N—C1A—C2A 116.6 (4) C6B—C7B—H7BA 120.1
C3A—C2A—C7A 120.6 (4) C2B—C7B—H7BA 120.1
C3A—C2A—C1A 120.8 (4)
C10—C1—C2—O1 171.7 (4) C1B—N—C1A—O1A −150.5 (4)
Br—C1—C2—O1 −8.9 (6) C10—N—C1A—C2A −138.8 (4)
C10—C1—C2—C3 −9.3 (6) C1B—N—C1A—C2A 31.9 (6)
Br—C1—C2—C3 170.1 (3) O1A—C1A—C2A—C3A −138.5 (5)
O1—C2—C3—C4 6.7 (7) N—C1A—C2A—C3A 39.0 (6)
C1—C2—C3—C4 −172.3 (4) O1A—C1A—C2A—C7A 39.8 (7)
O1—C2—C3—C8 −172.9 (4) N—C1A—C2A—C7A −142.8 (4)
C1—C2—C3—C8 8.1 (6) C7A—C2A—C3A—C4A 0.5 (7)
C8—C3—C4—C5 −0.5 (6) C1A—C2A—C3A—C4A 178.8 (4)
C2—C3—C4—C5 179.9 (4) C2A—C3A—C4A—C5A 1.2 (7)
C3—C4—C5—C6 0.1 (7) C3A—C4A—C5A—F1A 177.4 (4)
C4—C5—C6—C7 0.3 (7) C3A—C4A—C5A—C6A −1.8 (7)
C5—C6—C7—C8 −0.3 (7) F1A—C5A—C6A—C7A −178.6 (5)
C6—C7—C8—C3 −0.1 (7) C4A—C5A—C6A—C7A 0.5 (8)
C6—C7—C8—C9 178.3 (4) C5A—C6A—C7A—C2A 1.3 (8)
C4—C3—C8—C7 0.5 (6) C3A—C2A—C7A—C6A −1.8 (7)
C2—C3—C8—C7 −179.9 (4) C1A—C2A—C7A—C6A 179.9 (4)
C4—C3—C8—C9 −177.8 (4) C10—N—C1B—O1B 22.6 (6)
C2—C3—C8—C9 1.8 (6) C1A—N—C1B—O1B −147.9 (4)
C7—C8—C9—O2 −10.5 (7) C10—N—C1B—C2B −154.1 (4)
C3—C8—C9—O2 167.7 (4) C1A—N—C1B—C2B 35.4 (6)
C7—C8—C9—C10 171.1 (4) O1B—C1B—C2B—C3B 40.0 (6)
C3—C8—C9—C10 −10.6 (6) N—C1B—C2B—C3B −143.5 (4)
C2—C1—C10—N −176.5 (4) O1B—C1B—C2B—C7B −137.4 (5)
Br—C1—C10—N 4.1 (6) N—C1B—C2B—C7B 39.1 (6)
C2—C1—C10—C9 0.4 (6) C7B—C2B—C3B—C4B −3.1 (7)
Br—C1—C10—C9 −179.0 (3) C1B—C2B—C3B—C4B 179.5 (4)
C1B—N—C10—C1 56.5 (6) C2B—C3B—C4B—C5B 0.9 (7)
C1A—N—C10—C1 −132.5 (5) C3B—C4B—C5B—F1B −179.0 (5)
C1B—N—C10—C9 −120.6 (4) C3B—C4B—C5B—C6B 2.1 (8)
C1A—N—C10—C9 50.5 (5) F1B—C5B—C6B—C7B 178.2 (5)
O2—C9—C10—C1 −168.8 (4) C4B—C5B—C6B—C7B −2.9 (8)
C8—C9—C10—C1 9.6 (6) C5B—C6B—C7B—C2B 0.7 (7)
O2—C9—C10—N 8.3 (6) C3B—C2B—C7B—C6B 2.2 (7)
C8—C9—C10—N −173.2 (4) C1B—C2B—C7B—C6B 179.6 (4)
C10—N—C1A—O1A 38.7 (6)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C5—H5A···O1Bi 0.95 2.56 3.297 (6) 135
C4—H4A···F1Aii 0.95 2.40 3.266 (6) 151

Symmetry codes: (i) −x, −y+2, −z; (ii) x+1/2, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2117).

References

  1. Akinboye, E. S., Butcher, R. J., Brandy, Y., Adesiyun, T. A. & Bakare, O. (2009). Acta Cryst. E65, o24. [DOI] [PMC free article] [PubMed]
  2. Bakare, O., Ashendel, C. L., Peng, H., Zalkow, L. H. & Burgess, E. M. (2003). Bioorg. Med. Chem.11, 3165–3170. [DOI] [PubMed]
  3. Berhe, S., Kanaan, Y., Copeland, R. L., Wright, D. A., Zalkow, L. H. & Bakare, O. (2008). Lett. Drug Des. Disc.5, 485–488.
  4. Huang, L., Chang, F., Lee, K., Wang, J., Teng, C. & Kuo, S. (2005). Bioorg. Med. Chem.6, 2261–2269. [DOI] [PubMed]
  5. Lien, J., Huang, L., Wang, J., Teng, C., Lee, K. & Kuo, S. (1997). Bioorg. Med. Chem.5, 2111–2120. [DOI] [PubMed]
  6. Oxford Diffraction (2007). CrysAlisPro and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
  7. Rubin-Preminger, J. M., Win, T., Granot, Y. & Bittner, S. (2004). Z. Kristallogr. New Cryst. Struct.219, o323.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Win, T., Yerushalmi, S. & Bittner, S. (2005). Synthesis, p. 1631.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809000117/bq2117sup1.cif

e-65-0o277-sup1.cif (21.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809000117/bq2117Isup2.hkl

e-65-0o277-Isup2.hkl (186.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES