Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jan 23;65(Pt 2):o362. doi: 10.1107/S1600536809001871

(E)-4-Chloro-N-[(E)-2-methyl-3-phenyl­allyl­idene]aniline

Aliakbar D Khalaji a, Jim Simpson b,*
PMCID: PMC2968393  PMID: 21581960

Abstract

The title Schiff base compound, C16H14ClN, adopts E configurations with respect to both the C=C and C=N bonds. The dihedral angle between the two aromatic rings is 53.27 (4)°, while the plane through the C=C—C=N system is inclined at 9.06 (8)° to the benzene ring and 44.92 (5)° to the chloro­benzene ring. In the crystal structure, weak C—H⋯Cl and C—H⋯N hydrogen bonds stack the mol­ecules down the a axis.

Related literature

For background to the use of Schiff bases as ligands see: Khalaji et al. (2008a ,b ); and for their bio-activity, see: Karthikeyan et al. (2006); Xiong et al. (2008); Sriram et al. (2006). For related structures, see: Khalaji et al. (2007); Khalaji & Harrison (2008); Khalaji et al. (2008c ). For reference structural data, see: Allen et al. (1987).graphic file with name e-65-0o362-scheme1.jpg

Experimental

Crystal data

  • C16H14ClN

  • M r = 255.73

  • Orthorhombic, Inline graphic

  • a = 7.2486 (10) Å

  • b = 11.6637 (17) Å

  • c = 15.598 (2) Å

  • V = 1318.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 89 (2) K

  • 0.36 × 0.24 × 0.03 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006) T min = 0.841, T max = 0.992

  • 21077 measured reflections

  • 4077 independent reflections

  • 3517 reflections with I > 2σ(I)

  • R int = 0.058

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.109

  • S = 1.06

  • 4077 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.36 e Å−3

  • Absolute structure: Flack (1983), 1742 Friedel pairs

  • Flack parameter: 0.01 (6)

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 and SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004), PLATON (Spek, 2003) and publCIF (Westrip, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809001871/pk2147sup1.cif

e-65-0o362-sup1.cif (15.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809001871/pk2147Isup2.hkl

e-65-0o362-Isup2.hkl (199.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯N1i 0.95 2.67 3.524 (2) 150
C13—H13⋯Cl1ii 0.95 2.92 3.7311 (17) 144

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We thank the University of Otago for purchase of the diffractometer.

supplementary crystallographic information

Comment

Schiff-bases are well known chelating ligands in coordination chemistry (Khalaji et al., 2008a,b), and exhibit a wide range of biological activities (Karthikeyan et al., 2006) including anti-HIV activity (Xiong et al., 2008; Sriram et al., 2006). As a continuation of our work on the synthesis and structural characterization of Schiff-base compounds (Khalaji et al., 2007; Khalaji & Harrison, 2008; Khalaji et al., 2008c), we report here the structure of the title compound, C16H14NCl, (I), Fig 1.

The title Schiff-base compound, C16H14NCl, adopts E configurations with respect to both the C2=C4 and C1=N1 bonds. Bond lengths in the molecule are normal (Allen, et al., 1987) and similar to those found in related compounds (Khalaji et al., 2007; Khalaji & Harrison, 2008; Khalaji et al., 2008c). The dihedral angle between the two aromatic rings is 53.27 (4)° while the plane through the C2=C4–C1=N1 system is inclined at 9.06 (8)° to the C5···C10 ring and 44.92 (5)° to the C11···C16 ring.

In the crystal structure, weak C13—H13···Cl1 and C7—H7···N1 hydrogen bonds stack the molecules down the a axis.

Experimental

The title compound was prepared in 76% yield from 4-chloroaniline and α-methylcinnamaldehyde as reported elsewhere (Khalaji et al. 2007) and recrystallized from methanol.

Refinement

The H atom bound to N1 was located in a difference electron density map and refined freely with an isotropic displacement parameter. All other H-atoms were refined using a riding model with d(C—H) = 0.95 Å, Uiso= 1.2Ueq (C) for aromatic and 0.98 Å, Uiso = 1.5Ueq (C) for CH3 H atoms.

Figures

Fig. 1.

Fig. 1.

The structure of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Crystal packing of (I) viewed down the a axis with hydrogen bonds drawn as dashed lines. H atoms not involved in hydrogen bonding have been omitted.

Crystal data

C16H14ClN F(000) = 536
Mr = 255.73 Dx = 1.288 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 5396 reflections
a = 7.2486 (10) Å θ = 2.6–28.8°
b = 11.6637 (17) Å µ = 0.27 mm1
c = 15.598 (2) Å T = 89 K
V = 1318.7 (3) Å3 Rectangular plate, pale yellow
Z = 4 0.36 × 0.24 × 0.03 mm

Data collection

Bruker APEXII CCD area-detector diffractometer 4077 independent reflections
Radiation source: fine-focus sealed tube 3517 reflections with I > 2σ(I)
graphite Rint = 0.058
ω scans θmax = 30.7°, θmin = 3.1°
Absorption correction: multi-scan (SADABS; Bruker, 2006) h = −10→10
Tmin = 0.841, Tmax = 0.992 k = −16→16
21077 measured reflections l = −21→22

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039 H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0649P)2] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.001
4077 reflections Δρmax = 0.30 e Å3
164 parameters Δρmin = −0.36 e Å3
0 restraints Absolute structure: Flack (1983), 1742 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.01 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.5152 (2) 0.52967 (12) 0.68870 (9) 0.0202 (3)
C1 0.4972 (2) 0.61272 (13) 0.63497 (9) 0.0183 (3)
H1 0.4550 0.6848 0.6553 0.022*
C2 0.5394 (2) 0.60026 (13) 0.54384 (9) 0.0172 (3)
C3 0.6040 (3) 0.48397 (13) 0.51348 (10) 0.0224 (3)
H3A 0.5303 0.4601 0.4639 0.034*
H3B 0.5892 0.4280 0.5598 0.034*
H3C 0.7343 0.4884 0.4970 0.034*
C4 0.5161 (2) 0.69557 (13) 0.49535 (10) 0.0178 (3)
H4 0.4725 0.7602 0.5264 0.021*
C5 0.5458 (2) 0.71712 (13) 0.40389 (10) 0.0166 (3)
C6 0.6332 (3) 0.64156 (14) 0.34605 (10) 0.0227 (3)
H6 0.6771 0.5695 0.3659 0.027*
C7 0.6560 (2) 0.67119 (14) 0.26031 (10) 0.0228 (3)
H7 0.7151 0.6192 0.2223 0.027*
C8 0.5931 (2) 0.77606 (14) 0.22974 (10) 0.0228 (3)
H8 0.6072 0.7953 0.1709 0.027*
C9 0.5089 (3) 0.85283 (15) 0.28615 (11) 0.0243 (4)
H9 0.4672 0.9252 0.2660 0.029*
C10 0.4861 (2) 0.82324 (14) 0.37165 (10) 0.0205 (3)
H10 0.4286 0.8762 0.4094 0.025*
C11 0.4819 (2) 0.55276 (13) 0.77639 (10) 0.0182 (3)
C12 0.5526 (2) 0.64996 (13) 0.81773 (10) 0.0203 (3)
H12 0.6233 0.7040 0.7862 0.024*
C13 0.5200 (2) 0.66792 (13) 0.90454 (10) 0.0207 (3)
H13 0.5671 0.7342 0.9323 0.025*
C14 0.4183 (2) 0.58807 (13) 0.94995 (10) 0.0193 (3)
Cl1 0.38085 (6) 0.60910 (4) 1.05938 (2) 0.02595 (11)
C15 0.3494 (2) 0.48964 (13) 0.91081 (11) 0.0206 (3)
H15 0.2800 0.4354 0.9428 0.025*
C16 0.3841 (2) 0.47222 (13) 0.82400 (10) 0.0199 (3)
H16 0.3404 0.4045 0.7969 0.024*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0204 (7) 0.0212 (6) 0.0190 (6) 0.0000 (5) 0.0007 (5) 0.0002 (5)
C1 0.0174 (7) 0.0186 (6) 0.0189 (7) 0.0011 (6) 0.0001 (6) −0.0018 (6)
C2 0.0162 (7) 0.0171 (6) 0.0182 (7) 0.0014 (6) −0.0009 (5) −0.0021 (6)
C3 0.0278 (9) 0.0173 (6) 0.0222 (8) 0.0029 (7) 0.0032 (7) −0.0004 (6)
C4 0.0186 (8) 0.0163 (7) 0.0185 (7) 0.0000 (6) 0.0011 (6) −0.0038 (5)
C5 0.0145 (7) 0.0161 (6) 0.0191 (7) −0.0025 (6) 0.0003 (6) −0.0018 (5)
C6 0.0291 (9) 0.0164 (6) 0.0225 (8) 0.0000 (7) 0.0035 (7) −0.0014 (5)
C7 0.0280 (9) 0.0206 (7) 0.0199 (7) −0.0031 (7) 0.0053 (6) −0.0036 (6)
C8 0.0244 (9) 0.0264 (7) 0.0175 (7) −0.0045 (7) −0.0010 (6) 0.0008 (6)
C9 0.0257 (9) 0.0238 (7) 0.0233 (8) 0.0035 (7) 0.0006 (7) 0.0054 (6)
C10 0.0204 (8) 0.0198 (7) 0.0213 (7) 0.0028 (6) 0.0019 (6) 0.0004 (6)
C11 0.0174 (7) 0.0190 (7) 0.0183 (7) 0.0034 (6) −0.0007 (6) 0.0014 (6)
C12 0.0209 (8) 0.0183 (6) 0.0218 (7) −0.0003 (6) −0.0028 (6) 0.0042 (6)
C13 0.0233 (8) 0.0174 (7) 0.0214 (7) −0.0008 (6) −0.0039 (6) −0.0012 (6)
C14 0.0181 (7) 0.0217 (7) 0.0180 (7) 0.0051 (6) −0.0004 (6) 0.0021 (6)
Cl1 0.0302 (2) 0.02978 (19) 0.01791 (17) 0.00604 (18) 0.00123 (15) −0.00069 (15)
C15 0.0197 (8) 0.0196 (7) 0.0225 (7) 0.0009 (6) 0.0016 (6) 0.0030 (6)
C16 0.0199 (8) 0.0172 (6) 0.0228 (7) 0.0000 (6) −0.0005 (6) −0.0006 (6)

Geometric parameters (Å, °)

N1—C1 1.287 (2) C8—C9 1.396 (2)
N1—C11 1.415 (2) C8—H8 0.9500
C1—C2 1.4612 (19) C9—C10 1.387 (2)
C1—H1 0.9500 C9—H9 0.9500
C2—C4 1.355 (2) C10—H10 0.9500
C2—C3 1.511 (2) C11—C16 1.392 (2)
C3—H3A 0.9800 C11—C12 1.401 (2)
C3—H3B 0.9800 C12—C13 1.390 (2)
C3—H3C 0.9800 C12—H12 0.9500
C4—C5 1.464 (2) C13—C14 1.383 (2)
C4—H4 0.9500 C13—H13 0.9500
C5—C10 1.404 (2) C14—C15 1.393 (2)
C5—C6 1.412 (2) C14—Cl1 1.7456 (16)
C6—C7 1.391 (2) C15—C16 1.392 (2)
C6—H6 0.9500 C15—H15 0.9500
C7—C8 1.390 (2) C16—H16 0.9500
C7—H7 0.9500
C1—N1—C11 117.96 (14) C7—C8—H8 120.3
N1—C1—C2 122.50 (14) C9—C8—H8 120.3
N1—C1—H1 118.8 C10—C9—C8 119.89 (15)
C2—C1—H1 118.8 C10—C9—H9 120.1
C4—C2—C1 115.80 (14) C8—C9—H9 120.1
C4—C2—C3 126.88 (13) C9—C10—C5 121.79 (15)
C1—C2—C3 117.32 (13) C9—C10—H10 119.1
C2—C3—H3A 109.5 C5—C10—H10 119.1
C2—C3—H3B 109.5 C16—C11—C12 119.14 (15)
H3A—C3—H3B 109.5 C16—C11—N1 118.32 (14)
C2—C3—H3C 109.5 C12—C11—N1 122.44 (15)
H3A—C3—H3C 109.5 C13—C12—C11 120.52 (15)
H3B—C3—H3C 109.5 C13—C12—H12 119.7
C2—C4—C5 131.77 (14) C11—C12—H12 119.7
C2—C4—H4 114.1 C14—C13—C12 119.20 (15)
C5—C4—H4 114.1 C14—C13—H13 120.4
C10—C5—C6 117.38 (14) C12—C13—H13 120.4
C10—C5—C4 117.05 (14) C13—C14—C15 121.45 (15)
C6—C5—C4 125.55 (14) C13—C14—Cl1 119.28 (12)
C7—C6—C5 120.84 (15) C15—C14—Cl1 119.25 (12)
C7—C6—H6 119.6 C16—C15—C14 118.82 (15)
C5—C6—H6 119.6 C16—C15—H15 120.6
C8—C7—C6 120.63 (15) C14—C15—H15 120.6
C8—C7—H7 119.7 C11—C16—C15 120.83 (14)
C6—C7—H7 119.7 C11—C16—H16 119.6
C7—C8—C9 119.46 (15) C15—C16—H16 119.6

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C7—H7···N1i 0.95 2.67 3.524 (2) 150
C13—H13···Cl1ii 0.95 2.92 3.7311 (17) 144

Symmetry codes: (i) −x+3/2, −y+1, z−1/2; (ii) x+1/2, −y+3/2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2147).

References

  1. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst.37, 335–338.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Bruker (2006). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Hunter, K. A. & Simpson, J. (1999). TITAN2000 University of Otago, New Zealand.
  6. Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem.14, 7482–7489. [DOI] [PubMed]
  7. Khalaji, A. D., Amirnasr, M. & Harrison, W. T. A. (2008a). Anal. Sci.24, x89–x90.
  8. Khalaji, A. D. & Harrison, W. T. A. (2008). Anal. Sci.24, x3–x4.
  9. Khalaji, A. D., Slawin, A. M. Z. & Woollins, J. D. (2007). Acta Cryst. E63, o4257.
  10. Khalaji, A. D., Welter, R., Amirnasr, M. & Barry, A. H. (2008b). Anal. Sci.24, x137–x138.
  11. Khalaji, A. D., Welter, R., Amirnasr, M. & Barry, A. H. (2008c). Anal. Sci.24, x139–x140.
  12. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  15. Sriram, D., Yogeeswari, P., Sirisha, N. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett.16, 2127–2129. [DOI] [PubMed]
  16. Westrip, S. P. (2009). publCIF In preparation.
  17. Xiong, Y.-Z., Chen, F.-E., Balzarini, J., Clercq, E. D. & Pannecouque, C. (2008). Eur. J. Med. Chem.43, 1230–1236. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809001871/pk2147sup1.cif

e-65-0o362-sup1.cif (15.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809001871/pk2147Isup2.hkl

e-65-0o362-Isup2.hkl (199.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES