Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jan 17;65(Pt 2):o324. doi: 10.1107/S1600536809001147

2,3-Dimeth­oxy-5,12-tetra­cenequinone

Chitoshi Kitamura a,*, Naoki Akamatsu a, Akio Yoneda a, Takeshi Kawase a
PMCID: PMC2968390  PMID: 21581929

Abstract

The mol­ecule of the title compound, C20H14O4, is approximately planar [maximum deviation 0.168 (2) Å]. The two meth­oxy groups are slightly twisted relative to the plane of the 5,12-tetra­cenequinone system, with twist angles of 3.3 (3) and 5.6 (2)°. All O atoms are involved in intermolecular C—H⋯O inter­actions and the mol­ecules are arranged into slipped face-to-face stacks along the b axis via π–π inter­actions with an inter­planar distance of 3.407 (2) Å.

Related literature

For general background, see: Kitamura et al. (2008). For the synthetic procedures, see: McOmie & Perry (1973); Vets et al. (2004). For another synthetic method leading to the title compound, see: Reichwagen et al. (2005).graphic file with name e-65-0o324-scheme1.jpg

Experimental

Crystal data

  • C20H14O4

  • M r = 318.31

  • Monoclinic, Inline graphic

  • a = 8.290 (3) Å

  • b = 6.9781 (19) Å

  • c = 25.779 (8) Å

  • β = 97.883 (1)°

  • V = 1477.2 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.1 mm−1

  • T = 223 K

  • 0.5 × 0.1 × 0.05 mm

Data collection

  • Rigaku Mercury CCD area-detector diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999) T min = 0.988, T max = 0.997

  • 11405 measured reflections

  • 3370 independent reflections

  • 2773 reflections with I > 2σ(I)

  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.147

  • S = 1.12

  • 3370 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: CrystalClear (Rigaku, 2001); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809001147/gk2182sup1.cif

e-65-0o324-sup1.cif (19.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809001147/gk2182Isup2.hkl

e-65-0o324-Isup2.hkl (161.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O3i 0.94 2.30 3.210 (2) 162
C15—H15⋯O4ii 0.94 2.60 3.383 (2) 141
C20—H20B⋯O1iii 0.97 2.55 3.486 (2) 162
C20—H20B⋯O2iii 0.97 2.48 3.206 (2) 131

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

We thank the Instrument Center of the Institute for Molecular Science for the X-ray structural analysis. This work was supported by a Grant-in-Aid (No. 20550128) for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

supplementary crystallographic information

Comment

Although the title compound (I) was already synthesized (Reichwagen et al., 2005), the X-ray structre was not reported. We prepared 2,3-dimethoxytetracene from 8,9-dimethoxy-5,12-tetracenequinone (McOmie & Perry, 1973), and attemped to perform the X-ray analysis of crystals made by recrystallization from a hot DMF solution under air and light. The analysis revealed that the molecule was not as expected 2,3-dimethoxytetracene but the title compound. Quinones have a weak dipole moment along the molecular long axis and are expected to take a antiparallel arrangement with respect to one another. The latter propensity may lead to the formation of face-to-face π-overlap along the stacking direction (Kitamura et al., 2008).

The molecular structure is shown in Fig. 1. The molecule is approximately planar. The displacements of atoms O1, O2, O3, O4, C19, and C20 relative to the plane of the tetracene framework are -0.025 (1), -0.022 (1), -0.092 (1), 0.029 (1), -0.168 (2), and -0.113 (2) Å, respectively. The torsion angles of the two methoxy groups are -5.6 (2)° for C1—C2—O1—C19 and 3.3 (3)° for C4—C3—O2—C20, displaying that the Cmethyl—O bonds are directed along the molecular short axis.

In the crystal structure, the molecules are linked through intermolecular C—H···O hydrogen bonds between the methoxy groups as well as between the tetracene groups (Table 1, Fig. 2). Interestingly, along the stacking direction, not antiparallel but just slipped π-π stacking can be found. The interplanar distance is 3.407 (2) Å. The dipole moment of (I) was calculated by MO calculations (B3LYP/6–31G*), which afforded an estimation of 0.01 debye. Thus, (I) is a non-polar molecule. Therefore, it seems reasonably to conclude that the electrostatic property can determine either an antiparallel or a non-antiparallel arrangement.

Experimental

8,9-Dimethoxy-5,12-tetracenequinone was prepared according to the method described by McOmie & Perry (1973). Transformation of tetracenequinone into tetracene was performed using two successive LiAlH4 reductions by Vets et al. (2004). To a suspension of LiAlH4 (224 mg, 5.9 mmol) in dry THF (15 ml), 8,9-dimethoxy-5,12-tetracenequinone (479 mg, 1.5 mmol) was added under nitrogen. The mixture was refluxed for 30 min, cooled to room temperature, and 6M HCl (7 ml) was added under cooling with ice. The residue was filtered, and washed with water, MeOH, and Et2O. After drying, a yellow solid was isolated. The solid was added into a suspension of LiAlH4 (235 mg, 6.2 mmol) in dry THF (15 ml). The mixture was again refluxed for 30 min, cooled to room temperature, and 6M HCl (7 ml) was added under cooling with ice. The product was filtered, and washed with water, MeOH, and Et2O. After drying, 2,3-dimethoxytetracene was obtained (287 mg, 66%) as a yellow solid. Heating the tetracene in DMF under air and light, and then cooling the solution to room temperature resulted in deposition of brown crystals suitable for X-ray analysis.

Refinement

All H atoms were positioned geometrically and refined using a riding model approximation with C—H = 0.94Å and Uiso(H) = 1.2Ueq(C) for aromatic C—H, and C—H = 0.97Å and Uiso(H) = 1.5Ueq(C) for CH3.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

The packing diagram of the title compound. C-H···O interactions are shown with dashed lines.

Crystal data

C20H14O4 F(000) = 664
Mr = 318.31 Dx = 1.431 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4021 reflections
a = 8.290 (3) Å θ = 3.0–27.5°
b = 6.9781 (19) Å µ = 0.1 mm1
c = 25.779 (8) Å T = 223 K
β = 97.883 (1)° Prism, brown
V = 1477.2 (8) Å3 0.5 × 0.1 × 0.05 mm
Z = 4

Data collection

Rigaku Mercury CCD area-detector diffractometer 3370 independent reflections
Radiation source: rotating-anode X-ray tube 2773 reflections with I > 2σ(I)
graphite Rint = 0.033
Detector resolution: 14.7059 pixels mm-1 θmax = 27.5°, θmin = 3.0°
φ and ω scans h = −10→10
Absorption correction: numerical (NUMABS; Higashi, 1999) k = −9→5
Tmin = 0.988, Tmax = 0.997 l = −33→25
11405 measured reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.050 w = 1/[σ2(Fo2) + (0.0725P)2 + 0.2183P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.147 (Δ/σ)max < 0.001
S = 1.12 Δρmax = 0.28 e Å3
3370 reflections Δρmin = −0.18 e Å3
219 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 1.00036 (17) 0.53181 (18) 0.14389 (6) 0.0275 (3)
H1 1.062 0.5387 0.1773 0.033*
C2 1.01106 (17) 0.67689 (19) 0.10804 (6) 0.0274 (3)
C3 0.91825 (18) 0.66693 (19) 0.05767 (6) 0.0287 (3)
C4 0.81764 (18) 0.51175 (19) 0.04488 (5) 0.0289 (3)
H4 0.7562 0.5042 0.0115 0.035*
C5 0.80647 (17) 0.36535 (18) 0.08134 (5) 0.0259 (3)
C6 0.69108 (19) 0.20757 (19) 0.06595 (5) 0.0291 (3)
C7 0.67888 (17) 0.05220 (18) 0.10459 (5) 0.0255 (3)
C8 0.57670 (18) −0.09998 (19) 0.09083 (5) 0.0282 (3)
H8 0.5149 −0.103 0.0574 0.034*
C9 0.56328 (18) −0.25179 (18) 0.12612 (6) 0.0268 (3)
C10 0.46090 (19) −0.4123 (2) 0.11233 (6) 0.0341 (3)
H10 0.4002 −0.4192 0.0788 0.041*
C11 0.4501 (2) −0.5567 (2) 0.14754 (7) 0.0384 (4)
H11 0.3814 −0.6619 0.1381 0.046*
C12 0.5408 (2) −0.5489 (2) 0.19769 (6) 0.0386 (4)
H12 0.5326 −0.6492 0.2215 0.046*
C13 0.6411 (2) −0.3969 (2) 0.21228 (6) 0.0344 (4)
H13 0.7013 −0.3936 0.2459 0.041*
C14 0.65452 (17) −0.24356 (18) 0.17669 (6) 0.0273 (3)
C15 0.75879 (18) −0.08529 (19) 0.19038 (5) 0.0280 (3)
H15 0.8193 −0.0794 0.224 0.034*
C16 0.77246 (16) 0.05988 (18) 0.15515 (5) 0.0241 (3)
C17 0.88638 (17) 0.22181 (18) 0.16997 (5) 0.0260 (3)
C18 0.89773 (17) 0.37413 (18) 0.13063 (5) 0.0247 (3)
C19 1.1882 (2) 0.8638 (2) 0.16855 (6) 0.0360 (4)
H19A 1.1096 0.8696 0.1932 0.054*
H19B 1.2491 0.9828 0.1699 0.054*
H19C 1.2624 0.7579 0.1777 0.054*
C20 0.8334 (2) 0.8166 (2) −0.02447 (6) 0.0398 (4)
H20A 0.8583 0.7051 −0.0444 0.06*
H20B 0.8538 0.932 −0.0435 0.06*
H20C 0.7199 0.8127 −0.0192 0.06*
O1 1.10487 (14) 0.83614 (14) 0.11692 (4) 0.0362 (3)
O2 0.93439 (14) 0.81632 (14) 0.02532 (4) 0.0378 (3)
O3 0.60656 (17) 0.20730 (16) 0.02332 (4) 0.0491 (4)
O4 0.96858 (15) 0.22784 (14) 0.21323 (4) 0.0401 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0273 (7) 0.0287 (7) 0.0248 (7) −0.0028 (5) −0.0018 (5) −0.0021 (5)
C2 0.0268 (7) 0.0268 (6) 0.0283 (7) −0.0069 (5) 0.0027 (6) −0.0035 (5)
C3 0.0311 (8) 0.0287 (7) 0.0263 (7) −0.0044 (5) 0.0042 (6) 0.0040 (5)
C4 0.0322 (8) 0.0306 (7) 0.0223 (7) −0.0061 (6) −0.0021 (6) 0.0023 (5)
C5 0.0276 (7) 0.0244 (6) 0.0247 (7) −0.0025 (5) 0.0004 (6) 0.0008 (5)
C6 0.0352 (8) 0.0265 (6) 0.0234 (7) −0.0061 (6) −0.0035 (6) 0.0017 (5)
C7 0.0291 (7) 0.0238 (6) 0.0229 (7) −0.0019 (5) 0.0007 (6) 0.0005 (5)
C8 0.0317 (8) 0.0269 (6) 0.0244 (7) −0.0037 (5) −0.0022 (6) 0.0007 (5)
C9 0.0275 (7) 0.0237 (6) 0.0295 (8) 0.0003 (5) 0.0047 (6) −0.0002 (5)
C10 0.0355 (8) 0.0301 (7) 0.0364 (8) −0.0049 (6) 0.0033 (7) −0.0009 (6)
C11 0.0388 (9) 0.0271 (7) 0.0505 (10) −0.0064 (6) 0.0107 (7) 0.0001 (6)
C12 0.0453 (9) 0.0287 (7) 0.0442 (10) 0.0007 (6) 0.0143 (8) 0.0117 (6)
C13 0.0396 (9) 0.0323 (7) 0.0315 (8) 0.0033 (6) 0.0057 (7) 0.0074 (6)
C14 0.0293 (8) 0.0244 (6) 0.0286 (8) 0.0033 (5) 0.0059 (6) 0.0034 (5)
C15 0.0317 (8) 0.0279 (6) 0.0231 (7) 0.0023 (5) −0.0004 (6) 0.0021 (5)
C16 0.0267 (7) 0.0217 (6) 0.0232 (7) 0.0017 (5) 0.0008 (5) −0.0005 (5)
C17 0.0289 (7) 0.0253 (6) 0.0222 (7) 0.0010 (5) −0.0026 (6) −0.0009 (5)
C18 0.0261 (7) 0.0239 (6) 0.0234 (7) −0.0006 (5) 0.0009 (5) −0.0009 (5)
C19 0.0372 (9) 0.0353 (7) 0.0345 (8) −0.0117 (6) 0.0013 (7) −0.0091 (6)
C20 0.0465 (10) 0.0386 (8) 0.0318 (8) −0.0136 (7) −0.0034 (7) 0.0106 (6)
O1 0.0425 (7) 0.0324 (5) 0.0320 (6) −0.0160 (4) −0.0008 (5) −0.0007 (4)
O2 0.0448 (7) 0.0347 (5) 0.0314 (6) −0.0160 (5) −0.0034 (5) 0.0090 (4)
O3 0.0679 (9) 0.0436 (6) 0.0288 (6) −0.0257 (6) −0.0190 (6) 0.0104 (5)
O4 0.0514 (7) 0.0337 (5) 0.0294 (6) −0.0079 (5) −0.0149 (5) 0.0029 (4)

Geometric parameters (Å, °)

C1—C2 1.3818 (19) C11—C12 1.405 (2)
C1—C18 1.4041 (18) C11—H11 0.94
C1—H1 0.94 C12—C13 1.368 (2)
C2—O1 1.3577 (16) C12—H12 0.94
C2—C3 1.417 (2) C13—C14 1.4237 (19)
C3—O2 1.3530 (16) C13—H13 0.94
C3—C4 1.3790 (19) C14—C15 1.4170 (19)
C4—C5 1.3998 (19) C15—C16 1.3757 (19)
C4—H4 0.94 C15—H15 0.94
C5—C18 1.3881 (19) C16—C17 1.4885 (18)
C5—C6 1.4766 (18) C17—O4 1.2254 (16)
C6—O3 1.2198 (17) C17—C18 1.4810 (18)
C6—C7 1.4851 (18) C19—O1 1.4262 (18)
C7—C8 1.3743 (18) C19—H19A 0.97
C7—C16 1.4233 (18) C19—H19B 0.97
C8—C9 1.4107 (19) C19—H19C 0.97
C8—H8 0.94 C20—O2 1.4331 (18)
C9—C14 1.416 (2) C20—H20A 0.97
C9—C10 1.4206 (19) C20—H20B 0.97
C10—C11 1.368 (2) C20—H20C 0.97
C10—H10 0.94
C2—C1—C18 120.24 (12) C13—C12—H12 119.6
C2—C1—H1 119.9 C11—C12—H12 119.6
C18—C1—H1 119.9 C12—C13—C14 120.25 (14)
O1—C2—C1 125.09 (13) C12—C13—H13 119.9
O1—C2—C3 114.90 (12) C14—C13—H13 119.9
C1—C2—C3 120.01 (12) C9—C14—C15 119.45 (12)
O2—C3—C4 124.42 (13) C9—C14—C13 118.93 (13)
O2—C3—C2 116.09 (12) C15—C14—C13 121.61 (13)
C4—C3—C2 119.48 (12) C16—C15—C14 120.81 (13)
C3—C4—C5 120.40 (13) C16—C15—H15 119.6
C3—C4—H4 119.8 C14—C15—H15 119.6
C5—C4—H4 119.8 C15—C16—C7 119.53 (12)
C18—C5—C4 120.29 (12) C15—C16—C17 119.76 (12)
C18—C5—C6 122.03 (12) C7—C16—C17 120.70 (12)
C4—C5—C6 117.64 (12) O4—C17—C18 121.27 (12)
O3—C6—C5 120.94 (12) O4—C17—C16 120.91 (12)
O3—C6—C7 121.31 (12) C18—C17—C16 117.82 (12)
C5—C6—C7 117.73 (12) C5—C18—C1 119.56 (12)
C8—C7—C16 120.32 (12) C5—C18—C17 121.15 (12)
C8—C7—C6 119.16 (12) C1—C18—C17 119.27 (12)
C16—C7—C6 120.53 (12) O1—C19—H19A 109.5
C7—C8—C9 120.93 (13) O1—C19—H19B 109.5
C7—C8—H8 119.5 H19A—C19—H19B 109.5
C9—C8—H8 119.5 O1—C19—H19C 109.5
C8—C9—C14 118.95 (12) H19A—C19—H19C 109.5
C8—C9—C10 121.86 (13) H19B—C19—H19C 109.5
C14—C9—C10 119.19 (13) O2—C20—H20A 109.5
C11—C10—C9 120.42 (14) O2—C20—H20B 109.5
C11—C10—H10 119.8 H20A—C20—H20B 109.5
C9—C10—H10 119.8 O2—C20—H20C 109.5
C10—C11—C12 120.41 (14) H20A—C20—H20C 109.5
C10—C11—H11 119.8 H20B—C20—H20C 109.5
C12—C11—H11 119.8 C2—O1—C19 117.45 (11)
C13—C12—C11 120.79 (13) C3—O2—C20 117.27 (11)
C18—C1—C2—O1 179.31 (13) C10—C9—C14—C13 0.1 (2)
C18—C1—C2—C3 0.0 (2) C12—C13—C14—C9 −0.3 (2)
O1—C2—C3—O2 −0.27 (19) C12—C13—C14—C15 −179.20 (14)
C1—C2—C3—O2 179.11 (13) C9—C14—C15—C16 −0.1 (2)
O1—C2—C3—C4 −179.36 (13) C13—C14—C15—C16 178.82 (13)
C1—C2—C3—C4 0.0 (2) C14—C15—C16—C7 0.9 (2)
O2—C3—C4—C5 −178.75 (14) C14—C15—C16—C17 −178.27 (12)
C2—C3—C4—C5 0.3 (2) C8—C7—C16—C15 −0.6 (2)
C3—C4—C5—C18 −0.6 (2) C6—C7—C16—C15 179.76 (13)
C3—C4—C5—C6 177.37 (13) C8—C7—C16—C17 178.55 (13)
C18—C5—C6—O3 176.55 (15) C6—C7—C16—C17 −1.1 (2)
C4—C5—C6—O3 −1.3 (2) C15—C16—C17—O4 0.0 (2)
C18—C5—C6—C7 −2.0 (2) C7—C16—C17—O4 −179.14 (13)
C4—C5—C6—C7 −179.93 (13) C15—C16—C17—C18 179.63 (12)
O3—C6—C7—C8 3.6 (2) C7—C16—C17—C18 0.5 (2)
C5—C6—C7—C8 −177.82 (13) C4—C5—C18—C1 0.6 (2)
O3—C6—C7—C16 −176.79 (14) C6—C5—C18—C1 −177.27 (13)
C5—C6—C7—C16 1.8 (2) C4—C5—C18—C17 179.34 (13)
C16—C7—C8—C9 −0.5 (2) C6—C5—C18—C17 1.5 (2)
C6—C7—C8—C9 179.12 (13) C2—C1—C18—C5 −0.3 (2)
C7—C8—C9—C14 1.3 (2) C2—C1—C18—C17 −179.09 (13)
C7—C8—C9—C10 −178.72 (13) O4—C17—C18—C5 178.92 (13)
C8—C9—C10—C11 −179.71 (14) C16—C17—C18—C5 −0.7 (2)
C14—C9—C10—C11 0.3 (2) O4—C17—C18—C1 −2.3 (2)
C9—C10—C11—C12 −0.4 (2) C16—C17—C18—C1 178.11 (12)
C10—C11—C12—C13 0.2 (2) C1—C2—O1—C19 −5.6 (2)
C11—C12—C13—C14 0.1 (2) C3—C2—O1—C19 173.78 (13)
C8—C9—C14—C15 −1.0 (2) C4—C3—O2—C20 3.3 (2)
C10—C9—C14—C15 179.02 (13) C2—C3—O2—C20 −175.73 (13)
C8—C9—C14—C13 −179.95 (13)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C8—H8···O3i 0.94 2.30 3.210 (2) 162
C15—H15···O4ii 0.94 2.60 3.383 (2) 141
C20—H20B···O1iii 0.97 2.55 3.486 (2) 162
C20—H20B···O2iii 0.97 2.48 3.206 (2) 131

Symmetry codes: (i) −x+1, −y, −z; (ii) −x+2, y−1/2, −z+1/2; (iii) −x+2, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2182).

References

  1. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst.38, 381–388.
  2. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  3. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  4. Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.
  5. Kitamura, C., Akamatsu, N., Yoneda, A. & Kawase, T. (2008). Acta Cryst. E64, o1802. [DOI] [PMC free article] [PubMed]
  6. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  7. McOmie, J. F. W. & Perry, D. H. (1973). Synthesis, pp. 416–417.
  8. Reichwagen, J., Hopf, H., Del Guerzo, A., Belin, C., Bouas-Laurent, H. & Desvergne, J.-P. (2005). Org. Lett.7, 971–974. [DOI] [PubMed]
  9. Rigaku (2001). CrystalClear. Rigaku Corporation, Tokyo, Japan.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Vets, N., Smet, M. & Dehaen, W. (2004). Tetrahedron Lett.45, 7287–7289.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809001147/gk2182sup1.cif

e-65-0o324-sup1.cif (19.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809001147/gk2182Isup2.hkl

e-65-0o324-Isup2.hkl (161.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES