Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jan 23;65(Pt 2):o382. doi: 10.1107/S1600536809002657

N-Cyclo­heptyl­idene-N′-(2,4-dinitro­phenyl)hydrazine

Reza Kia a, Hoong-Kun Fun a,*, Hadi Kargar b
PMCID: PMC2968402  PMID: 21581978

Abstract

The title compound, C13H16N4O4, is a new hydrazone. An intra­molecular N—H⋯O hydrogen bond generates a six-membered ring, producing an S(6) ring motif. The nitro groups in the ortho and para positions are almost coplanar with the benzene ring to which they are bound, making dihedral angles of 0.60 (11) and 3.18 (11)°, respectively. Pairs of inter­molecular C—H⋯O hydrogen bonds link neighbouring mol­ecules into inversion dimers with R 2 2(10) motifs. The crystal structure is further stabilized by inter­molecular π–π inter­actions, with a benzene centroid-to-centroid distance of 3.6601 (4) Å.

Related literature

For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For related literature on the applications of hydrazone, see, for example: Niknam et al., (2005); Guillaumont & Nakamura (2000); Raj & Kurup (2006); Okabe et al. (1993).graphic file with name e-65-0o382-scheme1.jpg

Experimental

Crystal data

  • C13H16N4O4

  • M r = 292.30

  • Monoclinic, Inline graphic

  • a = 6.9721 (1) Å

  • b = 23.7359 (5) Å

  • c = 8.2274 (2) Å

  • β = 102.351 (1)°

  • V = 1330.03 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100.0 (1) K

  • 0.51 × 0.45 × 0.08 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.946, T max = 0.991

  • 26146 measured reflections

  • 5824 independent reflections

  • 4916 reflections with I > 2σ(I)

  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.113

  • S = 1.04

  • 5824 reflections

  • 194 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809002657/kj2114sup1.cif

e-65-0o382-sup1.cif (18.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809002657/kj2114Isup2.hkl

e-65-0o382-Isup2.hkl (285.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O2 0.888 (14) 1.947 (14) 2.6225 (9) 131.7 (12)
C2—H2A⋯O3i 0.95 2.52 3.3165 (10) 142

Symmetry code: (i) Inline graphic.

Acknowledgments

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a postdoctoral research fellowship. HK thanks PNU for financial support. HKF also thanks Universiti Sains Malaysia for Research University Golden Goose grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

2,4-Dinitrophenylhydrazones play an important role as stabilizers for the detection and protection of the carbonyl group (Niknam et al., 2005). 2,4-Dinitrophenylhydrazone derivatives are widely used in as dyes (Guillaumont & Nakamura, 2000). They are also found to have versatile coordinating abilities towards different metal ions (Raj & Kurup, 2006). In addition, some phenylhydrazone derivatives have been shown to be potentially DNA-damaging and mutagenic agents (Okabe et al., 1993).

The title compound (Fig. 1) is a new hydrazone. An intramolecular N—H···O hydrogen bond generates a six-membered ring, producing an S(6) ring motif (Bernstein et al., 1995). The nitro groups in the ortho and para positions are almost coplanar with the benzene ring to which they are bound, making dihedral angles of 0.60 (11)° and 3.18 (11)°, respectively. The cycloheptanone ring is puckered with a total puckering amplitude, Q = 0.7820 (8) Å. Pairs of intermolecular C—H···O hydrogen bonds link neighbouring molecules into dimers with R22(10) motifs (Table 1, Fig. 2). The crystal structure is further stabilized by intermolecular π–π interactions [Cg1···Cg1(1 - x, -y, 1 - z) = 3.6601 (4) Å, with Cg the centroid of the benzene ring].

Experimental

The title compound was synthesized based on the reported procedure (Okabe et al. 1993). Single crystals suitable for X-ray diffraction analysis were grown by slow evaporation of a saturated solution of the resulted compound in DMF.

Refinement

The H atom bound to N1 was located from the difference Fourier map and refined freely, see Table 1. The rest of the H atoms were positioned geometrically and refined in a riding model approximation with C—H = 0.95–0.99 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

View of the molecular structure of the title compound with atom labels and 50% probability ellipsoids for non-H atoms. Intramolecular hydrogen bond is shown as dash lines.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed down the c-axis showing dimer formation. Intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

C13H16N4O4 F(000) = 616
Mr = 292.30 Dx = 1.460 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 9967 reflections
a = 6.9721 (1) Å θ = 2.7–40.2°
b = 23.7359 (5) Å µ = 0.11 mm1
c = 8.2274 (2) Å T = 100 K
β = 102.351 (1)° Plate, yellow
V = 1330.03 (5) Å3 0.51 × 0.45 × 0.08 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 5824 independent reflections
Radiation source: fine-focus sealed tube 4916 reflections with I > 2σ(I)
graphite Rint = 0.026
φ and ω scans θmax = 35.0°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −11→11
Tmin = 0.946, Tmax = 0.991 k = −38→38
26146 measured reflections l = −12→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0637P)2 + 0.2167P] where P = (Fo2 + 2Fc2)/3
5824 reflections (Δ/σ)max < 0.001
194 parameters Δρmax = 0.43 e Å3
0 restraints Δρmin = −0.30 e Å3

Special details

Experimental. The low-temperature data was collected with the Oxford Cryosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.71910 (9) −0.13041 (2) 0.17783 (8) 0.02285 (12)
O2 0.81378 (8) −0.04726 (2) 0.11828 (8) 0.02030 (12)
O3 0.01157 (8) −0.08982 (3) 0.49098 (7) 0.02059 (12)
O4 0.17434 (9) −0.16037 (2) 0.41905 (8) 0.02340 (13)
N1 0.62623 (9) 0.04321 (3) 0.18111 (8) 0.01434 (11)
N2 0.58494 (9) 0.10007 (2) 0.19219 (8) 0.01495 (11)
N3 0.70085 (9) −0.07900 (3) 0.17430 (8) 0.01533 (11)
N4 0.14350 (9) −0.10960 (3) 0.42854 (8) 0.01614 (12)
C1 0.34898 (10) 0.02454 (3) 0.30373 (9) 0.01400 (12)
H1A 0.3228 0.0638 0.3054 0.017*
C2 0.23044 (10) −0.01240 (3) 0.36477 (9) 0.01428 (12)
H2A 0.1231 0.0012 0.4077 0.017*
C3 0.26847 (10) −0.07040 (3) 0.36355 (8) 0.01365 (12)
C4 0.42249 (10) −0.09135 (3) 0.30138 (8) 0.01385 (12)
H4A 0.4470 −0.1307 0.3017 0.017*
C5 0.54189 (9) −0.05386 (3) 0.23798 (8) 0.01284 (11)
C6 0.51047 (9) 0.00541 (3) 0.23793 (8) 0.01249 (11)
C7 0.71332 (10) 0.13537 (3) 0.16026 (9) 0.01369 (12)
C8 0.90306 (10) 0.11873 (3) 0.11327 (9) 0.01459 (12)
H8A 0.8734 0.1078 −0.0056 0.018*
H8B 0.9549 0.0849 0.1784 0.018*
C9 1.06529 (10) 0.16349 (3) 0.13962 (9) 0.01612 (13)
H9A 1.0778 0.1796 0.2524 0.019*
H9B 1.1911 0.1447 0.1362 0.019*
C10 1.03488 (12) 0.21200 (3) 0.01374 (11) 0.02085 (15)
H10A 1.1629 0.2307 0.0187 0.025*
H10B 0.9920 0.1959 −0.0993 0.025*
C11 0.88606 (11) 0.25661 (3) 0.03869 (10) 0.01808 (13)
H11A 0.9336 0.2747 0.1483 0.022*
H11B 0.8801 0.2860 −0.0475 0.022*
C12 0.67896 (11) 0.23445 (3) 0.03073 (10) 0.01820 (14)
H12A 0.6359 0.2131 −0.0741 0.022*
H12B 0.5890 0.2669 0.0276 0.022*
C13 0.66109 (11) 0.19625 (3) 0.17764 (10) 0.01816 (13)
H13A 0.7471 0.2115 0.2797 0.022*
H13B 0.5242 0.1982 0.1930 0.022*
H1N1 0.727 (2) 0.0296 (6) 0.1432 (17) 0.036 (3)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0256 (3) 0.0139 (2) 0.0313 (3) 0.0047 (2) 0.0112 (2) −0.0015 (2)
O2 0.0173 (2) 0.0201 (2) 0.0264 (3) −0.00068 (19) 0.0112 (2) −0.0007 (2)
O3 0.0189 (2) 0.0239 (3) 0.0216 (3) −0.0013 (2) 0.0100 (2) 0.0012 (2)
O4 0.0262 (3) 0.0139 (2) 0.0317 (3) −0.0030 (2) 0.0096 (2) 0.0025 (2)
N1 0.0135 (2) 0.0119 (2) 0.0186 (3) −0.00005 (18) 0.00577 (19) 0.00008 (19)
N2 0.0142 (2) 0.0117 (2) 0.0198 (3) 0.00064 (18) 0.0055 (2) 0.0012 (2)
N3 0.0145 (2) 0.0153 (3) 0.0166 (3) 0.00157 (19) 0.00412 (19) −0.0017 (2)
N4 0.0161 (3) 0.0163 (3) 0.0162 (3) −0.0022 (2) 0.0037 (2) 0.0015 (2)
C1 0.0132 (3) 0.0127 (3) 0.0166 (3) 0.0010 (2) 0.0045 (2) 0.0005 (2)
C2 0.0133 (3) 0.0144 (3) 0.0158 (3) 0.0007 (2) 0.0045 (2) 0.0008 (2)
C3 0.0139 (3) 0.0132 (3) 0.0141 (3) −0.0011 (2) 0.0036 (2) 0.0009 (2)
C4 0.0145 (3) 0.0128 (3) 0.0140 (3) −0.0004 (2) 0.0025 (2) −0.0003 (2)
C5 0.0122 (3) 0.0128 (3) 0.0138 (3) 0.0008 (2) 0.0036 (2) −0.0014 (2)
C6 0.0119 (3) 0.0127 (3) 0.0127 (3) −0.00011 (19) 0.00235 (19) 0.0000 (2)
C7 0.0131 (3) 0.0125 (3) 0.0160 (3) 0.0006 (2) 0.0043 (2) 0.0009 (2)
C8 0.0133 (3) 0.0130 (3) 0.0184 (3) 0.0002 (2) 0.0054 (2) −0.0004 (2)
C9 0.0125 (3) 0.0149 (3) 0.0210 (3) −0.0004 (2) 0.0037 (2) 0.0026 (2)
C10 0.0200 (3) 0.0173 (3) 0.0284 (4) 0.0029 (2) 0.0121 (3) 0.0069 (3)
C11 0.0199 (3) 0.0137 (3) 0.0218 (3) 0.0009 (2) 0.0071 (2) 0.0032 (2)
C12 0.0170 (3) 0.0142 (3) 0.0233 (3) 0.0029 (2) 0.0040 (2) 0.0029 (2)
C13 0.0191 (3) 0.0128 (3) 0.0256 (3) 0.0016 (2) 0.0115 (3) 0.0003 (2)

Geometric parameters (Å, °)

O1—N3 1.2265 (8) C7—C13 1.5044 (10)
O2—N3 1.2471 (8) C7—C8 1.5080 (10)
O3—N4 1.2380 (9) C8—C9 1.5330 (10)
O4—N4 1.2296 (8) C8—H8A 0.9900
N1—C6 1.3551 (9) C8—H8B 0.9900
N1—N2 1.3871 (8) C9—C10 1.5328 (10)
N1—H1N1 0.887 (14) C9—H9A 0.9900
N2—C7 1.2934 (9) C9—H9B 0.9900
N3—C5 1.4517 (9) C10—C11 1.5269 (11)
N4—C3 1.4525 (9) C10—H10A 0.9900
C1—C2 1.3717 (10) C10—H10B 0.9900
C1—C6 1.4241 (10) C11—C12 1.5249 (11)
C1—H1A 0.9500 C11—H11A 0.9900
C2—C3 1.4026 (10) C11—H11B 0.9900
C2—H2A 0.9500 C12—C13 1.5373 (11)
C3—C4 1.3772 (10) C12—H12A 0.9900
C4—C5 1.3938 (10) C12—H12B 0.9900
C4—H4A 0.9500 C13—H13A 0.9900
C5—C6 1.4237 (9) C13—H13B 0.9900
C6—N1—N2 118.31 (6) C7—C8—H8B 108.2
C6—N1—H1N1 117.1 (9) C9—C8—H8B 108.2
N2—N1—H1N1 124.6 (9) H8A—C8—H8B 107.4
C7—N2—N1 117.04 (6) C10—C9—C8 115.71 (6)
O1—N3—O2 122.64 (6) C10—C9—H9A 108.4
O1—N3—C5 118.93 (6) C8—C9—H9A 108.4
O2—N3—C5 118.43 (6) C10—C9—H9B 108.4
O4—N4—O3 123.61 (7) C8—C9—H9B 108.4
O4—N4—C3 118.53 (6) H9A—C9—H9B 107.4
O3—N4—C3 117.86 (6) C11—C10—C9 115.46 (6)
C2—C1—C6 121.51 (6) C11—C10—H10A 108.4
C2—C1—H1A 119.2 C9—C10—H10A 108.4
C6—C1—H1A 119.2 C11—C10—H10B 108.4
C1—C2—C3 119.69 (6) C9—C10—H10B 108.4
C1—C2—H2A 120.2 H10A—C10—H10B 107.5
C3—C2—H2A 120.2 C12—C11—C10 114.80 (6)
C4—C3—C2 121.37 (6) C12—C11—H11A 108.6
C4—C3—N4 118.83 (6) C10—C11—H11A 108.6
C2—C3—N4 119.79 (6) C12—C11—H11B 108.6
C3—C4—C5 118.95 (6) C10—C11—H11B 108.6
C3—C4—H4A 120.5 H11A—C11—H11B 107.5
C5—C4—H4A 120.5 C11—C12—C13 113.89 (6)
C4—C5—C6 121.79 (6) C11—C12—H12A 108.8
C4—C5—N3 115.84 (6) C13—C12—H12A 108.8
C6—C5—N3 122.37 (6) C11—C12—H12B 108.8
N1—C6—C5 123.46 (6) C13—C12—H12B 108.8
N1—C6—C1 119.84 (6) H12A—C12—H12B 107.7
C5—C6—C1 116.69 (6) C7—C13—C12 115.46 (6)
N2—C7—C13 114.26 (6) C7—C13—H13A 108.4
N2—C7—C8 124.44 (6) C12—C13—H13A 108.4
C13—C7—C8 121.29 (6) C7—C13—H13B 108.4
C7—C8—C9 116.32 (6) C12—C13—H13B 108.4
C7—C8—H8A 108.2 H13A—C13—H13B 107.5
C9—C8—H8A 108.2
C6—N1—N2—C7 170.12 (6) C4—C5—C6—N1 178.35 (6)
C6—C1—C2—C3 0.28 (10) N3—C5—C6—N1 −0.87 (10)
C1—C2—C3—C4 −0.32 (10) C4—C5—C6—C1 −0.89 (9)
C1—C2—C3—N4 179.83 (6) N3—C5—C6—C1 179.89 (6)
O4—N4—C3—C4 −3.17 (10) C2—C1—C6—N1 −178.97 (6)
O3—N4—C3—C4 176.68 (6) C2—C1—C6—C5 0.30 (10)
O4—N4—C3—C2 176.69 (7) N1—N2—C7—C13 −178.94 (6)
O3—N4—C3—C2 −3.46 (10) N1—N2—C7—C8 −0.34 (10)
C2—C3—C4—C5 −0.26 (10) N2—C7—C8—C9 −159.23 (7)
N4—C3—C4—C5 179.60 (6) C13—C7—C8—C9 19.27 (10)
C3—C4—C5—C6 0.88 (10) C7—C8—C9—C10 −74.34 (8)
C3—C4—C5—N3 −179.85 (6) C8—C9—C10—C11 76.57 (9)
O1—N3—C5—C4 0.89 (9) C9—C10—C11—C12 −59.37 (9)
O2—N3—C5—C4 −179.00 (6) C10—C11—C12—C13 68.70 (9)
O1—N3—C5—C6 −179.84 (6) N2—C7—C13—C12 −131.11 (7)
O2—N3—C5—C6 0.26 (10) C8—C7—C13—C12 50.25 (9)
N2—N1—C6—C5 −177.98 (6) C11—C12—C13—C7 −84.10 (8)
N2—N1—C6—C1 1.24 (10)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N1···O2 0.888 (14) 1.947 (14) 2.6225 (9) 131.7 (12)
C2—H2A···O3i 0.95 2.52 3.3165 (10) 142

Symmetry codes: (i) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2114).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  2. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Guillaumont, D. & Nakamura, S. (2000). Dyes Pigm.46, 85–92.
  4. Niknam, K., Kiasat, A. R. & Karimi, S. (2005). Synth. Commun.35, 2231–2236.
  5. Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.
  6. Raj, B. N. B. & Kurup, M. R. P. (2006). Spectrochim. Acta Part A, 66, 898–903. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809002657/kj2114sup1.cif

e-65-0o382-sup1.cif (18.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809002657/kj2114Isup2.hkl

e-65-0o382-Isup2.hkl (285.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES