Abstract
The title molecule, [RuCl2(C4H8OS)3(H2O)], is the isomer with the two chloride ligands cis and the three S-coordinated tetramethylene sulfoxide ligands facial relative to the Ru(II) center. The Ru—Cl distances are 2.4161 (7) and 2.4317 (7) Å, the Ru—O distance is 2.1540 (19) Å, and the Ru—S distances are in the range 2.2254 (8)–2.2657 (7) Å, with the shortest being that trans to the aqua ligand. The coordinated water molecule forms intermolecular hydrogen bonds with Cl and sulfoxide O atoms.
Related literature
For background literature, see: Aldinucci et al. (2007 ▶). For related structures, see: Srivastava & Fronczek (2003 ▶); Srivastava et al. (2004 ▶); Allen (2002 ▶). For hydrogen-bonding patterns, see: Etter (1990 ▶).
Experimental
Crystal data
[RuCl2(C4H8OS)3(H2O)]
M r = 502.48
Monoclinic,
a = 14.302 (3) Å
b = 7.7877 (15) Å
c = 17.248 (3) Å
β = 109.917 (9)°
V = 1806.2 (6) Å3
Z = 4
Mo Kα radiation
μ = 1.52 mm−1
T = 90.0 (5) K
0.22 × 0.10 × 0.05 mm
Data collection
Nonius KappaCCD diffractometer (with an Oxford Cryosystems Cryostream cooler)
Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997 ▶) T min = 0.731, T max = 0.928
25916 measured reflections
5982 independent reflections
4610 reflections with I > 2σ(I)
R int = 0.045
Refinement
R[F 2 > 2σ(F 2)] = 0.037
wR(F 2) = 0.076
S = 1.02
5982 reflections
199 parameters
H-atom parameters constrained
Δρmax = 0.87 e Å−3
Δρmin = −1.12 e Å−3
Data collection: COLLECT (Nonius, 2000 ▶); cell refinement: SCALEPACK (Otwinowski & Minor, 1997 ▶); data reduction: DENZO (Otwinowski & Minor, 1997 ▶) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 ▶); software used to prepare material for publication: SHELXL97.
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809000439/pv2128sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809000439/pv2128Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O4—H41⋯O1i | 0.80 | 1.99 | 2.785 (3) | 169 |
| O4—H42⋯Cl2ii | 0.80 | 2.37 | 3.116 (2) | 156 |
Symmetry codes: (i)
; (ii)
.
Acknowledgments
Financial support provided by the Research Corporation (Cottrell College Science Award, #CC 6234 to RSS) and the BoR, Louisiana, is greatly appreciated. The purchase of the diffractometer was made possible by grant No. LEQSF (1999–2000)-ENH-TR-13, administered by the Louisiana Board of Regents.
supplementary crystallographic information
Comment
During the course of our studies on ruthenium-DMSO/TMSO complexes, mer-RuCl3(TMSO)3 was refluxed with methyl-p-tolylsulfide in absolute ethanol for 1 h. In view of anticancer properties of Ru-DMSO/TMSO complexes, we envision to interact mer-RuCl3(TMSO)3, (1) with sulfur donor ligands, because sulfur-containing ligands are able to bind the metal center strongly and prevent interactions with sulfur-containing enzymes (Aldinucci et al., 2007). In fact, these reactions are believed to be responsible for the nephrotoxicity induced by the platinum (II)-based drugs. However, the compound (2) was hydrolyzed on long standing in solution, and finally the title compound, fac-[RuCl2(TMSO)3(H2O)] (3) was isolated. A plausible mechanism of the formation of (3) is shown in scheme 2.
There are three geometrical isomers of the title compound: trans,mer; cis,mer; and fac. The reported structure is found to be the latter, with chloro groups cis and TMSO groups facial, as shown in Fig. 1. More isomers are possible, considering that the TMSO ligands may be coordinated to Ru through either S or O in the same complex, (Srivastava & Fronczek, 2003; Srivastava et al., 2004); however, all are S-coordinated here. Relevant bond distances are given in the supplementary Tables. Most noteworthy is that the Ru—S3 distance, trans to water, is 0.03–0.04 Å shorter than the two Ru—S distances trans to Cl. While a search of the Cambridge Structural Database (version 5.29, Jan. 2008; Allen, 2002) for Ru complexes with S-bonded TMSO trans to water produced no hits, eleven examples of such DMSO complexes were found, refcodes AQAXIZ, AQAXOF, AQAXUL, BINBAC, CECSUZ, QUDRUC, TEXMOZ, TEXNEQ, TEXNIU, WOHNEM, AND WOHNIQ. Those have mean Ru—O distance 2.142 Å and mean Ru—S distance 2.256 Å. Our Ru—O distance, 2.1540 (19) Å, is near the high end of that sample, and our Ru—S distance, Ru1 S3 2.2254 (8) Å, is shorter than any in that sample.
The coordinated water molecule donates an intermolecular hydrogen bond to sulfoxide O and another to Cl, on two different molecules related by unit translation in the b direction. Thus, rings of graph set (Etter, 1990) symbol R22(9) form chains along [010], propagated by the 21 axis, as shown in Fig. 2.
Experimental
mer-RuCl3(TMSO)3 (0.166 g, 0.233 mmol) was refluxed with methyl-p-tolylsulfide (73 µl, 0.533 mmol) in absolute ethanol (15 ml) for 2 h, followed by cooling to room temperature. Upon standing for eight months, colorless needles of the title compound formed.
Refinement
H atoms on C were placed in idealized positions with C—H distances 0.99 Å and thereafter treated as riding. Water H atoms were located in difference maps, idealized to have O–H distance 0.80 Å, and treated as riding. Uiso for H was assigned as 1.2 times Ueq of the attached atoms (1.5 for H2O). The largest negative feature in the final difference map was located 0.75 Å from the Ru position.
Figures
Fig. 1.
A plot of the title compound with displacement ellipsoids drawn at the 50% level and H atoms having arbitrary radius.
Fig. 2.
A portion of a hydrogen-bonded chain in the [010] direction.
Fig. 3.
The formation of the title compound.
Crystal data
| [RuCl2(C4H8OS)3(H2O)] | F(000) = 1024 |
| Mr = 502.48 | Dx = 1.848 Mg m−3 |
| Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -P 2yn | Cell parameters from 6027 reflections |
| a = 14.302 (3) Å | θ = 2.5–31.5° |
| b = 7.7877 (15) Å | µ = 1.52 mm−1 |
| c = 17.248 (3) Å | T = 90 K |
| β = 109.917 (9)° | Needle, colorless |
| V = 1806.2 (6) Å3 | 0.22 × 0.10 × 0.05 mm |
| Z = 4 |
Data collection
| Nonius KappaCCD diffractometer (with an Oxford Cryosystems Cryostream cooler) | 5982 independent reflections |
| Radiation source: fine-focus sealed tube | 4610 reflections with I > 2σ(I) |
| graphite | Rint = 0.045 |
| ω and φ scans | θmax = 31.5°, θmin = 2.9° |
| Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) | h = −20→21 |
| Tmin = 0.731, Tmax = 0.928 | k = −11→11 |
| 25916 measured reflections | l = −25→25 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.076 | H-atom parameters constrained |
| S = 1.02 | w = 1/[σ2(Fo2) + (0.0256P)2 + 2.7566P] where P = (Fo2 + 2Fc2)/3 |
| 5982 reflections | (Δ/σ)max = 0.002 |
| 199 parameters | Δρmax = 0.87 e Å−3 |
| 0 restraints | Δρmin = −1.12 e Å−3 |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Ru1 | 0.589322 (15) | 0.17421 (3) | 0.298795 (12) | 0.00590 (5) | |
| Cl1 | 0.63294 (5) | −0.00620 (8) | 0.41988 (4) | 0.01063 (12) | |
| Cl2 | 0.59746 (5) | −0.07251 (8) | 0.21491 (4) | 0.00956 (12) | |
| S1 | 0.55748 (5) | 0.33080 (8) | 0.18270 (4) | 0.00718 (12) | |
| S2 | 0.59211 (5) | 0.41572 (8) | 0.37280 (4) | 0.00785 (12) | |
| S3 | 0.42982 (5) | 0.11754 (8) | 0.27675 (4) | 0.00811 (12) | |
| O1 | 0.64973 (14) | 0.3915 (2) | 0.16851 (11) | 0.0112 (4) | |
| O2 | 0.49707 (14) | 0.5110 (2) | 0.35546 (12) | 0.0125 (4) | |
| O3 | 0.35604 (14) | 0.1775 (3) | 0.19762 (12) | 0.0133 (4) | |
| O4 | 0.74739 (13) | 0.1973 (2) | 0.32611 (11) | 0.0094 (4) | |
| H41 | 0.7697 | 0.1034 | 0.3254 | 0.014* | |
| H42 | 0.7735 | 0.2581 | 0.3021 | 0.014* | |
| C1 | 0.4799 (2) | 0.2324 (3) | 0.08568 (16) | 0.0117 (5) | |
| H1A | 0.5196 | 0.2111 | 0.0495 | 0.014* | |
| H1B | 0.4527 | 0.1216 | 0.0965 | 0.014* | |
| C2 | 0.3955 (2) | 0.3583 (4) | 0.04466 (17) | 0.0142 (6) | |
| H2A | 0.3353 | 0.3260 | 0.0573 | 0.017* | |
| H2B | 0.3790 | 0.3561 | −0.0159 | 0.017* | |
| C3 | 0.4301 (2) | 0.5380 (4) | 0.07805 (16) | 0.0129 (5) | |
| H3A | 0.4794 | 0.5831 | 0.0545 | 0.016* | |
| H3B | 0.3731 | 0.6183 | 0.0645 | 0.016* | |
| C4 | 0.4770 (2) | 0.5151 (3) | 0.17114 (16) | 0.0109 (5) | |
| H4A | 0.4256 | 0.4934 | 0.1964 | 0.013* | |
| H4B | 0.5157 | 0.6181 | 0.1970 | 0.013* | |
| C5 | 0.6859 (2) | 0.5663 (3) | 0.36345 (16) | 0.0108 (5) | |
| H5A | 0.7141 | 0.5249 | 0.3218 | 0.013* | |
| H5B | 0.6559 | 0.6808 | 0.3463 | 0.013* | |
| C6 | 0.7667 (2) | 0.5771 (4) | 0.44766 (17) | 0.0152 (6) | |
| H6A | 0.8007 | 0.6897 | 0.4548 | 0.018* | |
| H6B | 0.8167 | 0.4854 | 0.4538 | 0.018* | |
| C7 | 0.7149 (2) | 0.5548 (4) | 0.51139 (17) | 0.0145 (6) | |
| H7A | 0.7644 | 0.5366 | 0.5671 | 0.017* | |
| H7B | 0.6748 | 0.6576 | 0.5128 | 0.017* | |
| C8 | 0.6484 (2) | 0.3978 (3) | 0.48391 (16) | 0.0110 (5) | |
| H8A | 0.5967 | 0.3964 | 0.5101 | 0.013* | |
| H8B | 0.6881 | 0.2911 | 0.4990 | 0.013* | |
| C9 | 0.3821 (2) | 0.1780 (4) | 0.35774 (17) | 0.0132 (5) | |
| H9A | 0.4359 | 0.1791 | 0.4121 | 0.016* | |
| H9B | 0.3507 | 0.2928 | 0.3471 | 0.016* | |
| C10 | 0.3059 (2) | 0.0401 (4) | 0.35450 (18) | 0.0148 (6) | |
| H10A | 0.2462 | 0.0530 | 0.3046 | 0.018* | |
| H10B | 0.2856 | 0.0455 | 0.4039 | 0.018* | |
| C11 | 0.3595 (2) | −0.1292 (4) | 0.35214 (18) | 0.0149 (6) | |
| H11A | 0.4113 | −0.1516 | 0.4063 | 0.018* | |
| H11B | 0.3117 | −0.2258 | 0.3390 | 0.018* | |
| C12 | 0.4068 (2) | −0.1113 (3) | 0.28551 (18) | 0.0119 (5) | |
| H12A | 0.3614 | −0.1562 | 0.2323 | 0.014* | |
| H12B | 0.4699 | −0.1764 | 0.3010 | 0.014* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Ru1 | 0.00693 (9) | 0.00402 (9) | 0.00659 (9) | 0.00017 (7) | 0.00210 (7) | 0.00032 (7) |
| Cl1 | 0.0146 (3) | 0.0069 (3) | 0.0095 (3) | 0.0008 (2) | 0.0030 (2) | 0.0025 (2) |
| Cl2 | 0.0109 (3) | 0.0061 (3) | 0.0119 (3) | 0.0004 (2) | 0.0042 (2) | −0.0016 (2) |
| S1 | 0.0081 (3) | 0.0058 (3) | 0.0071 (3) | −0.0008 (2) | 0.0020 (2) | 0.0000 (2) |
| S2 | 0.0099 (3) | 0.0056 (3) | 0.0077 (3) | 0.0003 (2) | 0.0026 (2) | 0.0005 (2) |
| S3 | 0.0086 (3) | 0.0069 (3) | 0.0087 (3) | 0.0000 (2) | 0.0028 (2) | 0.0008 (2) |
| O1 | 0.0116 (9) | 0.0101 (9) | 0.0133 (9) | −0.0033 (7) | 0.0060 (8) | 0.0002 (7) |
| O2 | 0.0117 (9) | 0.0097 (9) | 0.0171 (10) | 0.0036 (7) | 0.0060 (8) | 0.0003 (8) |
| O3 | 0.0093 (9) | 0.0158 (9) | 0.0127 (9) | −0.0009 (8) | 0.0009 (7) | 0.0055 (8) |
| O4 | 0.0108 (9) | 0.0049 (8) | 0.0132 (9) | −0.0012 (7) | 0.0049 (7) | −0.0001 (7) |
| C1 | 0.0127 (13) | 0.0110 (12) | 0.0102 (12) | −0.0029 (10) | 0.0024 (10) | −0.0015 (10) |
| C2 | 0.0131 (13) | 0.0156 (14) | 0.0110 (13) | −0.0005 (10) | 0.0005 (10) | 0.0025 (10) |
| C3 | 0.0146 (13) | 0.0125 (12) | 0.0113 (13) | 0.0028 (11) | 0.0038 (10) | 0.0071 (10) |
| C4 | 0.0115 (12) | 0.0086 (12) | 0.0121 (13) | 0.0040 (10) | 0.0034 (10) | 0.0024 (10) |
| C5 | 0.0143 (13) | 0.0061 (11) | 0.0123 (12) | −0.0014 (10) | 0.0052 (10) | 0.0009 (10) |
| C6 | 0.0160 (14) | 0.0133 (13) | 0.0135 (13) | −0.0039 (11) | 0.0014 (11) | −0.0030 (11) |
| C7 | 0.0197 (15) | 0.0130 (13) | 0.0083 (12) | −0.0027 (11) | 0.0014 (11) | −0.0033 (10) |
| C8 | 0.0161 (13) | 0.0092 (12) | 0.0080 (12) | 0.0007 (10) | 0.0044 (10) | 0.0006 (10) |
| C9 | 0.0135 (13) | 0.0131 (12) | 0.0159 (13) | −0.0003 (11) | 0.0086 (11) | −0.0031 (11) |
| C10 | 0.0138 (13) | 0.0178 (14) | 0.0156 (14) | −0.0047 (11) | 0.0087 (11) | 0.0012 (11) |
| C11 | 0.0180 (14) | 0.0121 (12) | 0.0156 (14) | −0.0055 (11) | 0.0068 (11) | 0.0024 (11) |
| C12 | 0.0107 (12) | 0.0063 (11) | 0.0199 (14) | −0.0030 (10) | 0.0067 (11) | 0.0009 (10) |
Geometric parameters (Å, °)
| Ru1—O4 | 2.1540 (19) | C3—H3B | 0.9900 |
| Ru1—S3 | 2.2254 (8) | C4—H4A | 0.9900 |
| Ru1—S1 | 2.2546 (7) | C4—H4B | 0.9900 |
| Ru1—S2 | 2.2657 (7) | C5—C6 | 1.519 (4) |
| Ru1—Cl1 | 2.4161 (7) | C5—H5A | 0.9900 |
| Ru1—Cl2 | 2.4317 (7) | C5—H5B | 0.9900 |
| S1—O1 | 1.498 (2) | C6—C7 | 1.531 (4) |
| S1—C4 | 1.807 (3) | C6—H6A | 0.9900 |
| S1—C1 | 1.831 (3) | C6—H6B | 0.9900 |
| S2—O2 | 1.487 (2) | C7—C8 | 1.521 (4) |
| S2—C8 | 1.814 (3) | C7—H7A | 0.9900 |
| S2—C5 | 1.830 (3) | C7—H7B | 0.9900 |
| S3—O3 | 1.487 (2) | C8—H8A | 0.9900 |
| S3—C9 | 1.813 (3) | C8—H8B | 0.9900 |
| S3—C12 | 1.828 (3) | C9—C10 | 1.517 (4) |
| O4—H41 | 0.8000 | C9—H9A | 0.9900 |
| O4—H42 | 0.8000 | C9—H9B | 0.9900 |
| C1—C2 | 1.529 (4) | C10—C11 | 1.532 (4) |
| C1—H1A | 0.9900 | C10—H10A | 0.9900 |
| C1—H1B | 0.9900 | C10—H10B | 0.9900 |
| C2—C3 | 1.530 (4) | C11—C12 | 1.525 (4) |
| C2—H2A | 0.9900 | C11—H11A | 0.9900 |
| C2—H2B | 0.9900 | C11—H11B | 0.9900 |
| C3—C4 | 1.525 (4) | C12—H12A | 0.9900 |
| C3—H3A | 0.9900 | C12—H12B | 0.9900 |
| O4—Ru1—S3 | 172.92 (5) | C3—C4—S1 | 104.15 (18) |
| O4—Ru1—S1 | 91.63 (5) | C3—C4—H4A | 110.9 |
| S3—Ru1—S1 | 94.04 (3) | S1—C4—H4A | 110.9 |
| O4—Ru1—S2 | 89.52 (5) | C3—C4—H4B | 110.9 |
| S3—Ru1—S2 | 94.66 (3) | S1—C4—H4B | 110.9 |
| S1—Ru1—S2 | 90.62 (3) | H4A—C4—H4B | 108.9 |
| O4—Ru1—Cl1 | 85.23 (5) | C6—C5—S2 | 107.04 (18) |
| S3—Ru1—Cl1 | 88.86 (3) | C6—C5—H5A | 110.3 |
| S1—Ru1—Cl1 | 175.45 (2) | S2—C5—H5A | 110.3 |
| S2—Ru1—Cl1 | 92.63 (3) | C6—C5—H5B | 110.3 |
| O4—Ru1—Cl2 | 86.37 (5) | S2—C5—H5B | 110.3 |
| S3—Ru1—Cl2 | 89.75 (2) | H5A—C5—H5B | 108.6 |
| S1—Ru1—Cl2 | 86.28 (3) | C5—C6—C7 | 106.5 (2) |
| S2—Ru1—Cl2 | 174.78 (2) | C5—C6—H6A | 110.4 |
| Cl1—Ru1—Cl2 | 90.24 (3) | C7—C6—H6A | 110.4 |
| O1—S1—C4 | 107.13 (12) | C5—C6—H6B | 110.4 |
| O1—S1—C1 | 106.01 (12) | C7—C6—H6B | 110.4 |
| C4—S1—C1 | 93.82 (12) | H6A—C6—H6B | 108.6 |
| O1—S1—Ru1 | 113.14 (8) | C8—C7—C6 | 105.8 (2) |
| C4—S1—Ru1 | 117.12 (9) | C8—C7—H7A | 110.6 |
| C1—S1—Ru1 | 117.49 (9) | C6—C7—H7A | 110.6 |
| O2—S2—C8 | 107.31 (12) | C8—C7—H7B | 110.6 |
| O2—S2—C5 | 108.06 (12) | C6—C7—H7B | 110.6 |
| C8—S2—C5 | 93.85 (12) | H7A—C7—H7B | 108.7 |
| O2—S2—Ru1 | 117.48 (8) | C7—C8—S2 | 105.84 (18) |
| C8—S2—Ru1 | 116.59 (9) | C7—C8—H8A | 110.6 |
| C5—S2—Ru1 | 110.80 (9) | S2—C8—H8A | 110.6 |
| O3—S3—C9 | 106.85 (13) | C7—C8—H8B | 110.6 |
| O3—S3—C12 | 106.88 (12) | S2—C8—H8B | 110.6 |
| C9—S3—C12 | 93.64 (13) | H8A—C8—H8B | 108.7 |
| O3—S3—Ru1 | 117.39 (8) | C10—C9—S3 | 104.01 (19) |
| C9—S3—Ru1 | 116.73 (10) | C10—C9—H9A | 111.0 |
| C12—S3—Ru1 | 112.49 (9) | S3—C9—H9A | 111.0 |
| Ru1—O4—H41 | 108.3 | C10—C9—H9B | 111.0 |
| Ru1—O4—H42 | 125.1 | S3—C9—H9B | 111.0 |
| H41—O4—H42 | 105.9 | H9A—C9—H9B | 109.0 |
| C2—C1—S1 | 106.96 (18) | C9—C10—C11 | 104.5 (2) |
| C2—C1—H1A | 110.3 | C9—C10—H10A | 110.9 |
| S1—C1—H1A | 110.3 | C11—C10—H10A | 110.9 |
| C2—C1—H1B | 110.3 | C9—C10—H10B | 110.9 |
| S1—C1—H1B | 110.3 | C11—C10—H10B | 110.9 |
| H1A—C1—H1B | 108.6 | H10A—C10—H10B | 108.9 |
| C1—C2—C3 | 108.0 (2) | C12—C11—C10 | 107.2 (2) |
| C1—C2—H2A | 110.1 | C12—C11—H11A | 110.3 |
| C3—C2—H2A | 110.1 | C10—C11—H11A | 110.3 |
| C1—C2—H2B | 110.1 | C12—C11—H11B | 110.3 |
| C3—C2—H2B | 110.1 | C10—C11—H11B | 110.3 |
| H2A—C2—H2B | 108.4 | H11A—C11—H11B | 108.5 |
| C4—C3—C2 | 105.0 (2) | C11—C12—S3 | 106.86 (19) |
| C4—C3—H3A | 110.7 | C11—C12—H12A | 110.4 |
| C2—C3—H3A | 110.7 | S3—C12—H12A | 110.4 |
| C4—C3—H3B | 110.7 | C11—C12—H12B | 110.4 |
| C2—C3—H3B | 110.7 | S3—C12—H12B | 110.4 |
| H3A—C3—H3B | 108.8 | H12A—C12—H12B | 108.6 |
| O4—Ru1—S1—O1 | −0.88 (10) | S1—Ru1—S3—C12 | 129.51 (10) |
| S3—Ru1—S1—O1 | −176.63 (9) | S2—Ru1—S3—C12 | −139.54 (10) |
| S2—Ru1—S1—O1 | 88.66 (9) | Cl1—Ru1—S3—C12 | −46.99 (10) |
| Cl2—Ru1—S1—O1 | −87.14 (9) | Cl2—Ru1—S3—C12 | 43.26 (10) |
| O4—Ru1—S1—C4 | −126.24 (11) | O1—S1—C1—C2 | −105.28 (19) |
| S3—Ru1—S1—C4 | 58.01 (11) | C4—S1—C1—C2 | 3.8 (2) |
| S2—Ru1—S1—C4 | −36.70 (11) | Ru1—S1—C1—C2 | 127.11 (16) |
| Cl2—Ru1—S1—C4 | 147.50 (11) | S1—C1—C2—C3 | 23.5 (3) |
| O4—Ru1—S1—C1 | 123.22 (11) | C1—C2—C3—C4 | −46.0 (3) |
| S3—Ru1—S1—C1 | −52.53 (11) | C2—C3—C4—S1 | 47.2 (2) |
| S2—Ru1—S1—C1 | −147.24 (10) | O1—S1—C4—C3 | 78.5 (2) |
| Cl2—Ru1—S1—C1 | 36.96 (10) | C1—S1—C4—C3 | −29.5 (2) |
| O4—Ru1—S2—O2 | 158.55 (10) | Ru1—S1—C4—C3 | −153.17 (15) |
| S3—Ru1—S2—O2 | −27.18 (9) | O2—S2—C5—C6 | 117.47 (19) |
| S1—Ru1—S2—O2 | 66.92 (9) | C8—S2—C5—C6 | 7.9 (2) |
| Cl1—Ru1—S2—O2 | −116.25 (9) | Ru1—S2—C5—C6 | −112.51 (17) |
| O4—Ru1—S2—C8 | −72.00 (12) | S2—C5—C6—C7 | −33.1 (3) |
| S3—Ru1—S2—C8 | 102.28 (11) | C5—C6—C7—C8 | 48.6 (3) |
| S1—Ru1—S2—C8 | −163.62 (11) | C6—C7—C8—S2 | −41.6 (3) |
| Cl1—Ru1—S2—C8 | 13.20 (11) | O2—S2—C8—C7 | −90.7 (2) |
| O4—Ru1—S2—C5 | 33.70 (11) | C5—S2—C8—C7 | 19.5 (2) |
| S3—Ru1—S2—C5 | −152.03 (9) | Ru1—S2—C8—C7 | 135.11 (16) |
| S1—Ru1—S2—C5 | −57.93 (10) | O3—S3—C9—C10 | 80.2 (2) |
| Cl1—Ru1—S2—C5 | 118.90 (10) | C12—S3—C9—C10 | −28.6 (2) |
| S1—Ru1—S3—O3 | 4.88 (10) | Ru1—S3—C9—C10 | −146.10 (16) |
| S2—Ru1—S3—O3 | 95.83 (10) | S3—C9—C10—C11 | 48.1 (2) |
| Cl1—Ru1—S3—O3 | −171.62 (10) | C9—C10—C11—C12 | −48.9 (3) |
| Cl2—Ru1—S3—O3 | −81.37 (10) | C10—C11—C12—S3 | 26.8 (3) |
| S1—Ru1—S3—C9 | −123.92 (11) | O3—S3—C12—C11 | −107.7 (2) |
| S2—Ru1—S3—C9 | −32.96 (11) | C9—S3—C12—C11 | 1.2 (2) |
| Cl1—Ru1—S3—C9 | 59.59 (11) | Ru1—S3—C12—C11 | 122.10 (17) |
| Cl2—Ru1—S3—C9 | 149.83 (11) |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O4—H41···O1i | 0.80 | 1.99 | 2.785 (3) | 169 |
| O4—H42···Cl2ii | 0.80 | 2.37 | 3.116 (2) | 156 |
Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2; (ii) −x+3/2, y+1/2, −z+1/2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2128).
References
- Aldinucci, D., Lorenzon, D., Stefani, L., Giovagnini, L., Colombatti, A. & Fregona, D. (2007). Anti-Cancer Drugs, 18, 323–332. [DOI] [PubMed]
- Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
- Etter, M. C. (1990). Acc. Chem. Res.23, 120–126.
- Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
- Nonius (2000). COLLECT Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Srivastava, R. S. & Fronczek, F. R. (2003). Inorg. Chim. Acta, 355, 354–360.
- Srivastava, R. S., Fronczek, F. R. & Romero, L. M. (2004). Inorg. Chim. Acta, 357, 2410–2414.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809000439/pv2128sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809000439/pv2128Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report



