Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jan 14;65(Pt 2):o312–o313. doi: 10.1107/S1600536809001020

Dimethyl 2,2′-[(4-oxo-2-phenyl-4H-chromene-5,7-diyl)dioxy]diacetate: a more densely packed polymorph

Angannan Nallasivam a, Munirathinam Nethaji b, Nagarajan Vembu c,*, Buckle Jaswant d, Nagarajan Sulochana a
PMCID: PMC2968396  PMID: 21581920

Abstract

The title mol­ecule, C21H18O8, crystallizes in two crystal polymorphs, see also Nallasivam, Nethaji, Vembu & Jaswant [Acta Cryst. (2009), E65, o314–o315]. The mol­ecules of both polymorphs differ by the conformation of the oxomethyl­acetate groups. The title mol­ecules are rather planar compared to the mol­ecules of the other polymorph. In the title mol­ecule, one of the oxomethyl­acetate groups is disordered (occupancies of 0.6058/0.3942). The structures of both polymorphs are stabilized by C—H⋯O and C—H⋯π inter­actions. Due to the planarity of the title mol­ecules and similar inter­molecular inter­actions, the title mol­ecules are more densely packed than those of the other polymorph.

Related literature

For a more detailed description of the two polymorphs, see: Nallasivam et al. (2009). For related structures, see: Wang, Fang et al. (2003); Wang, Zheng et al. (2003). For hydrogen bonding, see: Desiraju & Steiner (1999).graphic file with name e-65-0o312-scheme1.jpg

Experimental

Crystal data

  • C21H18O8

  • M r = 398.35

  • Triclinic, Inline graphic

  • a = 7.4290 (15) Å

  • b = 9.2582 (19) Å

  • c = 13.480 (3) Å

  • α = 84.232 (3)°

  • β = 88.775 (4)°

  • γ = 82.982 (3)°

  • V = 915.5 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 (2) K

  • 0.34 × 0.28 × 0.22 mm

Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998) T min = 0.963, T max = 0.975

  • 9755 measured reflections

  • 3781 independent reflections

  • 2887 reflections with I > 3σ(I)

  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059

  • wR(F 2) = 0.118

  • S = 2.47

  • 3781 reflections

  • 268 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: JANA2000 (Petříček et al., 2000); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and JANA2000.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809001020/fb2129sup1.cif

e-65-0o312-sup1.cif (21KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809001020/fb2129Isup2.hkl

e-65-0o312-Isup2.hkl (177.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O27i 0.93 2.38 3.304 (2) 169
C12—H12⋯O1 0.93 2.33 2.664 (2) 101
C15—H15⋯O21Bii 0.93 2.46 3.31 (6) 153
C25—H25B⋯O17iii 0.97 2.56 3.447 (3) 153
C29—H29B⋯O17iv 0.96 2.50 3.403 (3) 156
C29—H29C⋯O21Biv 0.96 2.55 3.26 (6) 131
C23B—H23BB⋯Cg1v 0.96 2.76 3.67 (6) 159 (6)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic. Cg1 is the centroid of the C11–C16 phenyl ring.

Acknowledgments

AN thanks Dr Naresh Kumar and Dr G. Vengatachalam, School of Chemistry, Bharathidasan University, Tiruchirappalli, and Organica Aromatics Pvt Ltd, Bangalore, India, for providing laboratory facilities.

supplementary crystallographic information

Comment

The importance of the benzopyrans and their derivatives is described in Nallasivam et al. (2009).

The chromene ring is almost planar and similar to that found in the related chromene derivatives (Wang, Zheng et al., 2003; Wang, Fang et al., 2003). The total puckering amplitude of the chromene ring is 0.040 (2)Å. The interplanar angle between the chromene ring and the 2-phenyl ring is 2.90 (6)° thereby indicating the almost coplanar arrangement (Fig. 1). The oxomethylacetate substituent at C7 is slightly distorted from coplanarity as discerned from the interplanar angle of 12.7 (1)°. Such a calculation for the oxomethylacetate group at C5 is not done due to disorder.

The crystal structure is stabilized by the interplay of C–H···O, C–H···π interactions (Tab. 1) as well as π···π-electron interactions. The H-bond distances agree with those reported in literature (Desiraju & Steiner, 1999). There is a π···π-electron interaction between the rings C5\C6···\C10 Cg2 and C11\C12···\C16 [1-x, 2-y, 2-z] whose centroids are at the distance 3.714 (1) Å.

Experimental

Into the round bottom flask a suspension of chrysin (3.93 mmol, 1 g) and potassium carbonate (11.81 mmol, 1.64 g) were deposited and to this mixture dimethylformamide (10 ml) was added. The reaction mixture was heated to 383 K and maintained at this temperature for 2–3 hrs. The reaction mixture was cooled to 353 K. Methyl chloroacetate (15.74 mmol, 1.70 g) was slowly added to the reaction mixture with the help of a dropping funnel. The reaction mixture was kept for 8–9 hrs at 353 K while the reaction was monitored by high pressure liquid chromatography. Once the reaction was completed, the reaction mixture was quenched with water and stirred for 30–45 min at 303 K. The obtained solid was filtered and washed with plenty of water followed by methanol. The wet cake was dried under vacuum at 343 K. The crude product of the title compound, i. e. the more densely packed polymorph, was dissolved in dichloromethane (10 ml) and mixed with equal amount of n-hexane. The clear solution was kept aside for a week without stirring. Diffraction quality prism shaped crystals with average size about 0.30 mm along the longest edge were obtained. The crystals were filtered and washed with n-hexane and dried under vacuum at 70°C. Yield: 85%

Refinement

Though the hydrogen atoms were observable in the difference electron density maps they were situated into the idealized positions and refined in the riding mode approximation. The following constraints have been applied: C–H = 0.93, 0.97 and 0.96Å for aryl, methylene and methyl H, respectively. Uiso(H)=1.2Ueq(C) for the aryl and methylene H and Uiso(H)=1.5Ueq(C) for the methyl H. A considerably elongated displacement parameter of the atom O21 and electron density maxima in the vicinity of the disordered chain atoms indicated disorder. This disorder has been modelled by two fragments whose geometry was assumed to be equal with relatively same displacement parameters that differed only by their orientation that was refined. At the beginning, the atoms of the disordered fragment were refined isotropically while their occupational parameters were refined. The occupational parameters converged to the values 0.394 (4) and 0.606 (4), respectively. In the next stage, the occupational parameters were fixed while the non-hydrogen atoms of the disordered atoms were refined anisotropically. The plausibility of the result follows from the planarity of the disordered fragments C19A\C20A\O21A\O22A and C19B\C20B\O21B\O22B with maximal deviations from planarity that equal to 0.006 (7) Å for C20A and 0.007 (65)Å for C20B.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound with the atoms labelled and displacement ellipsoids depicted at the 50% probability level for all non-H atoms. H-atoms are drawn as spheres of arbitrary radius.

Crystal data

C21H18O8 Z = 2
Mr = 398.35 F(000) = 416
Triclinic, P1 Dx = 1.445 Mg m3
Hall symbol: -P 1 Melting point = 411–414 K
a = 7.4290 (15) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.2582 (19) Å Cell parameters from 574 reflections
c = 13.480 (3) Å θ = 1.5–26.5°
α = 84.232 (3)° µ = 0.11 mm1
β = 88.775 (4)° T = 293 K
γ = 82.982 (3)° Rectangular, colourless
V = 915.5 (3) Å3 0.34 × 0.28 × 0.22 mm

Data collection

Bruker SMART APEX CCD diffractometer 3781 independent reflections
Radiation source: fine-focus sealed tube 2887 reflections with I > 3σ(I)
graphite Rint = 0.016
Detector resolution: 0.3 pixels mm-1 θmax = 27.4°, θmin = 1.5°
ω scans h = −9→9
Absorption correction: multi-scan (SADABS; Sheldrick, 1998) k = −11→11
Tmin = 0.963, Tmax = 0.975 l = −17→17
9755 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059 Hydrogen site location: difference Fourier map
wR(F2) = 0.118 H-atom parameters constrained
S = 2.47 Weighting scheme based on measured s.u.'s w = 1/[σ2(I) + 0.0004I2]
3781 reflections (Δ/σ)max = 0.018
268 parameters Δρmax = 0.40 e Å3
0 restraints Δρmin = −0.26 e Å3
73 constraints

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.30663 (16) 0.96130 (13) 1.06056 (8) 0.0466 (4)
C2 0.3857 (2) 0.82585 (19) 1.09503 (13) 0.0431 (6)
C3 0.4037 (2) 0.7161 (2) 1.03579 (13) 0.0481 (7)
H3 0.462382 0.628089 1.064955 0.0577*
C4 0.3379 (2) 0.73194 (19) 0.93493 (13) 0.0447 (6)
C5 0.1751 (2) 0.92338 (19) 0.80498 (13) 0.0440 (6)
C6 0.0924 (2) 1.06310 (19) 0.78160 (13) 0.0485 (7)
H6 0.040296 1.087598 0.71911 0.0582*
C7 0.0866 (2) 1.16664 (19) 0.85047 (13) 0.0431 (6)
C8 0.1604 (2) 1.13114 (18) 0.94310 (12) 0.0425 (6)
H8 0.156976 1.200597 0.988599 0.051*
C9 0.2523 (2) 0.87883 (19) 0.90045 (12) 0.0412 (6)
C10 0.2396 (2) 0.98822 (19) 0.96535 (12) 0.0404 (6)
C11 0.4412 (2) 0.82212 (19) 1.19964 (13) 0.0442 (6)
C12 0.4040 (3) 0.9455 (2) 1.25078 (13) 0.0566 (7)
H12 0.343711 1.031075 1.2191 0.0679*
C13 0.4559 (3) 0.9425 (2) 1.34867 (14) 0.0662 (9)
H13 0.430455 1.025051 1.382886 0.0795*
C14 0.5450 (3) 0.8187 (2) 1.39655 (15) 0.0682 (9)
H14 0.579756 0.818894 1.462394 0.0818*
C15 0.5827 (3) 0.6948 (2) 1.34736 (14) 0.0639 (8)
H15 0.64295 0.610021 1.380221 0.0767*
C16 0.5311 (3) 0.6965 (2) 1.24944 (14) 0.0540 (7)
H16 0.557134 0.612394 1.216813 0.0648*
O17 0.3521 (2) 0.62674 (13) 0.88447 (9) 0.0631 (5)
O24 0.00341 (17) 1.30050 (13) 0.81551 (9) 0.0543 (5)
C25 0.0005 (3) 1.41742 (19) 0.87637 (13) 0.0510 (7)
H25a −0.042676 1.386777 0.942667 0.0612*
H25b 0.122418 1.44296 0.881842 0.0612*
C26 −0.1214 (3) 1.5488 (2) 0.83259 (14) 0.0515 (7)
O27 −0.1465 (2) 1.65854 (16) 0.87223 (11) 0.0857 (7)
O28 −0.19680 (19) 1.52877 (14) 0.74809 (10) 0.0629 (5)
C29 −0.3222 (3) 1.6483 (2) 0.70402 (17) 0.0749 (9)
H29a −0.258565 1.731194 0.685106 0.1124*
H29b −0.415753 1.673972 0.751552 0.1124*
H29c −0.375575 1.619165 0.646084 0.1124*
O18a 0.1645 (15) 0.8187 (11) 0.7443 (6) 0.0454 (13) 0.3942
C19a 0.1208 (13) 0.8711 (7) 0.6431 (7) 0.0539 (9) 0.3942
H19aa 0.208107 0.93525 0.616762 0.0647* 0.3942
H19ba −0.002303 0.920137 0.640124 0.0647* 0.3942
C20a 0.1342 (9) 0.7395 (6) 0.5854 (5) 0.0499 (10) 0.3942
O21a 0.2023 (7) 0.6206 (5) 0.6126 (4) 0.0810 (12) 0.3942
O22a 0.0619 (16) 0.7758 (10) 0.4972 (6) 0.0728 (8) 0.3942
C23a 0.0795 (19) 0.6627 (13) 0.4291 (6) 0.0683 (15) 0.3942
H23aa −0.019173 0.680175 0.38296 0.1025* 0.3942
H23ba 0.192314 0.664225 0.393153 0.1025* 0.3942
H23ca 0.077136 0.568838 0.466291 0.1025* 0.3942
O18b 0.209 (9) 0.823 (7) 0.734 (4) 0.0454 (12) 0.6058
C19b 0.108 (9) 0.860 (7) 0.643 (4) 0.0539 (9) 0.6058
H19ab 0.136 0.955 0.613 0.0647* 0.6058
H19bb −0.020 0.861 0.658 0.0647* 0.6058
C20b 0.169 (9) 0.745 (7) 0.575 (4) 0.0499 (10) 0.6058
O21b 0.298 (9) 0.657 (7) 0.585 (4) 0.0810 (13) 0.6058
O22b 0.058 (9) 0.756 (7) 0.500 (4) 0.0728 (9) 0.6058
C23b 0.109 (9) 0.660 (7) 0.422 (4) 0.0683 (14) 0.6058
H23ab 0.002 0.641 0.390 0.1025* 0.6058
H23bb 0.188 0.705 0.375 0.1025* 0.6058
H23cb 0.171 0.569 0.452 0.1025* 0.6058

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0634 (8) 0.0405 (7) 0.0362 (7) −0.0007 (6) −0.0085 (6) −0.0092 (5)
C2 0.0488 (11) 0.0395 (10) 0.0406 (10) −0.0030 (8) −0.0026 (8) −0.0041 (8)
C3 0.0613 (12) 0.0393 (11) 0.0422 (11) 0.0007 (9) −0.0052 (9) −0.0034 (9)
C4 0.0550 (12) 0.0397 (10) 0.0407 (10) −0.0067 (9) −0.0008 (9) −0.0092 (8)
C5 0.0542 (11) 0.0415 (11) 0.0382 (10) −0.0048 (9) −0.0028 (9) −0.0141 (8)
C6 0.0610 (12) 0.0460 (11) 0.0389 (10) 0.0007 (9) −0.0115 (9) −0.0126 (9)
C7 0.0493 (11) 0.0387 (10) 0.0415 (11) 0.0004 (8) −0.0071 (8) −0.0101 (8)
C8 0.0508 (11) 0.0382 (10) 0.0405 (10) −0.0035 (8) −0.0024 (9) −0.0150 (8)
C9 0.0488 (11) 0.0389 (10) 0.0369 (10) −0.0053 (8) −0.0006 (8) −0.0084 (8)
C10 0.0463 (11) 0.0428 (10) 0.0330 (10) −0.0058 (8) −0.0043 (8) −0.0070 (8)
C11 0.0501 (11) 0.0446 (11) 0.0387 (10) −0.0061 (9) −0.0041 (8) −0.0063 (8)
C12 0.0733 (14) 0.0501 (12) 0.0450 (12) 0.0026 (10) −0.0118 (10) −0.0074 (9)
C13 0.0943 (17) 0.0586 (14) 0.0456 (12) 0.0007 (12) −0.0151 (12) −0.0133 (10)
C14 0.0906 (16) 0.0720 (15) 0.0415 (12) −0.0047 (13) −0.0191 (11) −0.0061 (11)
C15 0.0808 (15) 0.0557 (13) 0.0513 (13) 0.0012 (11) −0.0194 (11) 0.0061 (11)
C16 0.0660 (13) 0.0469 (12) 0.0483 (12) −0.0028 (10) −0.0051 (10) −0.0050 (9)
O17 0.0964 (11) 0.0410 (8) 0.0521 (8) 0.0037 (7) −0.0148 (8) −0.0163 (7)
O24 0.0758 (9) 0.0410 (7) 0.0454 (8) 0.0097 (7) −0.0183 (7) −0.0176 (6)
C25 0.0640 (13) 0.0451 (11) 0.0462 (11) −0.0016 (9) −0.0113 (9) −0.0188 (9)
C26 0.0646 (13) 0.0428 (11) 0.0482 (11) −0.0004 (9) −0.0069 (10) −0.0169 (9)
O27 0.1173 (13) 0.0557 (9) 0.0844 (11) 0.0210 (9) −0.0296 (10) −0.0403 (9)
O28 0.0860 (10) 0.0460 (8) 0.0543 (8) 0.0130 (7) −0.0227 (7) −0.0150 (7)
C29 0.0941 (18) 0.0538 (13) 0.0706 (15) 0.0179 (12) −0.0208 (13) −0.0041 (11)
O18a 0.064 (4) 0.0384 (9) 0.0340 (10) −0.0010 (16) −0.0036 (17) −0.0123 (6)
C19a 0.0779 (19) 0.0424 (12) 0.0428 (11) −0.0047 (12) −0.0164 (12) −0.0109 (10)
C20a 0.067 (2) 0.0432 (13) 0.0399 (13) −0.0034 (13) −0.0088 (14) −0.0072 (10)
O21a 0.126 (3) 0.0534 (12) 0.0584 (17) 0.025 (2) −0.026 (2) −0.0159 (11)
O22a 0.1281 (17) 0.0475 (14) 0.0427 (8) 0.0023 (14) −0.0274 (10) −0.0139 (8)
C23a 0.104 (4) 0.0602 (17) 0.0447 (13) −0.0086 (18) −0.0085 (16) −0.0243 (12)
O18b 0.054 (3) 0.0478 (18) 0.0344 (12) 0.0054 (17) −0.0039 (15) −0.0159 (11)
C19b 0.0620 (16) 0.0513 (16) 0.0491 (12) 0.0063 (11) −0.0157 (11) −0.0211 (11)
C20b 0.0555 (19) 0.0502 (17) 0.0436 (14) 0.0037 (13) −0.0099 (13) −0.0131 (12)
O21b 0.074 (3) 0.097 (2) 0.0673 (19) 0.0350 (17) −0.0209 (19) −0.0378 (15)
O22b 0.0888 (16) 0.0733 (18) 0.0544 (9) 0.0260 (12) −0.0302 (9) −0.0340 (9)
C23b 0.091 (3) 0.070 (2) 0.0462 (15) 0.0046 (19) −0.0098 (15) −0.0298 (14)

Geometric parameters (Å, °)

O1—C2 1.359 (2) C25—H25a 0.9700
O1—C10 1.375 (2) C25—H25b 0.970
C2—C3 1.347 (3) C25—C26 1.502 (2)
C2—C11 1.474 (2) C26—O27 1.188 (3)
C3—H3 0.9300 C26—O28 1.319 (2)
C3—C4 1.442 (2) O28—C29 1.444 (2)
C4—C9 1.464 (2) C29—H29a 0.960
C4—O17 1.236 (2) C29—H29b 0.960
C5—C6 1.372 (2) C29—H29c 0.960
C5—C9 1.422 (2) O18a—C19a 1.431 (13)
C5—O18a 1.340 (10) C19a—H19aa 0.970
C5—O18b 1.40 (6) C19a—H19ba 0.970
C6—H6 0.9300 C19a—C20a 1.503 (10)
C6—C7 1.396 (3) C19a—H19ab 0.86
C7—C8 1.368 (2) H19ba—C19b 0.93
C7—O24 1.3593 (19) C20a—O21a 1.181 (7)
C8—H8 0.9300 C20a—O22a 1.310 (11)
C8—C10 1.387 (2) O22a—C23a 1.453 (15)
C9—C10 1.397 (3) C23a—H23aa 0.960
C11—C12 1.389 (3) C23a—H23ba 0.960
C11—C16 1.387 (2) C23a—H23ca 0.960
C12—H12 0.9300 O18b—C19b 1.43 (8)
C12—C13 1.379 (3) C19b—H19ab 0.97
C13—H13 0.930 C19b—H19bb 0.97
C13—C14 1.360 (3) C19b—C20b 1.50 (9)
C14—H14 0.930 C20b—O21b 1.18 (9)
C14—C15 1.379 (3) C20b—O22b 1.31 (8)
C15—H15 0.930 O22b—C23b 1.45 (9)
C15—C16 1.380 (3) C23b—H23ab 0.96
C16—H16 0.930 C23b—H23bb 0.96
O24—C25 1.420 (2) C23b—H23cb 0.96
C2—O1—C10 120.73 (14) H25a—C25—H25b 108.35
O1—C2—C3 120.63 (15) H25a—C25—C26 109.47
O1—C2—C11 110.99 (15) H25b—C25—C26 109.47
C3—C2—C11 128.38 (15) C25—C26—O27 122.01 (18)
C2—C3—H3 114.72 C25—C26—O28 113.56 (16)
C2—C3—C4 123.30 (15) O27—C26—O28 124.42 (17)
H3—C3—C4 121.98 C26—O28—C29 116.61 (15)
C3—C4—C9 114.63 (16) O28—C29—H29a 109.5
C3—C4—O17 120.99 (15) O28—C29—H29b 109.47
C9—C4—O17 124.36 (16) O28—C29—H29c 109.47
C6—C5—C9 121.19 (17) H29a—C29—H29b 109.5
C6—C5—O18a 121.2 (4) H29a—C29—H29c 109.5
C6—C5—O18b 122 (2) H29b—C29—H29c 109.5
C9—C5—O18a 117.0 (4) C5—O18a—C19a 114.8 (7)
C9—C5—O18b 116 (2) C5—O18a—C19b 119 (3)
C5—C6—H6 118.85 O18a—C19a—H19aa 109.5
C5—C6—C7 120.54 (16) O18a—C19a—H19ba 109.5
H6—C6—C7 120.61 O18a—C19a—C20a 106.9 (6)
C6—C7—C8 121.07 (15) O18a—C19a—C20b 109 (2)
C6—C7—O24 113.49 (14) H19aa—C19a—H19ba 112.0 (6)
C8—C7—O24 125.43 (16) H19aa—C19a—C20a 109.5 (8)
C7—C8—H8 120.81 H19ba—C19a—C20a 109.5 (8)
C7—C8—C10 117.06 (16) C19a—C20a—O21a 126.3 (7)
H8—C8—C10 122.13 C19a—C20a—O22a 110.0 (6)
C4—C9—C5 126.02 (16) O21a—C20a—O22a 123.7 (7)
C4—C9—C10 119.19 (15) C20a—O22a—C23a 116.3 (8)
C5—C9—C10 114.79 (15) O22a—C23a—H23aa 109.5
O1—C10—C8 113.17 (15) O22a—C23a—H23ba 109.5
O1—C10—C9 121.50 (14) O22a—C23a—H23ca 109.5
C8—C10—C9 125.33 (15) H23aa—C23a—H23ba 109.5
C2—C11—C12 120.37 (15) H23aa—C23a—H23ca 109.5
C2—C11—C16 121.24 (16) H23ba—C23a—H23ca 109.5
C12—C11—C16 118.39 (16) C5—O18b—C19a 113 (4)
C11—C12—H12 120.07 C5—O18b—C19b 115 (5)
C11—C12—C13 120.55 (17) C5—O18b—C19b 115 (5)
H12—C12—C13 119.4 O18b—C19b—H19ab 109
C12—C13—H13 120.44 O18b—C19b—H19bb 109
C12—C13—C14 120.5 (2) O18b—C19b—C20b 107
H13—C13—C14 119.07 H19ab—C19b—H19bb 112
C13—C14—H14 119.3 H19ab—C19b—C20b 109
C13—C14—C15 119.95 (19) H19bb—C19b—C20b 109
H14—C14—C15 120.7 C19b—C20b—O21b 126 (6)
C14—C15—H15 119.9 C19b—C20b—O22b 110 (6)
C14—C15—C16 120.03 (18) O21b—C20b—O22b 124 (6)
H15—C15—C16 120.0 C20b—O22b—C23b 116 (6)
C11—C16—C15 120.57 (18) O22b—C23b—H23ab 109
C11—C16—H16 119.94 O22b—C23b—H23bb 109
C15—C16—H16 119.49 O22b—C23b—H23cb 109
C7—O24—C25 118.58 (13) H23ab—C23b—H23bb 109
O24—C25—H25a 109.47 H23ab—C23b—H23cb 109
O24—C25—H25b 109.47 H23bb—C23b—H23cb 109
O24—C25—C26 110.57 (15)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C8—H8···O27i 0.93 2.38 3.304 (2) 169
C12—H12···O1 0.93 2.33 2.664 (2) 101
C15—H15···O21Bii 0.93 2.46 3.31 (6) 153
C25—H25B···O17iii 0.97 2.56 3.447 (3) 153
C29—H29B···O17iv 0.96 2.50 3.403 (3) 156
C29—H29C···O21Biv 0.96 2.55 3.26 (6) 131
C23B—H23BB···Cg1v 0.96 2.76 3.67 (6) 159 (6)

Symmetry codes: (i) −x, −y+3, −z+2; (ii) −x+1, −y+1, −z+2; (iii) x, y+1, z; (iv) x−1, y+1, z; (v) x, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2129).

References

  1. Bruker (1999). SMART and SAINT Bruker AXS Inc, Madison, Wisconsin, USA.
  2. Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press.
  3. Nallasivam, A., Nethaji, M., Vembu, N., Jaswant, B. & Sulochana, N. (2009). Acta Cryst. E65, o314–o315. [DOI] [PMC free article] [PubMed]
  4. Petříček, V., Dušek, M. & Palatinus, L. (2000). JANA2000 Institute of Physics, Czech Academy of Science, Czech Republic.
  5. Sheldrick, G. M. (1998). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  8. Wang, J.-F., Fang, M.-J., Huang, H.-Q., Li, G.-L., Su, W.-J. & Zhao, Y.-F. (2003). Acta Cryst. E59, o1517–o1518.
  9. Wang, J.-F., Zhang, Y.-J., Fang, M.-J., Huang, Y.-J., Wei, Z.-B., Zheng, Z.-H., Su, W.-J. & Zhao, Y.-F. (2003). Acta Cryst. E59, o1244–o1245.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809001020/fb2129sup1.cif

e-65-0o312-sup1.cif (21KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809001020/fb2129Isup2.hkl

e-65-0o312-Isup2.hkl (177.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES