Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jan 8;65(Pt 2):m157. doi: 10.1107/S1600536808044103

Di-μ-chlorido-bis­{aqua­chlorido[3-ethyl-4-phenyl-5-(2-pyrid­yl)-4H-1,2,4-triazole-κ2 N 1,N 5]manganese(II)}

Zuoxiang Wang a,*, Ixaoning Gong a, Chunyi Liu b, Xiaoming Zhang a
PMCID: PMC2968385  PMID: 21581769

Abstract

In the centrosymmetric dinuclear title compound, [Mn2Cl4(C15H14N4)2(H2O)2], the MnII atom is coordinated by an N,N′-bidentate ligand, a water mol­ecule, a terminal chloride ion and two bridging chloride ions in a distorted MnN2OCl3 octa­hedral geometry. The Mn⋯Mn separation is 3.6563 (9) Å. In the crystal structure, O—H⋯N and O—H⋯Cl hydrogen bonds help to establish the packing.

Related literature

For background, see: Klingele et al. (2005), Kume et al. (2006).graphic file with name e-65-0m157-scheme1.jpg

Experimental

Crystal data

  • [Mn2Cl4(C15H14N4)2(H2O)2]

  • M r = 788.32

  • Monoclinic, Inline graphic

  • a = 9.9369 (15) Å

  • b = 8.9369 (13) Å

  • c = 19.642 (3) Å

  • β = 103.323 (2)°

  • V = 1697.3 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.10 mm−1

  • T = 293 (2) K

  • 0.32 × 0.26 × 0.24 mm

Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.72, T max = 0.77

  • 8811 measured reflections

  • 3329 independent reflections

  • 2364 reflections with I > 2σ(I)

  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053

  • wR(F 2) = 0.105

  • S = 1.02

  • 3329 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.44 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808044103/hb2883sup1.cif

e-65-0m157-sup1.cif (17.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808044103/hb2883Isup2.hkl

e-65-0m157-Isup2.hkl (163.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Mn1—O1 2.273 (2)
Mn1—N2 2.280 (3)
Mn1—N1 2.344 (3)
Mn1—Cl2 2.4544 (11)
Mn1—Cl1 2.5252 (11)
Mn1—Cl1i 2.5387 (11)
Mn1—Cl1—Mn1i 92.45 (4)

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯Cl2ii 0.85 2.28 3.122 (3) 170
O1—H1C⋯N3ii 0.85 2.12 2.875 (4) 148

Symmetry code: (ii) Inline graphic.

Acknowledgments

The authors are grateful to Jingye Pharmachemical Pilot Plant for financial assistance through project No. 8507041056.

supplementary crystallographic information

Comment

The 1,2,4-triazole ring can act as a bidentate ligand in coordination chemistry (e.g. Klingele et al., 2005; Kume et al. 2006). We report here the synthesis and crystal structure analysis of the title compound, (I).

The structure of (I) is shown in Fig.1. The title compound is a centrosymmetric dinuclear maganese(II) complex bridged by two chloride ions (Table 1). The dihedral angle between the triazole and pyridine rings is 9.42 (24)°, and that between the triazole and benzene rings is 80.53 (12)°. In the crystal, O—H···N and O—H···Cl hydrogen bonds (Table 2) help to establish the packing.

Experimental

To a warm solution of 0.501 g of 3-ethyl-4-phenyl-5-(2-pyridyl)-1,2,4-triazole (2.0 mmol) in 10 ml ethanol, 0.792 g of manganese(II) chloride tetrahydrate (4.0 mmol) in 10 ml water was added. The filtrate was left to stand at room temperature for several days, and pale yellow blocks of (I) were collected.

Refinement

The H atoms were gemoetrically placed (C—H = 0.93–0.97Å, O—H = 0.85Å) and refined as riding with Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with Displacement ellipsoids shown at the 30% probability level and H atoms omitted for clarity. Mn1A and the unlabelled atoms are generated by the symmetry operation (1–x, 2–y, 1–z).

Crystal data

[Mn2Cl4(C15H14N4)2(H2O)2] F(000) = 804
Mr = 788.32 Dx = 1.542 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4766 reflections
a = 9.9369 (15) Å θ = 2.5–28.0°
b = 8.9369 (13) Å µ = 1.10 mm1
c = 19.642 (3) Å T = 293 K
β = 103.323 (2)° Block, pale yellow
V = 1697.3 (4) Å3 0.32 × 0.26 × 0.24 mm
Z = 2

Data collection

Bruker SMART APEX CCD diffractometer 3329 independent reflections
Radiation source: sealed tube 2364 reflections with I > 2σ(I)
graphite Rint = 0.045
ω scans θmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −12→8
Tmin = 0.72, Tmax = 0.77 k = −11→10
8811 measured reflections l = −24→24

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.04P)2 + 0.95P] where P = (Fo2 + 2Fc2)/3
3329 reflections (Δ/σ)max < 0.001
209 parameters Δρmax = 0.35 e Å3
0 restraints Δρmin = −0.44 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Mn1 0.52358 (6) 0.80195 (6) 0.52295 (3) 0.03231 (16)
Cl1 0.32636 (10) 0.98690 (10) 0.50448 (4) 0.0327 (2)
Cl2 0.46719 (10) 0.68828 (10) 0.40606 (4) 0.0340 (2)
C1 0.5362 (4) 0.9652 (4) 0.67503 (19) 0.0356 (9)
H1 0.4723 1.0295 0.6477 0.043*
C2 0.5739 (4) 0.9897 (5) 0.7457 (2) 0.0416 (10)
H2 0.5393 1.0715 0.7654 0.050*
C3 0.6643 (4) 0.8909 (5) 0.78734 (19) 0.0404 (10)
H3 0.6896 0.9038 0.8356 0.049*
C4 0.7167 (4) 0.7719 (4) 0.75560 (18) 0.0365 (9)
H4 0.7757 0.7025 0.7825 0.044*
C5 0.6801 (3) 0.7581 (4) 0.68393 (18) 0.0263 (7)
C6 0.7326 (4) 0.6459 (4) 0.64299 (19) 0.0324 (8)
C7 0.8480 (4) 0.4695 (4) 0.60588 (18) 0.0335 (8)
C8 0.9328 (5) 0.3335 (5) 0.60667 (19) 0.0438 (10)
H8A 1.0122 0.3415 0.6459 0.053*
H8B 0.8786 0.2488 0.6159 0.053*
C9 0.9834 (4) 0.2988 (5) 0.5451 (2) 0.0422 (10)
H9A 0.9074 0.2977 0.5047 0.063*
H9B 1.0272 0.2024 0.5506 0.063*
H9C 1.0492 0.3734 0.5390 0.063*
C10 0.8737 (4) 0.4760 (4) 0.73627 (18) 0.0368 (9)
C11 1.0054 (4) 0.5134 (5) 0.77226 (18) 0.0390 (9)
H11 1.0620 0.5727 0.7517 0.047*
C12 1.0518 (4) 0.4594 (5) 0.84098 (19) 0.0397 (10)
H12 1.1397 0.4835 0.8670 0.048*
C13 0.9654 (4) 0.3702 (5) 0.86918 (19) 0.0420 (10)
H13 0.9960 0.3335 0.9144 0.050*
C14 0.8336 (5) 0.3345 (5) 0.83126 (19) 0.0421 (10)
H14 0.7758 0.2764 0.8517 0.051*
C15 0.7878 (5) 0.3844 (5) 0.7637 (2) 0.0443 (10)
H15 0.7012 0.3570 0.7372 0.053*
N1 0.5877 (3) 0.8514 (3) 0.64330 (14) 0.0303 (7)
N2 0.7055 (3) 0.6526 (3) 0.57301 (15) 0.0322 (7)
N3 0.7784 (3) 0.5400 (3) 0.55068 (15) 0.0329 (7)
N4 0.8223 (3) 0.5325 (3) 0.66508 (14) 0.0313 (7)
O1 0.3944 (3) 0.6254 (3) 0.56175 (12) 0.0321 (6)
H1A 0.4420 0.5461 0.5721 0.039*
H1C 0.3228 0.6062 0.5299 0.039*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mn1 0.0361 (3) 0.0276 (3) 0.0307 (3) 0.0000 (2) 0.0025 (2) 0.0027 (2)
Cl1 0.0357 (5) 0.0278 (4) 0.0319 (4) −0.0004 (4) 0.0022 (4) 0.0028 (3)
Cl2 0.0396 (5) 0.0281 (5) 0.0320 (4) 0.0000 (4) 0.0033 (4) 0.0023 (3)
C1 0.044 (2) 0.0233 (18) 0.039 (2) 0.0110 (16) 0.0080 (17) −0.0013 (16)
C2 0.043 (2) 0.040 (2) 0.044 (2) 0.0019 (18) 0.0136 (19) −0.0123 (18)
C3 0.040 (2) 0.054 (3) 0.0277 (18) 0.002 (2) 0.0079 (17) −0.0088 (18)
C4 0.039 (2) 0.039 (2) 0.0292 (18) 0.0055 (18) 0.0043 (16) 0.0020 (16)
C5 0.0177 (15) 0.0252 (17) 0.0346 (17) −0.0063 (13) 0.0027 (14) 0.0008 (14)
C6 0.037 (2) 0.0271 (18) 0.0341 (19) 0.0037 (16) 0.0110 (17) 0.0057 (15)
C7 0.039 (2) 0.0322 (19) 0.0292 (18) 0.0090 (17) 0.0079 (16) −0.0013 (15)
C8 0.061 (3) 0.041 (2) 0.031 (2) 0.021 (2) 0.0134 (19) 0.0053 (17)
C9 0.040 (2) 0.045 (2) 0.042 (2) 0.0178 (19) 0.0108 (18) 0.0159 (19)
C10 0.045 (2) 0.035 (2) 0.0272 (17) 0.0145 (18) 0.0007 (17) 0.0003 (16)
C11 0.047 (2) 0.043 (2) 0.0253 (17) 0.0156 (19) 0.0036 (18) −0.0038 (16)
C12 0.041 (2) 0.045 (2) 0.0313 (19) 0.0245 (19) 0.0045 (18) 0.0087 (17)
C13 0.047 (3) 0.047 (2) 0.0293 (19) 0.024 (2) 0.0044 (18) 0.0118 (17)
C14 0.049 (3) 0.043 (2) 0.0313 (19) 0.0236 (19) 0.0022 (18) 0.0072 (16)
C15 0.042 (2) 0.052 (3) 0.038 (2) 0.007 (2) 0.0074 (19) 0.0102 (19)
N1 0.0344 (17) 0.0319 (16) 0.0232 (14) 0.0032 (13) 0.0036 (13) 0.0050 (12)
N2 0.0368 (18) 0.0262 (16) 0.0313 (16) 0.0005 (13) 0.0029 (14) 0.0041 (12)
N3 0.0374 (18) 0.0287 (16) 0.0303 (15) 0.0047 (14) 0.0027 (13) 0.0028 (12)
N4 0.0355 (17) 0.0337 (16) 0.0224 (14) 0.0055 (14) 0.0019 (13) 0.0034 (12)
O1 0.0367 (14) 0.0260 (13) 0.0330 (13) −0.0022 (11) 0.0066 (11) 0.0033 (10)

Geometric parameters (Å, °)

Mn1—O1 2.273 (2) C7—C8 1.477 (5)
Mn1—N2 2.280 (3) C8—C9 1.447 (5)
Mn1—N1 2.344 (3) C8—H8A 0.9700
Mn1—Cl2 2.4544 (11) C8—H8B 0.9700
Mn1—Cl1 2.5252 (11) C9—H9A 0.9600
Mn1—Cl1i 2.5387 (11) C9—H9B 0.9600
Cl1—Mn1i 2.5387 (11) C9—H9C 0.9600
C1—N1 1.353 (5) C10—C11 1.377 (6)
C1—C2 1.369 (5) C10—C15 1.379 (6)
C1—H1 0.9300 C10—N4 1.463 (4)
C2—C3 1.385 (6) C11—C12 1.407 (5)
C2—H2 0.9300 C11—H11 0.9300
C3—C4 1.393 (5) C12—C13 1.378 (6)
C3—H3 0.9300 C12—H12 0.9300
C4—C5 1.376 (5) C13—C14 1.387 (6)
C4—H4 0.9300 C13—H13 0.9300
C5—N1 1.356 (4) C14—C15 1.374 (5)
C5—C6 1.455 (5) C14—H14 0.9300
C6—N2 1.340 (5) C15—H15 0.9300
C6—N4 1.354 (5) N2—N3 1.370 (4)
C7—N3 1.306 (4) O1—H1A 0.8500
C7—N4 1.368 (4) O1—H1C 0.8500
O1—Mn1—N2 84.37 (10) C9—C8—H8B 107.7
O1—Mn1—N1 80.58 (10) C7—C8—H8B 107.7
N2—Mn1—N1 70.80 (10) H8A—C8—H8B 107.1
O1—Mn1—Cl2 90.09 (7) C8—C9—H9A 109.5
N2—Mn1—Cl2 98.54 (8) C8—C9—H9B 109.5
N1—Mn1—Cl2 166.35 (8) H9A—C9—H9B 109.5
O1—Mn1—Cl1 91.32 (7) C8—C9—H9C 109.5
N2—Mn1—Cl1 163.18 (8) H9A—C9—H9C 109.5
N1—Mn1—Cl1 92.47 (8) H9B—C9—H9C 109.5
Cl2—Mn1—Cl1 97.71 (3) C11—C10—C15 122.9 (4)
O1—Mn1—Cl1i 172.57 (7) C11—C10—N4 119.2 (4)
N2—Mn1—Cl1i 94.62 (8) C15—C10—N4 117.8 (4)
N1—Mn1—Cl1i 92.13 (8) C10—C11—C12 118.2 (4)
Cl2—Mn1—Cl1i 97.34 (4) C10—C11—H11 120.9
Cl1—Mn1—Cl1i 87.55 (4) C12—C11—H11 120.9
Mn1—Cl1—Mn1i 92.45 (4) C13—C12—C11 119.1 (4)
N1—C1—C2 122.9 (3) C13—C12—H12 120.4
N1—C1—H1 118.6 C11—C12—H12 120.4
C2—C1—H1 118.6 C12—C13—C14 121.1 (4)
C1—C2—C3 119.1 (4) C12—C13—H13 119.4
C1—C2—H2 120.5 C14—C13—H13 119.4
C3—C2—H2 120.5 C15—C14—C13 120.3 (4)
C2—C3—C4 118.7 (3) C15—C14—H14 119.8
C2—C3—H3 120.6 C13—C14—H14 119.8
C4—C3—H3 120.6 C14—C15—C10 118.3 (4)
C5—C4—C3 119.2 (4) C14—C15—H15 120.9
C5—C4—H4 120.4 C10—C15—H15 120.9
C3—C4—H4 120.4 C1—N1—C5 117.9 (3)
N1—C5—C4 122.0 (3) C1—N1—Mn1 124.2 (2)
N1—C5—C6 112.3 (3) C5—N1—Mn1 117.9 (2)
C4—C5—C6 125.7 (3) C6—N2—N3 107.5 (3)
N2—C6—N4 108.9 (3) C6—N2—Mn1 114.8 (2)
N2—C6—C5 121.6 (3) N3—N2—Mn1 135.8 (2)
N4—C6—C5 129.2 (3) C7—N3—N2 107.8 (3)
N3—C7—N4 109.9 (3) C6—N4—C7 105.9 (3)
N3—C7—C8 126.7 (3) C6—N4—C10 128.6 (3)
N4—C7—C8 123.2 (3) C7—N4—C10 125.3 (3)
C9—C8—C7 118.3 (3) Mn1—O1—H1A 109.5
C9—C8—H8A 107.7 Mn1—O1—H1C 109.5
C7—C8—H8A 107.7 H1A—O1—H1C 109.5

Symmetry codes: (i) −x+1, −y+2, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1A···Cl2ii 0.85 2.28 3.122 (3) 170
O1—H1C···N3ii 0.85 2.12 2.875 (4) 148

Symmetry codes: (ii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2883).

References

  1. Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Klingele, M. H., Boyd, P. D. W., Moubaraki, B., Murray, K. S. & Brooker, S. (2005). Eur. J. Inorg. Chem. pp. 910–918.
  3. Kume, S., Kuroiwa, K. & Kimizuka, N. (2006). Chem. Commun. pp. 2442–2444. [DOI] [PubMed]
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808044103/hb2883sup1.cif

e-65-0m157-sup1.cif (17.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808044103/hb2883Isup2.hkl

e-65-0m157-Isup2.hkl (163.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES