Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1990 Oct;86(4):1103–1108. doi: 10.1172/JCI114814

Feedback inhibition of aldose reductase gene expression in rat renal medulla. Galactitol accumulation reduces enzyme mRNA levels and depletes cellular inositol content.

C Bondy 1, B D Cowley Jr 1, S L Lightman 1, P F Kador 1
PMCID: PMC296838  PMID: 2120282

Abstract

Aldose reductase (AR) is an enzyme responsible for converting glucose into sorbitol and galactose into galactitol. In the renal inner medulla, where sorbitol production plays a role in cellular osmoregulation, AR gene expression has been shown to be osmotically regulated. The present study examined the effects of the accumulation of the AR end product, galactitol, induced by galactose feeding, on AR gene expression and on the balance of other cellular osmolytes, including inositol, in the renal medulla. To differentiate between the effects of excess substrate, product, and intervening osmotic factors, rats were fed either control, galactose, galactose and sorbinil (an AR inhibitor), or control plus sorbinil diets. Renal papillae were assayed for AR mRNA, sodium, urea, galactose, galactitol, sorbitol, inositol, and other organic osmolytes. Galactose feeding resulted in a great accumulation of galactitol and reduction in AR mRNA levels in renal papillae. Associated with these changes was a significant depletion of renal papillary sorbitol, inositol, and glycerolphosphocholine. These effects were largely attenuated by sorbinil. The present findings suggest that renal cellular accumulation of the enzyme's polyol product causes downregulation of AR gene expression. Furthermore, our findings suggest that the inositol depletion associated with sorbitol or galactitol accumulation in various cell types during hyperglycemia may be a function of cellular osmoregulation.

Full text

PDF
1103

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bagnasco S. M., Murphy H. R., Bedford J. J., Burg M. B. Osmoregulation by slow changes in aldose reductase and rapid changes in sorbitol flux. Am J Physiol. 1988 Jun;254(6 Pt 1):C788–C792. doi: 10.1152/ajpcell.1988.254.6.C788. [DOI] [PubMed] [Google Scholar]
  2. Bagnasco S., Balaban R., Fales H. M., Yang Y. M., Burg M. Predominant osmotically active organic solutes in rat and rabbit renal medullas. J Biol Chem. 1986 May 5;261(13):5872–5877. [PubMed] [Google Scholar]
  3. Bondy C. A., Lightman S. L., Lightman S. L. Developmental and physiological regulation of aldose reductase mRNA expression in renal medulla. Mol Endocrinol. 1989 Sep;3(9):1409–1416. doi: 10.1210/mend-3-9-1409. [DOI] [PubMed] [Google Scholar]
  4. Burg M. B. Role of aldose reductase and sorbitol in maintaining the medullary intracellular milieu. Kidney Int. 1988 Mar;33(3):635–641. doi: 10.1038/ki.1988.46. [DOI] [PubMed] [Google Scholar]
  5. Cowley B. D., Jr, Ferraris J. D., Carper D., Burg M. B. In vivo osmoregulation of aldose reductase mRNA, protein, and sorbitol in renal medulla. Am J Physiol. 1990 Jan;258(1 Pt 2):F154–F161. doi: 10.1152/ajprenal.1990.258.1.F154. [DOI] [PubMed] [Google Scholar]
  6. Garcia-Perez A., Martin B., Murphy H. R., Uchida S., Murer H., Cowley B. D., Jr, Handler J. S., Burg M. B. Molecular cloning of cDNA coding for kidney aldose reductase. Regulation of specific mRNA accumulation by NaCl-mediated osmotic stress. J Biol Chem. 1989 Oct 5;264(28):16815–16821. [PubMed] [Google Scholar]
  7. Greene D. A., Lattimer S. A., Sima A. A. Sorbitol, phosphoinositides, and sodium-potassium-ATPase in the pathogenesis of diabetic complications. N Engl J Med. 1987 Mar 5;316(10):599–606. doi: 10.1056/NEJM198703053161007. [DOI] [PubMed] [Google Scholar]
  8. Gullans S. R., Blumenfeld J. D., Balschi J. A., Kaleta M., Brenner R. M., Heilig C. W., Hebert S. C. Accumulation of major organic osmolytes in rat renal inner medulla in dehydration. Am J Physiol. 1988 Oct;255(4 Pt 2):F626–F634. doi: 10.1152/ajprenal.1988.255.4.F626. [DOI] [PubMed] [Google Scholar]
  9. Hammerman M. R., Sacktor B., Daughaday W. H. myo-Inositol transport in renal brush border vesicles and it inhibition by D-glucose. Am J Physiol. 1980 Aug;239(2):F113–F120. doi: 10.1152/ajprenal.1980.239.2.F113. [DOI] [PubMed] [Google Scholar]
  10. Higgins C. F., Dorman C. J., Stirling D. A., Waddell L., Booth I. R., May G., Bremer E. A physiological role for DNA supercoiling in the osmotic regulation of gene expression in S. typhimurium and E. coli. Cell. 1988 Feb 26;52(4):569–584. doi: 10.1016/0092-8674(88)90470-9. [DOI] [PubMed] [Google Scholar]
  11. Kador P. F. The role of aldose reductase in the development of diabetic complications. Med Res Rev. 1988 Jul-Sep;8(3):325–352. doi: 10.1002/med.2610080302. [DOI] [PubMed] [Google Scholar]
  12. Li W., Chan L. S., Khatami M., Rockey J. H. Non-competitive inhibition of myo-inositol transport in cultured bovine retinal capillary pericytes by glucose and reversal by Sorbinil. Biochim Biophys Acta. 1986 May 28;857(2):198–208. doi: 10.1016/0005-2736(86)90348-2. [DOI] [PubMed] [Google Scholar]
  13. Nishimura C., Lou M. F., Kinoshita J. H. Depletion of myo-inositol and amino acids in galactosemic neuropathy. J Neurochem. 1987 Jul;49(1):290–295. doi: 10.1111/j.1471-4159.1987.tb03428.x. [DOI] [PubMed] [Google Scholar]
  14. Segal S., Hwang S. M., Stern J., Pleasure D. Inositol uptake by cultured isolated rat Schwann cells. Biochem Biophys Res Commun. 1984 Apr 30;120(2):486–492. doi: 10.1016/0006-291x(84)91280-4. [DOI] [PubMed] [Google Scholar]
  15. Uchida S., Garcia-Perez A., Murphy H., Burg M. Signal for induction of aldose reductase in renal medullary cells by high external NaCl. Am J Physiol. 1989 Mar;256(3 Pt 1):C614–C620. doi: 10.1152/ajpcell.1989.256.3.C614. [DOI] [PubMed] [Google Scholar]
  16. Wolff S. D., Yancey P. H., Stanton T. S., Balaban R. S. A simple HPLC method for quantitating major organic solutes of renal medulla. Am J Physiol. 1989 May;256(5 Pt 2):F954–F956. doi: 10.1152/ajprenal.1989.256.5.F954. [DOI] [PubMed] [Google Scholar]
  17. Yorek M. A., Dunlap J. A., Leeney E. M. Effect of galactose and glucose levels and sorbinil treatment on myo-inositol metabolism and Na+-K+ pump activity in cultured neuroblastoma cells. Diabetes. 1989 Aug;38(8):996–1004. doi: 10.2337/diab.38.8.996. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES