Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jan 31;65(Pt 2):o436. doi: 10.1107/S1600536809003432

4-Bromo-N-(3,4,5-trimethoxy­benzyl­idene)aniline

Aliakbar Dehno Khalaji a,, Matthias Weil b, Kazuma Gotoh c, Hiroyuki Ishida c,*
PMCID: PMC2968382  PMID: 21582021

Abstract

The title compound, C16H16BrNO3, adopts an E configuration with respect to the imine C=N bond. The two benzene rings are twisted with respect to each other at an angle of 38.3 (1)°. In the crystal structure, mol­ecules are connected by weak bifurcated C—H⋯(O, O) hydrogen bonds, forming a helical chain along the b axis.

Related literature

The structure of the isotypic 4-chloro compound was reported by Khalaji et al. (2009). For structures containing a 4-bromo­aniline unit, see: Khalaji et al. (2007); Khalaji & Harrison (2008).graphic file with name e-65-0o436-scheme1.jpg

Experimental

Crystal data

  • C16H16BrNO3

  • M r = 350.21

  • Monoclinic, Inline graphic

  • a = 7.1951 (4) Å

  • b = 8.3722 (5) Å

  • c = 13.2882 (8) Å

  • β = 104.413 (3)°

  • V = 775.27 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.66 mm−1

  • T = 296 (2) K

  • 0.40 × 0.30 × 0.15 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006) T min = 0.403, T max = 0.671

  • 18229 measured reflections

  • 3497 independent reflections

  • 3064 reflections with I > 2σ(I)

  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.025

  • wR(F 2) = 0.065

  • S = 1.09

  • 3497 reflections

  • 193 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.53 e Å−3

  • Absolute structure: Flack (1983), 1511 Friedel pairs

  • Flack parameter: 0.012 (6)

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809003432/wn2308sup1.cif

e-65-0o436-sup1.cif (18.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809003432/wn2308Isup2.hkl

e-65-0o436-Isup2.hkl (171.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O1i 0.93 2.63 3.272 (2) 127
C7—H7⋯O2i 0.93 2.63 3.553 (3) 172

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

Recently, we reported two Schiff-base compounds with 4-bromoaniline units that have been structurally characterized (Khalaji et al., 2007; Khalaji & Harrison, 2008). In continuation of these studies, the title compound was prepared and its structure has been determined.

An ORTEP plot, with the atomic numbering scheme is depicted in Fig. 1. The two benzene rings are twisted with respect to each other at an angle of 38.3 (1)°. In the crystal structure, the molecules are connected by weak bifurcated C—H···(O, O) hydrogen bonds, forming a helical chain along the b axis.

The C7═N1 bond length of 1.268 (3) Å conforms to the value for a double bond, and is slightly shorter than the corresponding bond length in N-(2-benzylidenepropylidene)-4-bromoaniline [C23═N23 1.288 (6) Å; Khalaji et al., 2007] and β-phenylcinnamaldehyde-4-bromoaniline [C7═N1 1.277 (4) Å; Khalaji & Harrison, 2008]. The C4—N1 bond length of 1.421 (2) Å conforms to the value for a single bond, and, in turn, is slightly longer than the corresponding bond length in N-(2-benzylidenepropylidene)-4-bromoaniline [C24—N23 1.411 (7) Å] and β-phenylcinnamaldehyde-4-bromoaniline [C6—N1 1.407 (4) Å]. All other bond lengths in the three related Schiff-base compounds are quite similar. For the title compound, the torsion angle, C8—C7—N1—C4, is 179.20 (18)°, indicating a virtually planar E-configuration with respect to the imine C═N bond (Khalaji et al., 2007; Khalaji & Harrison, 2008).

In comparison with the isotypic structure of C16H16ClNO3 (Dehno Khalaji et al., 2009), all interatomic distances and angles (except those involving the halogen atom) are very similar.

Experimental

The title compound was prepared by the reaction of 3,4,5-trimethoxybenzaldehyde (1 mmol, 0.196 g) and 4-bromoaniline (1 mmol, 0.172 g), which were dissolved in methanol (10 ml). The mixture was stirred at room temperature for 30 min. Colourless single crystals suitable for X-ray structure analysis were obtained by recrystallization from a methanol/chloroform (1:1 v/v) solution.

Refinement

H atoms were positioned geometrically (C—H = 0.93 or 0.96 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C), allowing for free rotation of the methyl groups.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with the atom-labelling. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level. Hydrogen atoms are denoted by spheres of arbitrary radius.

Fig. 2.

Fig. 2.

A partial packing diagram, viewed along the a axis. H atoms not involved in the C—H···O hydrogen bonds have been omitted.

Crystal data

C16H16BrNO3 F(000) = 356
Mr = 350.21 Dx = 1.500 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 9957 reflections
a = 7.1951 (4) Å θ = 2.9–29.0°
b = 8.3722 (5) Å µ = 2.66 mm1
c = 13.2882 (8) Å T = 296 K
β = 104.413 (3)° Block, colourless
V = 775.27 (8) Å3 0.40 × 0.30 × 0.15 mm
Z = 2

Data collection

Bruker APEXII CCD diffractometer 3497 independent reflections
Radiation source: fine-focus sealed tube 3064 reflections with I > 2σ(I)
graphite Rint = 0.023
ω scans θmax = 28.0°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Bruker, 2006) h = −9→9
Tmin = 0.403, Tmax = 0.671 k = −10→10
18229 measured reflections l = −17→17

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025 H-atom parameters constrained
wR(F2) = 0.065 w = 1/[σ2(Fo2) + (0.0339P)2 + 0.0173P] where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max = 0.002
3497 reflections Δρmax = 0.30 e Å3
193 parameters Δρmin = −0.53 e Å3
1 restraint Absolute structure: Flack (1983), 1511 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.012 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.99402 (3) 0.96811 (5) 0.988948 (16) 0.06694 (9)
O1 −0.26888 (18) 0.4772 (2) 0.36904 (9) 0.0522 (3)
O2 −0.46171 (19) 0.29368 (19) 0.46988 (11) 0.0498 (3)
O3 −0.3668 (2) 0.2687 (2) 0.67538 (12) 0.0600 (4)
N1 0.2656 (2) 0.6014 (2) 0.79047 (14) 0.0502 (4)
C1 0.7715 (3) 0.8470 (2) 0.92769 (15) 0.0450 (4)
C2 0.6245 (3) 0.8386 (3) 0.97682 (18) 0.0595 (6)
H2 0.6355 0.8891 1.0404 0.071*
C3 0.4614 (4) 0.7546 (3) 0.9308 (2) 0.0604 (6)
H3 0.3634 0.7458 0.9648 0.072*
C4 0.4402 (3) 0.6827 (2) 0.83465 (15) 0.0436 (4)
C5 0.5939 (3) 0.6886 (3) 0.78856 (16) 0.0478 (5)
H5 0.5850 0.6368 0.7256 0.057*
C6 0.7594 (3) 0.7705 (3) 0.83532 (17) 0.0498 (5)
H6 0.8618 0.7736 0.8043 0.060*
C7 0.2013 (3) 0.6071 (2) 0.69260 (16) 0.0427 (4)
H7 0.2700 0.6651 0.6542 0.051*
C8 0.0246 (3) 0.5272 (2) 0.63686 (16) 0.0411 (4)
C9 −0.0833 (3) 0.4364 (2) 0.69019 (15) 0.0432 (5)
H9 −0.0454 0.4266 0.7621 0.052*
C10 −0.2484 (3) 0.3611 (2) 0.63335 (16) 0.0430 (4)
C11 −0.3059 (3) 0.3758 (2) 0.52599 (16) 0.0411 (4)
C12 −0.1991 (2) 0.4695 (3) 0.47377 (12) 0.0403 (3)
C13 −0.0336 (3) 0.5450 (2) 0.53043 (16) 0.0417 (4)
H13 0.0381 0.6078 0.4963 0.050*
C14 −0.1666 (4) 0.5679 (4) 0.3108 (2) 0.0785 (8)
H14A −0.1641 0.6779 0.3316 0.118*
H14B −0.2287 0.5591 0.2382 0.118*
H14C −0.0377 0.5284 0.3232 0.118*
C15 −0.6378 (3) 0.3769 (4) 0.4588 (2) 0.0673 (7)
H15A −0.6588 0.3972 0.5262 0.101*
H15B −0.7412 0.3133 0.4189 0.101*
H15C −0.6324 0.4765 0.4238 0.101*
C16 −0.3111 (5) 0.2366 (4) 0.7828 (2) 0.0761 (8)
H16A −0.1813 0.1983 0.8010 0.114*
H16B −0.3944 0.1569 0.7997 0.114*
H16C −0.3198 0.3327 0.8208 0.114*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.05738 (13) 0.06441 (15) 0.06520 (14) −0.01188 (12) −0.01083 (9) −0.00513 (15)
O1 0.0556 (7) 0.0567 (8) 0.0431 (6) −0.0113 (9) 0.0100 (5) −0.0013 (9)
O2 0.0463 (7) 0.0467 (8) 0.0547 (8) −0.0096 (7) 0.0092 (6) −0.0106 (7)
O3 0.0588 (9) 0.0704 (10) 0.0506 (9) −0.0236 (7) 0.0135 (7) 0.0033 (7)
N1 0.0478 (9) 0.0533 (10) 0.0498 (11) −0.0107 (8) 0.0126 (8) −0.0056 (8)
C1 0.0423 (9) 0.0395 (11) 0.0456 (11) −0.0019 (8) −0.0036 (8) −0.0007 (8)
C2 0.0630 (13) 0.0664 (15) 0.0468 (12) −0.0018 (11) 0.0094 (10) −0.0168 (10)
C3 0.0582 (13) 0.0769 (18) 0.0500 (14) −0.0086 (11) 0.0208 (11) −0.0114 (10)
C4 0.0425 (9) 0.0441 (12) 0.0418 (10) −0.0030 (9) 0.0060 (8) −0.0009 (8)
C5 0.0463 (10) 0.0538 (14) 0.0400 (11) −0.0014 (10) 0.0044 (8) −0.0099 (9)
C6 0.0408 (10) 0.0595 (14) 0.0466 (12) −0.0002 (9) 0.0060 (9) −0.0020 (10)
C7 0.0376 (9) 0.0393 (10) 0.0504 (12) −0.0019 (8) 0.0095 (8) −0.0013 (8)
C8 0.0355 (9) 0.0337 (9) 0.0524 (11) 0.0014 (7) 0.0076 (8) −0.0044 (7)
C9 0.0418 (9) 0.0433 (13) 0.0442 (9) −0.0024 (7) 0.0101 (7) −0.0026 (7)
C10 0.0434 (10) 0.0377 (11) 0.0497 (11) −0.0038 (8) 0.0148 (8) −0.0041 (8)
C11 0.0378 (9) 0.0345 (10) 0.0503 (11) −0.0006 (8) 0.0097 (8) −0.0080 (8)
C12 0.0412 (8) 0.0356 (8) 0.0449 (8) 0.0025 (11) 0.0122 (6) −0.0028 (11)
C13 0.0397 (9) 0.0371 (10) 0.0502 (11) −0.0020 (7) 0.0148 (8) −0.0011 (8)
C14 0.0817 (17) 0.102 (2) 0.0505 (14) −0.0239 (16) 0.0142 (13) 0.0169 (14)
C15 0.0429 (11) 0.0708 (17) 0.0828 (18) −0.0044 (12) 0.0056 (11) −0.0027 (13)
C16 0.0790 (17) 0.086 (2) 0.0611 (18) −0.0228 (16) 0.0134 (15) 0.0180 (13)

Geometric parameters (Å, °)

Br1—C1 1.8992 (19) C7—C8 1.464 (3)
O1—C12 1.358 (2) C7—H7 0.9300
O1—C14 1.414 (3) C8—C9 1.399 (3)
O2—C11 1.367 (2) C8—C13 1.379 (3)
O2—C15 1.421 (3) C9—H9 0.9300
O3—C16 1.409 (3) C10—C9 1.390 (3)
O3—C10 1.368 (2) C11—C10 1.388 (3)
C1—C2 1.376 (3) C12—C13 1.392 (3)
C1—C6 1.368 (3) C12—C11 1.397 (3)
C2—H2 0.9300 C13—H13 0.9300
C3—C2 1.375 (3) C14—H14A 0.9600
C3—H3 0.9300 C14—H14B 0.9600
C4—N1 1.421 (2) C14—H14C 0.9600
C4—C3 1.386 (3) C15—H15A 0.9600
C4—C5 1.392 (3) C15—H15B 0.9600
C5—C6 1.380 (3) C15—H15C 0.9600
C5—H5 0.9300 C16—H16A 0.9600
C6—H6 0.9300 C16—H16B 0.9600
C7—N1 1.268 (3) C16—H16C 0.9600
O1—C12—C11 115.25 (16) C6—C1—Br1 119.56 (16)
O1—C12—C13 125.52 (17) C6—C1—C2 121.14 (18)
O1—C14—H14A 109.5 C6—C5—C4 120.69 (19)
O1—C14—H14B 109.5 C6—C5—H5 119.7
O1—C14—H14C 109.5 C7—N1—C4 117.70 (17)
O2—C11—C10 120.65 (17) C8—C7—H7 118.3
O2—C11—C12 119.28 (17) C8—C9—H9 120.7
O2—C15—H15A 109.5 C8—C13—C12 120.43 (18)
O2—C15—H15B 109.5 C8—C13—H13 119.8
O2—C15—H15C 109.5 C9—C8—C7 120.90 (18)
O3—C10—C9 124.70 (18) C10—O3—C16 118.18 (19)
O3—C10—C11 114.39 (17) C10—C9—C8 118.58 (18)
O3—C16—H16A 109.5 C10—C9—H9 120.7
O3—C16—H16B 109.5 C10—C11—C12 120.00 (17)
O3—C16—H16C 109.5 C11—O2—C15 113.49 (18)
N1—C7—C8 123.41 (18) C11—C10—C9 120.91 (17)
N1—C7—H7 118.3 C12—O1—C14 118.41 (17)
C1—C2—H2 120.4 C13—C8—C9 120.83 (17)
C1—C6—C5 119.45 (19) C13—C8—C7 118.27 (17)
C1—C6—H6 120.3 C13—C12—C11 119.23 (16)
C2—C1—Br1 119.30 (15) C12—C13—H13 119.8
C2—C3—C4 121.2 (2) H14A—C14—H14B 109.5
C2—C3—H3 119.4 H14A—C14—H14C 109.5
C3—C2—C1 119.1 (2) H14B—C14—H14C 109.5
C3—C2—H2 120.4 H15A—C15—H15B 109.5
C3—C4—N1 118.17 (18) H15A—C15—H15C 109.5
C3—C4—C5 118.22 (19) H15B—C15—H15C 109.5
C4—C3—H3 119.4 H16A—C16—H16B 109.5
C4—C5—H5 119.7 H16A—C16—H16C 109.5
C5—C4—N1 123.56 (17) H16B—C16—H16C 109.5
C5—C6—H6 120.3
Br1—C1—C2—C3 178.2 (2) C6—C1—C2—C3 −1.4 (4)
Br1—C1—C6—C5 −177.04 (17) C7—C8—C9—C10 −179.05 (17)
O1—C12—C11—O2 3.6 (3) C7—C8—C13—C12 179.05 (18)
O1—C12—C11—C10 −179.35 (19) C8—C7—N1—C4 179.19 (18)
O1—C12—C13—C8 −179.36 (19) C9—C10—O3—C16 −5.2 (3)
O2—C11—C10—O3 −4.2 (3) C9—C8—C13—C12 −1.5 (3)
O2—C11—C10—C9 175.96 (17) C11—C10—O3—C16 174.9 (2)
O3—C10—C9—C8 179.93 (18) C11—C12—C13—C8 0.2 (3)
N1—C4—C3—C2 −178.3 (2) C11—C10—C9—C8 −0.2 (3)
N1—C4—C5—C6 179.6 (2) C12—C11—C10—O3 178.83 (19)
N1—C7—C8—C13 178.51 (19) C12—C11—C10—C9 −1.0 (3)
N1—C7—C8—C9 −0.9 (3) C13—C8—C9—C10 1.5 (3)
C2—C1—C6—C5 2.6 (3) C13—C12—C11—O2 −175.99 (19)
C3—C4—N1—C7 144.8 (2) C13—C12—C11—C10 1.0 (3)
C3—C4—C5—C6 −3.0 (3) C14—O1—C12—C11 −179.1 (2)
C4—C3—C2—C1 −2.0 (4) C14—O1—C12—C13 0.5 (3)
C4—C5—C6—C1 −0.3 (4) C15—O2—C11—C10 88.3 (2)
C5—C4—C3—C2 4.2 (4) C15—O2—C11—C12 −94.7 (2)
C5—C4—N1—C7 −37.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C7—H7···O1i 0.93 2.63 3.272 (2) 127
C7—H7···O2i 0.93 2.63 3.553 (3) 172

Symmetry codes: (i) −x, y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2308).

References

  1. Bruker (2006). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2008). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Khalaji, A. D., Asghari, J., Fejfarová, K. & Dušek, M. (2009). Acta Cryst. E65, o253. [DOI] [PMC free article] [PubMed]
  6. Khalaji, A. D. & Harrison, W. T. A. (2008). Anal. Sci.24, x3–x4.
  7. Khalaji, A. D., Slawin, A. M. Z. & Woollins, J. D. (2007). Acta Cryst. E63, o4257.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809003432/wn2308sup1.cif

e-65-0o436-sup1.cif (18.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809003432/wn2308Isup2.hkl

e-65-0o436-Isup2.hkl (171.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES