Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jan 10;65(Pt 2):o267–o268. doi: 10.1107/S1600536809000191

N-[4-Acetyl-5-methyl-5-(2-p-tolyl­prop­yl)-4,5-dihydro-1,3,4-thia­diazol-2-yl]acetamide

Mohamed Tebaa a, Noureddine Mazoir a, Celia M Maya b, Bouhmaida Nouzha c, Ahmed Benharref d, Moha Berraho a,*
PMCID: PMC2968392  PMID: 21581882

Abstract

The title heterocyclic compound, C17H23N3O2S, was synthesized from 4-(4-methyl­cyclo­hex-3-en­yl)pent-3-en-2-one, which was isolated from Cedrus atlantica essential oil. The thia­diazole ring adopts a flattened envelope conformation, with the flap sp 3-hybridized C atom lying 0.259 (1) Å out of the plane of the other four atoms. The screw-related mol­ecules are linked into chains along the b axis by inter­molecular N—H⋯O hydrogen bonds.

Related literature

For 1,3,4-thia­diazole derivatives and their biological activity, see: Beatriz et al. (2002); Loughzail et al. (2009); Mazoir et al. (2008); Mohammed et al. (2008); Nakagawa et al. (1996); Sakthivel et al. (2008); Tehranchian et al. (2005); Wang et al. (1999, 2004). For puckering parameters, see: Cremer & Pople (1975).graphic file with name e-65-0o267-scheme1.jpg

Experimental

Crystal data

  • C17H23N3O2S

  • M r = 333.44

  • Monoclinic, Inline graphic

  • a = 9.3984 (2) Å

  • b = 11.0510 (2) Å

  • c = 16.6045 (3) Å

  • β = 90.442 (10)°

  • V = 1724.52 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 298 (2) K

  • 0.5 × 0.4 × 0.3 mm

Data collection

  • Bruker X8 APEX CCD area-detector diffractometer

  • Absorption correction: none

  • 52162 measured reflections

  • 8286 independent reflections

  • 7182 reflections with I > 2σ(I)

  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.108

  • S = 1.03

  • 8286 reflections

  • 221 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia,1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809000191/ci2746sup1.cif

e-65-0o267-sup1.cif (17.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809000191/ci2746Isup2.hkl

e-65-0o267-Isup2.hkl (397.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H4⋯O2i 0.89 (1) 1.96 (1) 2.8391 (7) 169 (1)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank Professor J. C. Daran for fruitful discussions.

supplementary crystallographic information

Comment

1,3,4-Thiadiazole derivatives (Sakthivel et al., 2008) represent an interesting class of compounds possessing diverses activities: biological (Nakagawa et al., 1996), fungicidal (Wang et al., 1999, 2004) and bactericidal properties (Tehranchian et al., 2005). The work of our research group focused on the phytochemical study of Moroccan plants and aimed to find out new compounds, which could be used as precursors or intermediates for the synthesis of high added value specimens (Mazoir et al., 2008; Loughzail et al.,2009). In this way, we have investigated native Cedrus species rich on sesquiterpene derivatives. Thus a new compound was obtained through chemical modification of 4-(4-methylcyclohex-3-enyl)pent-3-en-2-one, which was isolated from Cedrus Atlantica essential oil. The aromatization of the above compound followed by condensation with thiosemicarbazide (Beatriz et al., 2002; Mohammed et al., 2008) ending with treatment of acetic anhydride in the presence of pyridine yielded a diasterioisomers in high stereoselectivity.

The molecular structure of the title compound is shown in Fig. 1. The thiadiazole ring adopts a flattened envelop conformation as indicated by Cremer & Pople (1975) puckering parameters Q = 0.1578 (6) Å and φ = 148.3 (2)°. Atom C5 deviates from the mean plane through other four atoms in the ring by 0.259 (1) Å.

In the crystal structure, molecules are linked into chains (Fig. 2) running along the b axis by intermolecular N—H···O hydrogen bonds (Table 1) involving the carbonyl and the acetamide groups.

Experimental

A solution of 4-(4-methylcyclohex-3-enyl)pent-3-en-2-one (0.5 g, 2.8 mmol) and Pd/C (10%) was heated at 423 K for 12 h. The product obtained was treated with equimolecular quantity of thiosemicarbazide and several drops of HCl (cc) were added. The reaction mixture was heated at reflux in ethanol for 6 h and then evaporated under reduced pressure and the residue obtained was purified on silica gel column using hexane-ethyl acetate (96:4) as an eluent. 0.25 mmol of the thiosemicarbazone obtained was dissolved in 3 ml of pyridine and 3 ml of acetic anhydride. The mixture was heated on a water bath for 1.5 h. The resulting residue was concentrated in vacuo and chromatographied on silica gel column with hexane-ethyl acetate (92:8) as an eluent. Suitable crystals were obtained by evaporation of ethyl acetate solution at 277 K.

Refinement

Atoms H4 and H7 were located in a difference map and refined freely (C7—H7 = 0.974 (11) Å and N1—H4 = 0.889 (13) Å). The remaining H atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic), 0.96 Å (methyl), 0.97 Å (methylene), 0.98Å (methine) with Uiso(H) = 1.2Ueq(aromatic, methylene, methine) or Uiso(H) = 1.5Ueq(methyl). The highest residual density peak is located 0.62 Å from atom C2 and the deepest hole is located 0.39 Å from atom H70'.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Partial packing view showing N—H···O hydrogen-bonded (dashed lines) chain running along the b axis. H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C17H23N3O2S F(000) = 712
Mr = 333.44 Dx = 1.284 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 31976 reflections
a = 9.3984 (2) Å θ = 2.2–36.5°
b = 11.0510 (2) Å µ = 0.20 mm1
c = 16.6045 (3) Å T = 298 K
β = 90.442 (10)° Prism, colourless
V = 1724.52 (6) Å3 0.5 × 0.4 × 0.3 mm
Z = 4

Data collection

Bruker X8 APEX CCD area-detector diffractometer 7182 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.019
graphite θmax = 36.8°, θmin = 2.2°
φ and ω scans h = −14→15
52162 measured reflections k = −18→17
8286 independent reflections l = −27→27

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0594P)2 + 0.2773P] where P = (Fo2 + 2Fc2)/3
8286 reflections (Δ/σ)max = 0.002
221 parameters Δρmax = 0.51 e Å3
0 restraints Δρmin = −0.19 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1' −0.18648 (9) 0.69929 (8) 0.22865 (5) 0.03405 (16)
H1' −0.2631 0.7423 0.2493 0.041*
C2' −0.12028 (8) 0.74007 (7) 0.15872 (5) 0.02883 (13)
H2' −0.1553 0.8087 0.1329 0.035*
C2 0.40705 (7) 0.72005 (6) 0.13520 (4) 0.02074 (10)
C3' −0.00246 (7) 0.68003 (6) 0.12659 (4) 0.02299 (11)
C3 0.58917 (7) 0.58558 (7) 0.08145 (4) 0.02531 (12)
C4 0.67040 (8) 0.47195 (8) 0.09881 (5) 0.03082 (14)
H40 0.6397 0.4094 0.0625 0.046*
H41 0.6534 0.4471 0.1533 0.046*
H42 0.7702 0.4865 0.0917 0.046*
C4' 0.04426 (8) 0.57608 (7) 0.16569 (5) 0.02818 (13)
H4' 0.1221 0.5340 0.1458 0.034*
C5 0.24444 (7) 0.89236 (6) 0.09425 (4) 0.02261 (11)
C5' −0.02462 (10) 0.53384 (8) 0.23496 (5) 0.03469 (17)
H5' 0.0073 0.4631 0.2595 0.042*
C6 0.10835 (8) 0.85717 (6) 0.04946 (4) 0.02444 (12)
H61 0.1172 0.8834 −0.0060 0.029*
H62 0.0302 0.9021 0.0728 0.029*
C6' −0.13955 (10) 0.59549 (9) 0.26777 (5) 0.03553 (17)
C7' −0.21196 (14) 0.55330 (13) 0.34392 (6) 0.0557 (3)
H70' −0.1661 0.4813 0.3634 0.083*
H71' −0.3103 0.5363 0.3325 0.083*
H72' −0.2054 0.6155 0.3841 0.083*
C7 0.06784 (7) 0.72237 (6) 0.04914 (4) 0.02407 (11)
C8 −0.02971 (10) 0.69513 (9) −0.02232 (5) 0.03593 (17)
H80 0.0164 0.7187 −0.0713 0.054*
H81 −0.1169 0.7395 −0.0168 0.054*
H82 −0.0501 0.6100 −0.0239 0.054*
C9 0.27064 (10) 1.02844 (7) 0.08864 (5) 0.03188 (15)
H90 0.3533 1.0493 0.1200 0.048*
H91 0.1895 1.0711 0.1090 0.048*
H92 0.2855 1.0505 0.0334 0.048*
C41 0.15568 (7) 0.88983 (6) 0.23768 (4) 0.02220 (11)
C42 0.16402 (9) 0.82781 (7) 0.31792 (4) 0.02797 (13)
H420 0.1094 0.7544 0.3161 0.042*
H421 0.1265 0.8802 0.3587 0.042*
H422 0.2615 0.8091 0.3304 0.042*
N1 0.49426 (6) 0.61997 (5) 0.14026 (3) 0.02274 (10)
N3 0.32596 (6) 0.74595 (5) 0.19539 (3) 0.02162 (10)
N4 0.24397 (6) 0.84788 (5) 0.17882 (3) 0.02167 (10)
O1 0.60479 (7) 0.64374 (7) 0.01970 (4) 0.03731 (14)
O2 0.07229 (6) 0.97409 (5) 0.22442 (3) 0.02734 (10)
S1 0.400452 (18) 0.813333 (16) 0.050251 (10) 0.02473 (5)
H4 0.4838 (13) 0.5774 (12) 0.1853 (8) 0.036 (3)*
H7 0.1540 (12) 0.6750 (10) 0.0411 (7) 0.028 (3)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1' 0.0346 (4) 0.0368 (4) 0.0309 (3) −0.0069 (3) 0.0063 (3) −0.0080 (3)
C2' 0.0302 (3) 0.0267 (3) 0.0297 (3) 0.0019 (2) 0.0030 (2) −0.0024 (2)
C2 0.0225 (2) 0.0212 (2) 0.0185 (2) −0.00085 (19) −0.00014 (18) 0.00030 (19)
C3' 0.0255 (3) 0.0214 (3) 0.0220 (3) 0.0002 (2) −0.0027 (2) −0.00210 (19)
C3 0.0203 (2) 0.0334 (3) 0.0222 (3) 0.0008 (2) 0.00024 (19) −0.0032 (2)
C4 0.0255 (3) 0.0331 (3) 0.0338 (3) 0.0052 (2) −0.0005 (2) −0.0081 (3)
C4' 0.0296 (3) 0.0246 (3) 0.0303 (3) −0.0003 (2) −0.0072 (2) 0.0011 (2)
C5 0.0293 (3) 0.0197 (2) 0.0188 (2) 0.0009 (2) −0.0005 (2) 0.00177 (19)
C5' 0.0396 (4) 0.0325 (4) 0.0318 (3) −0.0098 (3) −0.0116 (3) 0.0077 (3)
C6 0.0289 (3) 0.0245 (3) 0.0199 (2) 0.0025 (2) −0.0023 (2) 0.0024 (2)
C6' 0.0407 (4) 0.0420 (4) 0.0238 (3) −0.0185 (3) −0.0029 (3) −0.0004 (3)
C7' 0.0633 (7) 0.0724 (8) 0.0313 (4) −0.0341 (6) 0.0034 (4) 0.0054 (5)
C7 0.0264 (3) 0.0251 (3) 0.0207 (2) 0.0018 (2) −0.0016 (2) −0.0032 (2)
C8 0.0402 (4) 0.0437 (4) 0.0238 (3) −0.0051 (3) −0.0066 (3) −0.0053 (3)
C9 0.0445 (4) 0.0202 (3) 0.0310 (3) −0.0016 (3) −0.0006 (3) 0.0036 (2)
C41 0.0276 (3) 0.0205 (2) 0.0185 (2) 0.0008 (2) −0.00094 (19) −0.00301 (19)
C42 0.0367 (3) 0.0281 (3) 0.0191 (3) 0.0049 (3) 0.0014 (2) 0.0006 (2)
N1 0.0240 (2) 0.0233 (2) 0.0209 (2) 0.00241 (18) 0.00268 (17) 0.00121 (18)
N3 0.0262 (2) 0.0202 (2) 0.0184 (2) 0.00288 (18) 0.00029 (17) 0.00064 (17)
N4 0.0281 (2) 0.0199 (2) 0.0171 (2) 0.00304 (18) −0.00031 (17) 0.00020 (16)
O1 0.0321 (3) 0.0550 (4) 0.0249 (2) 0.0069 (3) 0.0068 (2) 0.0066 (2)
O2 0.0344 (3) 0.0233 (2) 0.0244 (2) 0.00714 (18) −0.00082 (18) −0.00255 (17)
S1 0.02737 (8) 0.02713 (9) 0.01972 (8) 0.00035 (5) 0.00253 (5) 0.00433 (5)

Geometric parameters (Å, °)

C1'—C6' 1.3886 (14) C6—C7 1.5375 (10)
C1'—C2' 1.3963 (12) C6—H61 0.97
C1'—H1' 0.93 C6—H62 0.97
C2'—C3' 1.4001 (10) C6'—C7' 1.5142 (13)
C2'—H2' 0.93 C7'—H70' 0.96
C2—N3 1.2936 (8) C7'—H71' 0.96
C2—N1 1.3788 (9) C7'—H72' 0.96
C2—S1 1.7478 (6) C7—C8 1.5240 (10)
C3'—C4' 1.3891 (10) C7—H7 0.974 (11)
C3'—C7 1.5239 (10) C8—H80 0.96
C3—O1 1.2199 (9) C8—H81 0.96
C3—N1 1.3810 (9) C8—H82 0.96
C3—C4 1.4966 (11) C9—H90 0.96
C4—H40 0.96 C9—H91 0.96
C4—H41 0.96 C9—H92 0.96
C4—H42 0.96 C41—O2 1.2357 (8)
C4'—C5' 1.4040 (12) C41—N4 1.3679 (8)
C4'—H4' 0.93 C41—C42 1.4998 (10)
C5—N4 1.4878 (8) C42—H420 0.96
C5—C6 1.5250 (10) C42—H421 0.96
C5—C9 1.5267 (10) C42—H422 0.96
C5—S1 1.8609 (7) N1—H4 0.889 (13)
C5'—C6' 1.3916 (14) N3—N4 1.3911 (8)
C5'—H5' 0.93
C6'—C1'—C2' 120.90 (8) C6'—C7'—H70' 109.5
C6'—C1'—H1' 119.5 C6'—C7'—H71' 109.5
C2'—C1'—H1' 119.5 H70'—C7'—H71' 109.5
C1'—C2'—C3' 121.52 (7) C6'—C7'—H72' 109.5
C1'—C2'—H2' 119.2 H70'—C7'—H72' 109.5
C3'—C2'—H2' 119.2 H71'—C7'—H72' 109.5
N3—C2—N1 118.94 (6) C3'—C7—C8 109.53 (6)
N3—C2—S1 118.40 (5) C3'—C7—C6 113.80 (5)
N1—C2—S1 122.66 (5) C8—C7—C6 109.97 (6)
C4'—C3'—C2' 117.51 (7) C3'—C7—H7 108.5 (7)
C4'—C3'—C7 120.72 (6) C8—C7—H7 106.4 (7)
C2'—C3'—C7 121.70 (6) C6—C7—H7 108.3 (7)
O1—C3—N1 122.14 (7) C7—C8—H80 109.5
O1—C3—C4 122.65 (7) C7—C8—H81 109.5
N1—C3—C4 115.21 (6) H80—C8—H81 109.5
C3—C4—H40 109.5 C7—C8—H82 109.5
C3—C4—H41 109.5 H80—C8—H82 109.5
H40—C4—H41 109.5 H81—C8—H82 109.5
C3—C4—H42 109.5 C5—C9—H90 109.5
H40—C4—H42 109.5 C5—C9—H91 109.5
H41—C4—H42 109.5 H90—C9—H91 109.5
C3'—C4'—C5' 120.78 (8) C5—C9—H92 109.5
C3'—C4'—H4' 119.6 H90—C9—H92 109.5
C5'—C4'—H4' 119.6 H91—C9—H92 109.5
N4—C5—C6 111.56 (5) O2—C41—N4 121.03 (6)
N4—C5—C9 112.62 (6) O2—C41—C42 122.10 (6)
C6—C5—C9 110.89 (6) N4—C41—C42 116.87 (6)
N4—C5—S1 102.92 (4) C41—C42—H420 109.5
C6—C5—S1 110.44 (5) C41—C42—H421 109.5
C9—C5—S1 108.08 (5) H420—C42—H421 109.5
C6'—C5'—C4' 121.47 (8) C41—C42—H422 109.5
C6'—C5'—H5' 119.3 H420—C42—H422 109.5
C4'—C5'—H5' 119.3 H421—C42—H422 109.5
C5—C6—C7 117.10 (5) C2—N1—C3 124.37 (6)
C5—C6—H61 108.0 C2—N1—H4 113.9 (8)
C7—C6—H61 108.0 C3—N1—H4 121.7 (8)
C5—C6—H62 108.0 C2—N3—N4 110.79 (5)
C7—C6—H62 108.0 C41—N4—N3 118.12 (5)
H61—C6—H62 107.3 C41—N4—C5 124.65 (5)
C1'—C6'—C5' 117.78 (7) N3—N4—C5 116.65 (5)
C1'—C6'—C7' 120.12 (10) C2—S1—C5 89.03 (3)
C5'—C6'—C7' 122.10 (10)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H4···O2i 0.89 (1) 1.96 (1) 2.8391 (7) 169 (1)

Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2746).

References

  1. Beatriz, N. B., Albertina, G. M., Miriam, M. A., Angel, A. L., Graciela, Y. M. & Norma, B. D. (2002). Arkivok, X, 14-23.
  2. Bruker (2005). APEX2 and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  6. Loughzail, M., Mazoir, N., Maya, C. M., Berraho, M., Benharref, A. & Bouhmaida, N. (2009). Acta Cryst. E65, o4. [DOI] [PMC free article] [PubMed]
  7. Mazoir, N., Benharref, A., Bailén, M., Reina, M. & González-Coloma, A. (2008). Phytochemistry, 69, 1328–1338. [DOI] [PubMed]
  8. Mohammed, T., Mazoir, N., Daran, J.-C., Berraho, M. & Benharref, A. (2008). Acta Cryst. E64, o610–o611. [DOI] [PMC free article] [PubMed]
  9. Nakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pestic. Sci.21, 195–201.
  10. Sakthivel, P., Joseph, P. S., Muthiah, P. T., Sethusankar, K. & Thennarasu, S. (2008). Acta Cryst. E64, o216. [DOI] [PMC free article] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  13. Tehranchian, S., Akbarzadeh, T., Fazeli, R. M., Jamifar, H. & Shafiee, A. (2005). Bioorg. Med. Chem. Lett.15, 1023–1025. [DOI] [PubMed]
  14. Wang, Y.-G., Cao, L., Yang, J., Ye, W.-F., Zhou, Q.-C. & Lu, B.-X. (1999). Chem. J. Chin. Univ.20, 1903–1905.
  15. Wang, Y.-G., Wang, Z. Y., Zhao, X. Y. & Song, X. J. (2004). Chin. J. Org. Chem.24, 1606–1609.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809000191/ci2746sup1.cif

e-65-0o267-sup1.cif (17.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809000191/ci2746Isup2.hkl

e-65-0o267-Isup2.hkl (397.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES