Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jan 10;65(Pt 2):m170. doi: 10.1107/S1600536809000439

fac-Aqua­dichloridotris(tetra­methyl­ene sulfoxide-κS)ruthenium(II)

Radhey S Srivastava a, Carlos F Gonzales a, Frank R Fronczek b,*
PMCID: PMC2968404  PMID: 21581777

Abstract

The title mol­ecule, [RuCl2(C4H8OS)3(H2O)], is the isomer with the two chloride ligands cis and the three S-coordinated tetra­methyl­ene sulfoxide ligands facial relative to the Ru(II) center. The Ru—Cl distances are 2.4161 (7) and 2.4317 (7) Å, the Ru—O distance is 2.1540 (19) Å, and the Ru—S distances are in the range 2.2254 (8)–2.2657 (7) Å, with the shortest being that trans to the aqua ligand. The coordinated water mol­ecule forms inter­molecular hydrogen bonds with Cl and sulfoxide O atoms.

Related literature

For background literature, see: Aldinucci et al. (2007). For related structures, see: Srivastava & Fronczek (2003); Srivastava et al. (2004); Allen (2002). For hydrogen-bonding patterns, see: Etter (1990).graphic file with name e-65-0m170-scheme1.jpg

Experimental

Crystal data

  • [RuCl2(C4H8OS)3(H2O)]

  • M r = 502.48

  • Monoclinic, Inline graphic

  • a = 14.302 (3) Å

  • b = 7.7877 (15) Å

  • c = 17.248 (3) Å

  • β = 109.917 (9)°

  • V = 1806.2 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.52 mm−1

  • T = 90.0 (5) K

  • 0.22 × 0.10 × 0.05 mm

Data collection

  • Nonius KappaCCD diffractometer (with an Oxford Cryosystems Cryostream cooler)

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) T min = 0.731, T max = 0.928

  • 25916 measured reflections

  • 5982 independent reflections

  • 4610 reflections with I > 2σ(I)

  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.076

  • S = 1.02

  • 5982 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.87 e Å−3

  • Δρmin = −1.12 e Å−3

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809000439/pv2128sup1.cif

e-65-0m170-sup1.cif (21.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809000439/pv2128Isup2.hkl

e-65-0m170-Isup2.hkl (286.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H41⋯O1i 0.80 1.99 2.785 (3) 169
O4—H42⋯Cl2ii 0.80 2.37 3.116 (2) 156

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

Financial support provided by the Research Corporation (Cottrell College Science Award, #CC 6234 to RSS) and the BoR, Louisiana, is greatly appreciated. The purchase of the diffractometer was made possible by grant No. LEQSF (1999–2000)-ENH-TR-13, administered by the Louisiana Board of Regents.

supplementary crystallographic information

Comment

During the course of our studies on ruthenium-DMSO/TMSO complexes, mer-RuCl3(TMSO)3 was refluxed with methyl-p-tolylsulfide in absolute ethanol for 1 h. In view of anticancer properties of Ru-DMSO/TMSO complexes, we envision to interact mer-RuCl3(TMSO)3, (1) with sulfur donor ligands, because sulfur-containing ligands are able to bind the metal center strongly and prevent interactions with sulfur-containing enzymes (Aldinucci et al., 2007). In fact, these reactions are believed to be responsible for the nephrotoxicity induced by the platinum (II)-based drugs. However, the compound (2) was hydrolyzed on long standing in solution, and finally the title compound, fac-[RuCl2(TMSO)3(H2O)] (3) was isolated. A plausible mechanism of the formation of (3) is shown in scheme 2.

There are three geometrical isomers of the title compound: trans,mer; cis,mer; and fac. The reported structure is found to be the latter, with chloro groups cis and TMSO groups facial, as shown in Fig. 1. More isomers are possible, considering that the TMSO ligands may be coordinated to Ru through either S or O in the same complex, (Srivastava & Fronczek, 2003; Srivastava et al., 2004); however, all are S-coordinated here. Relevant bond distances are given in the supplementary Tables. Most noteworthy is that the Ru—S3 distance, trans to water, is 0.03–0.04 Å shorter than the two Ru—S distances trans to Cl. While a search of the Cambridge Structural Database (version 5.29, Jan. 2008; Allen, 2002) for Ru complexes with S-bonded TMSO trans to water produced no hits, eleven examples of such DMSO complexes were found, refcodes AQAXIZ, AQAXOF, AQAXUL, BINBAC, CECSUZ, QUDRUC, TEXMOZ, TEXNEQ, TEXNIU, WOHNEM, AND WOHNIQ. Those have mean Ru—O distance 2.142 Å and mean Ru—S distance 2.256 Å. Our Ru—O distance, 2.1540 (19) Å, is near the high end of that sample, and our Ru—S distance, Ru1 S3 2.2254 (8) Å, is shorter than any in that sample.

The coordinated water molecule donates an intermolecular hydrogen bond to sulfoxide O and another to Cl, on two different molecules related by unit translation in the b direction. Thus, rings of graph set (Etter, 1990) symbol R22(9) form chains along [010], propagated by the 21 axis, as shown in Fig. 2.

Experimental

mer-RuCl3(TMSO)3 (0.166 g, 0.233 mmol) was refluxed with methyl-p-tolylsulfide (73 µl, 0.533 mmol) in absolute ethanol (15 ml) for 2 h, followed by cooling to room temperature. Upon standing for eight months, colorless needles of the title compound formed.

Refinement

H atoms on C were placed in idealized positions with C—H distances 0.99 Å and thereafter treated as riding. Water H atoms were located in difference maps, idealized to have O–H distance 0.80 Å, and treated as riding. Uiso for H was assigned as 1.2 times Ueq of the attached atoms (1.5 for H2O). The largest negative feature in the final difference map was located 0.75 Å from the Ru position.

Figures

Fig. 1.

Fig. 1.

A plot of the title compound with displacement ellipsoids drawn at the 50% level and H atoms having arbitrary radius.

Fig. 2.

Fig. 2.

A portion of a hydrogen-bonded chain in the [010] direction.

Fig. 3.

Fig. 3.

The formation of the title compound.

Crystal data

[RuCl2(C4H8OS)3(H2O)] F(000) = 1024
Mr = 502.48 Dx = 1.848 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 6027 reflections
a = 14.302 (3) Å θ = 2.5–31.5°
b = 7.7877 (15) Å µ = 1.52 mm1
c = 17.248 (3) Å T = 90 K
β = 109.917 (9)° Needle, colorless
V = 1806.2 (6) Å3 0.22 × 0.10 × 0.05 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer (with an Oxford Cryosystems Cryostream cooler) 5982 independent reflections
Radiation source: fine-focus sealed tube 4610 reflections with I > 2σ(I)
graphite Rint = 0.045
ω and φ scans θmax = 31.5°, θmin = 2.9°
Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) h = −20→21
Tmin = 0.731, Tmax = 0.928 k = −11→11
25916 measured reflections l = −25→25

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0256P)2 + 2.7566P] where P = (Fo2 + 2Fc2)/3
5982 reflections (Δ/σ)max = 0.002
199 parameters Δρmax = 0.87 e Å3
0 restraints Δρmin = −1.12 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ru1 0.589322 (15) 0.17421 (3) 0.298795 (12) 0.00590 (5)
Cl1 0.63294 (5) −0.00620 (8) 0.41988 (4) 0.01063 (12)
Cl2 0.59746 (5) −0.07251 (8) 0.21491 (4) 0.00956 (12)
S1 0.55748 (5) 0.33080 (8) 0.18270 (4) 0.00718 (12)
S2 0.59211 (5) 0.41572 (8) 0.37280 (4) 0.00785 (12)
S3 0.42982 (5) 0.11754 (8) 0.27675 (4) 0.00811 (12)
O1 0.64973 (14) 0.3915 (2) 0.16851 (11) 0.0112 (4)
O2 0.49707 (14) 0.5110 (2) 0.35546 (12) 0.0125 (4)
O3 0.35604 (14) 0.1775 (3) 0.19762 (12) 0.0133 (4)
O4 0.74739 (13) 0.1973 (2) 0.32611 (11) 0.0094 (4)
H41 0.7697 0.1034 0.3254 0.014*
H42 0.7735 0.2581 0.3021 0.014*
C1 0.4799 (2) 0.2324 (3) 0.08568 (16) 0.0117 (5)
H1A 0.5196 0.2111 0.0495 0.014*
H1B 0.4527 0.1216 0.0965 0.014*
C2 0.3955 (2) 0.3583 (4) 0.04466 (17) 0.0142 (6)
H2A 0.3353 0.3260 0.0573 0.017*
H2B 0.3790 0.3561 −0.0159 0.017*
C3 0.4301 (2) 0.5380 (4) 0.07805 (16) 0.0129 (5)
H3A 0.4794 0.5831 0.0545 0.016*
H3B 0.3731 0.6183 0.0645 0.016*
C4 0.4770 (2) 0.5151 (3) 0.17114 (16) 0.0109 (5)
H4A 0.4256 0.4934 0.1964 0.013*
H4B 0.5157 0.6181 0.1970 0.013*
C5 0.6859 (2) 0.5663 (3) 0.36345 (16) 0.0108 (5)
H5A 0.7141 0.5249 0.3218 0.013*
H5B 0.6559 0.6808 0.3463 0.013*
C6 0.7667 (2) 0.5771 (4) 0.44766 (17) 0.0152 (6)
H6A 0.8007 0.6897 0.4548 0.018*
H6B 0.8167 0.4854 0.4538 0.018*
C7 0.7149 (2) 0.5548 (4) 0.51139 (17) 0.0145 (6)
H7A 0.7644 0.5366 0.5671 0.017*
H7B 0.6748 0.6576 0.5128 0.017*
C8 0.6484 (2) 0.3978 (3) 0.48391 (16) 0.0110 (5)
H8A 0.5967 0.3964 0.5101 0.013*
H8B 0.6881 0.2911 0.4990 0.013*
C9 0.3821 (2) 0.1780 (4) 0.35774 (17) 0.0132 (5)
H9A 0.4359 0.1791 0.4121 0.016*
H9B 0.3507 0.2928 0.3471 0.016*
C10 0.3059 (2) 0.0401 (4) 0.35450 (18) 0.0148 (6)
H10A 0.2462 0.0530 0.3046 0.018*
H10B 0.2856 0.0455 0.4039 0.018*
C11 0.3595 (2) −0.1292 (4) 0.35214 (18) 0.0149 (6)
H11A 0.4113 −0.1516 0.4063 0.018*
H11B 0.3117 −0.2258 0.3390 0.018*
C12 0.4068 (2) −0.1113 (3) 0.28551 (18) 0.0119 (5)
H12A 0.3614 −0.1562 0.2323 0.014*
H12B 0.4699 −0.1764 0.3010 0.014*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ru1 0.00693 (9) 0.00402 (9) 0.00659 (9) 0.00017 (7) 0.00210 (7) 0.00032 (7)
Cl1 0.0146 (3) 0.0069 (3) 0.0095 (3) 0.0008 (2) 0.0030 (2) 0.0025 (2)
Cl2 0.0109 (3) 0.0061 (3) 0.0119 (3) 0.0004 (2) 0.0042 (2) −0.0016 (2)
S1 0.0081 (3) 0.0058 (3) 0.0071 (3) −0.0008 (2) 0.0020 (2) 0.0000 (2)
S2 0.0099 (3) 0.0056 (3) 0.0077 (3) 0.0003 (2) 0.0026 (2) 0.0005 (2)
S3 0.0086 (3) 0.0069 (3) 0.0087 (3) 0.0000 (2) 0.0028 (2) 0.0008 (2)
O1 0.0116 (9) 0.0101 (9) 0.0133 (9) −0.0033 (7) 0.0060 (8) 0.0002 (7)
O2 0.0117 (9) 0.0097 (9) 0.0171 (10) 0.0036 (7) 0.0060 (8) 0.0003 (8)
O3 0.0093 (9) 0.0158 (9) 0.0127 (9) −0.0009 (8) 0.0009 (7) 0.0055 (8)
O4 0.0108 (9) 0.0049 (8) 0.0132 (9) −0.0012 (7) 0.0049 (7) −0.0001 (7)
C1 0.0127 (13) 0.0110 (12) 0.0102 (12) −0.0029 (10) 0.0024 (10) −0.0015 (10)
C2 0.0131 (13) 0.0156 (14) 0.0110 (13) −0.0005 (10) 0.0005 (10) 0.0025 (10)
C3 0.0146 (13) 0.0125 (12) 0.0113 (13) 0.0028 (11) 0.0038 (10) 0.0071 (10)
C4 0.0115 (12) 0.0086 (12) 0.0121 (13) 0.0040 (10) 0.0034 (10) 0.0024 (10)
C5 0.0143 (13) 0.0061 (11) 0.0123 (12) −0.0014 (10) 0.0052 (10) 0.0009 (10)
C6 0.0160 (14) 0.0133 (13) 0.0135 (13) −0.0039 (11) 0.0014 (11) −0.0030 (11)
C7 0.0197 (15) 0.0130 (13) 0.0083 (12) −0.0027 (11) 0.0014 (11) −0.0033 (10)
C8 0.0161 (13) 0.0092 (12) 0.0080 (12) 0.0007 (10) 0.0044 (10) 0.0006 (10)
C9 0.0135 (13) 0.0131 (12) 0.0159 (13) −0.0003 (11) 0.0086 (11) −0.0031 (11)
C10 0.0138 (13) 0.0178 (14) 0.0156 (14) −0.0047 (11) 0.0087 (11) 0.0012 (11)
C11 0.0180 (14) 0.0121 (12) 0.0156 (14) −0.0055 (11) 0.0068 (11) 0.0024 (11)
C12 0.0107 (12) 0.0063 (11) 0.0199 (14) −0.0030 (10) 0.0067 (11) 0.0009 (10)

Geometric parameters (Å, °)

Ru1—O4 2.1540 (19) C3—H3B 0.9900
Ru1—S3 2.2254 (8) C4—H4A 0.9900
Ru1—S1 2.2546 (7) C4—H4B 0.9900
Ru1—S2 2.2657 (7) C5—C6 1.519 (4)
Ru1—Cl1 2.4161 (7) C5—H5A 0.9900
Ru1—Cl2 2.4317 (7) C5—H5B 0.9900
S1—O1 1.498 (2) C6—C7 1.531 (4)
S1—C4 1.807 (3) C6—H6A 0.9900
S1—C1 1.831 (3) C6—H6B 0.9900
S2—O2 1.487 (2) C7—C8 1.521 (4)
S2—C8 1.814 (3) C7—H7A 0.9900
S2—C5 1.830 (3) C7—H7B 0.9900
S3—O3 1.487 (2) C8—H8A 0.9900
S3—C9 1.813 (3) C8—H8B 0.9900
S3—C12 1.828 (3) C9—C10 1.517 (4)
O4—H41 0.8000 C9—H9A 0.9900
O4—H42 0.8000 C9—H9B 0.9900
C1—C2 1.529 (4) C10—C11 1.532 (4)
C1—H1A 0.9900 C10—H10A 0.9900
C1—H1B 0.9900 C10—H10B 0.9900
C2—C3 1.530 (4) C11—C12 1.525 (4)
C2—H2A 0.9900 C11—H11A 0.9900
C2—H2B 0.9900 C11—H11B 0.9900
C3—C4 1.525 (4) C12—H12A 0.9900
C3—H3A 0.9900 C12—H12B 0.9900
O4—Ru1—S3 172.92 (5) C3—C4—S1 104.15 (18)
O4—Ru1—S1 91.63 (5) C3—C4—H4A 110.9
S3—Ru1—S1 94.04 (3) S1—C4—H4A 110.9
O4—Ru1—S2 89.52 (5) C3—C4—H4B 110.9
S3—Ru1—S2 94.66 (3) S1—C4—H4B 110.9
S1—Ru1—S2 90.62 (3) H4A—C4—H4B 108.9
O4—Ru1—Cl1 85.23 (5) C6—C5—S2 107.04 (18)
S3—Ru1—Cl1 88.86 (3) C6—C5—H5A 110.3
S1—Ru1—Cl1 175.45 (2) S2—C5—H5A 110.3
S2—Ru1—Cl1 92.63 (3) C6—C5—H5B 110.3
O4—Ru1—Cl2 86.37 (5) S2—C5—H5B 110.3
S3—Ru1—Cl2 89.75 (2) H5A—C5—H5B 108.6
S1—Ru1—Cl2 86.28 (3) C5—C6—C7 106.5 (2)
S2—Ru1—Cl2 174.78 (2) C5—C6—H6A 110.4
Cl1—Ru1—Cl2 90.24 (3) C7—C6—H6A 110.4
O1—S1—C4 107.13 (12) C5—C6—H6B 110.4
O1—S1—C1 106.01 (12) C7—C6—H6B 110.4
C4—S1—C1 93.82 (12) H6A—C6—H6B 108.6
O1—S1—Ru1 113.14 (8) C8—C7—C6 105.8 (2)
C4—S1—Ru1 117.12 (9) C8—C7—H7A 110.6
C1—S1—Ru1 117.49 (9) C6—C7—H7A 110.6
O2—S2—C8 107.31 (12) C8—C7—H7B 110.6
O2—S2—C5 108.06 (12) C6—C7—H7B 110.6
C8—S2—C5 93.85 (12) H7A—C7—H7B 108.7
O2—S2—Ru1 117.48 (8) C7—C8—S2 105.84 (18)
C8—S2—Ru1 116.59 (9) C7—C8—H8A 110.6
C5—S2—Ru1 110.80 (9) S2—C8—H8A 110.6
O3—S3—C9 106.85 (13) C7—C8—H8B 110.6
O3—S3—C12 106.88 (12) S2—C8—H8B 110.6
C9—S3—C12 93.64 (13) H8A—C8—H8B 108.7
O3—S3—Ru1 117.39 (8) C10—C9—S3 104.01 (19)
C9—S3—Ru1 116.73 (10) C10—C9—H9A 111.0
C12—S3—Ru1 112.49 (9) S3—C9—H9A 111.0
Ru1—O4—H41 108.3 C10—C9—H9B 111.0
Ru1—O4—H42 125.1 S3—C9—H9B 111.0
H41—O4—H42 105.9 H9A—C9—H9B 109.0
C2—C1—S1 106.96 (18) C9—C10—C11 104.5 (2)
C2—C1—H1A 110.3 C9—C10—H10A 110.9
S1—C1—H1A 110.3 C11—C10—H10A 110.9
C2—C1—H1B 110.3 C9—C10—H10B 110.9
S1—C1—H1B 110.3 C11—C10—H10B 110.9
H1A—C1—H1B 108.6 H10A—C10—H10B 108.9
C1—C2—C3 108.0 (2) C12—C11—C10 107.2 (2)
C1—C2—H2A 110.1 C12—C11—H11A 110.3
C3—C2—H2A 110.1 C10—C11—H11A 110.3
C1—C2—H2B 110.1 C12—C11—H11B 110.3
C3—C2—H2B 110.1 C10—C11—H11B 110.3
H2A—C2—H2B 108.4 H11A—C11—H11B 108.5
C4—C3—C2 105.0 (2) C11—C12—S3 106.86 (19)
C4—C3—H3A 110.7 C11—C12—H12A 110.4
C2—C3—H3A 110.7 S3—C12—H12A 110.4
C4—C3—H3B 110.7 C11—C12—H12B 110.4
C2—C3—H3B 110.7 S3—C12—H12B 110.4
H3A—C3—H3B 108.8 H12A—C12—H12B 108.6
O4—Ru1—S1—O1 −0.88 (10) S1—Ru1—S3—C12 129.51 (10)
S3—Ru1—S1—O1 −176.63 (9) S2—Ru1—S3—C12 −139.54 (10)
S2—Ru1—S1—O1 88.66 (9) Cl1—Ru1—S3—C12 −46.99 (10)
Cl2—Ru1—S1—O1 −87.14 (9) Cl2—Ru1—S3—C12 43.26 (10)
O4—Ru1—S1—C4 −126.24 (11) O1—S1—C1—C2 −105.28 (19)
S3—Ru1—S1—C4 58.01 (11) C4—S1—C1—C2 3.8 (2)
S2—Ru1—S1—C4 −36.70 (11) Ru1—S1—C1—C2 127.11 (16)
Cl2—Ru1—S1—C4 147.50 (11) S1—C1—C2—C3 23.5 (3)
O4—Ru1—S1—C1 123.22 (11) C1—C2—C3—C4 −46.0 (3)
S3—Ru1—S1—C1 −52.53 (11) C2—C3—C4—S1 47.2 (2)
S2—Ru1—S1—C1 −147.24 (10) O1—S1—C4—C3 78.5 (2)
Cl2—Ru1—S1—C1 36.96 (10) C1—S1—C4—C3 −29.5 (2)
O4—Ru1—S2—O2 158.55 (10) Ru1—S1—C4—C3 −153.17 (15)
S3—Ru1—S2—O2 −27.18 (9) O2—S2—C5—C6 117.47 (19)
S1—Ru1—S2—O2 66.92 (9) C8—S2—C5—C6 7.9 (2)
Cl1—Ru1—S2—O2 −116.25 (9) Ru1—S2—C5—C6 −112.51 (17)
O4—Ru1—S2—C8 −72.00 (12) S2—C5—C6—C7 −33.1 (3)
S3—Ru1—S2—C8 102.28 (11) C5—C6—C7—C8 48.6 (3)
S1—Ru1—S2—C8 −163.62 (11) C6—C7—C8—S2 −41.6 (3)
Cl1—Ru1—S2—C8 13.20 (11) O2—S2—C8—C7 −90.7 (2)
O4—Ru1—S2—C5 33.70 (11) C5—S2—C8—C7 19.5 (2)
S3—Ru1—S2—C5 −152.03 (9) Ru1—S2—C8—C7 135.11 (16)
S1—Ru1—S2—C5 −57.93 (10) O3—S3—C9—C10 80.2 (2)
Cl1—Ru1—S2—C5 118.90 (10) C12—S3—C9—C10 −28.6 (2)
S1—Ru1—S3—O3 4.88 (10) Ru1—S3—C9—C10 −146.10 (16)
S2—Ru1—S3—O3 95.83 (10) S3—C9—C10—C11 48.1 (2)
Cl1—Ru1—S3—O3 −171.62 (10) C9—C10—C11—C12 −48.9 (3)
Cl2—Ru1—S3—O3 −81.37 (10) C10—C11—C12—S3 26.8 (3)
S1—Ru1—S3—C9 −123.92 (11) O3—S3—C12—C11 −107.7 (2)
S2—Ru1—S3—C9 −32.96 (11) C9—S3—C12—C11 1.2 (2)
Cl1—Ru1—S3—C9 59.59 (11) Ru1—S3—C12—C11 122.10 (17)
Cl2—Ru1—S3—C9 149.83 (11)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O4—H41···O1i 0.80 1.99 2.785 (3) 169
O4—H42···Cl2ii 0.80 2.37 3.116 (2) 156

Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2; (ii) −x+3/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2128).

References

  1. Aldinucci, D., Lorenzon, D., Stefani, L., Giovagnini, L., Colombatti, A. & Fregona, D. (2007). Anti-Cancer Drugs, 18, 323–332. [DOI] [PubMed]
  2. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  3. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  4. Etter, M. C. (1990). Acc. Chem. Res.23, 120–126.
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Nonius (2000). COLLECT Nonius BV, Delft, The Netherlands.
  7. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Srivastava, R. S. & Fronczek, F. R. (2003). Inorg. Chim. Acta, 355, 354–360.
  10. Srivastava, R. S., Fronczek, F. R. & Romero, L. M. (2004). Inorg. Chim. Acta, 357, 2410–2414.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809000439/pv2128sup1.cif

e-65-0m170-sup1.cif (21.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809000439/pv2128Isup2.hkl

e-65-0m170-Isup2.hkl (286.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES