Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jan 8;65(Pt 2):m140–m141. doi: 10.1107/S160053680804347X

Chloridobis[diphenyl­glyoximato(1–)-κ2 N,N′](1H-imidazole-κN 3)cobalt(III) hemihydrate

P Meera a,*, C Revathi a, A Dayalan a
PMCID: PMC2968413  PMID: 21581756

Abstract

The Co centre in the title compound, [Co(C14H11N2O2)2Cl(C3H4N2)]·0.5H2O, shows a slightly distorted octa­hedral coordination geometry. The glyoximate units of the mol­ecule are linked by O—H⋯O hydrogen bonds with the H atom almost in the middle of the two O atoms. The crystal packing is stabilized through inter­molecular N—H⋯O, N—H⋯N and O—H⋯Cl hydrogen bonds. The uncoordinated water mol­ecule shows half-occupation.

Related literature

For related literature, see: Calleri et al. (1967); Gupta et al. (2001, 2004); Lopez et al. (1991); Mandal & Gupta (2005); Silverstein & Bassler (1984); Toscano et al. (1983).graphic file with name e-65-0m140-scheme1.jpg

Experimental

Crystal data

  • [Co(C14H11N2O2)2Cl(C3H4N2)]·0.5H2O

  • M r = 649.97

  • Orthorhombic, Inline graphic

  • a = 19.1004 (11) Å

  • b = 12.0462 (7) Å

  • c = 26.9627 (18) Å

  • V = 6203.8 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.69 mm−1

  • T = 293 (2) K

  • 0.30 × 0.20 × 0.20 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999) T min = 0.732, T max = 0.850

  • 28473 measured reflections

  • 5282 independent reflections

  • 3705 reflections with I > 2σ(I)

  • R int = 0.051

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.104

  • S = 1.06

  • 5282 reflections

  • 415 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680804347X/bt2831sup1.cif

e-65-0m140-sup1.cif (28.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680804347X/bt2831Isup2.hkl

e-65-0m140-Isup2.hkl (253.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H2⋯O2 1.05 (4) 1.46 (4) 2.482 (3) 165 (3)
O3—H3⋯O1 1.07 (5) 1.39 (5) 2.456 (3) 174 (4)
N6—H6A⋯O2i 0.98 (4) 1.78 (4) 2.747 (4) 166 (3)
N6—H6A⋯N2i 0.98 (4) 2.50 (4) 3.326 (4) 141 (3)
O5—H5B⋯Cl1 0.946 (10) 2.69 (8) 3.331 (7) 126 (7)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors are thankful to Rev. Fr A. Albert Muthumalai, S.J., Principal, Loyola College (Autonomous), Chennai, India, for providing the necessary facilities, the head, SAIF, CDRI, Lucknow, India, for supplying elemental data and the head, SAIF, IIT Madras, Chennai, India, for recording the NMR spectra and for the X-ray data collection.

supplementary crystallographic information

Comment

The coordination geometry around cobalt is octahedral with the four nitrogen atoms of the diphenyl glyoximato ligand forming an approximate square plane. The bite angles N1—Co—N2 and N3—Co—N4 of the ligand are 81.40 (10)° and 80.32 (10)°, respectively. The coordinating chlorine and imidazole nitrogen [N5—Co1—Cl1 = 179.11 (7)°] are perpendicular to the equatorial plane composed by the four N atoms. The two glyoximate moieties are linked by strong O—H···O hydrogen bonds. Similar hydrogen bonds are found in nickel(II)glyoximate (Calleri, et al., 1967). The molecule is linked to its b-glide equivalent through a N—H···O hydrogen bond The water molecule forms a short O—H···Cl contact.

Experimental

Cobaltous chloride hexahydrate was thoroughly ground and exposed to microwave for 30 s. The dehydrated salt was mixed with diphenylglyoxime in 1:2 molar ratio in acetone medium and was stirred for an hour (Toscano, et al., 1983; Gupta, et al., 2001). Since the dichloro complex of diphenyl glyoxime was non-isolable, the complex solution was as such refluxed with equimolar ratio of imidazole for six hours to get the title compound. The resulting brown mass was filtered, washed with ether and dried in a vaccuum desiccator. The complex was dissolved in ethanol and kept in a dark room for crystallization. Brown crystals of the complex appeared in three days. The elemental analysis data, obtained by analytical methods agree well with the theoretical data expected for the formula of the complex proposed: Anal%, (cald%): C, 62.07(62.57); H, 4.82(4.71); N, 14.50(14.13). The C=N stretching vibration of oxime in the complex was observed at 1629 cm-1 and the intra molecular hydrogen bonded OH around 3400 cm-1. A moderate peak around 1252 cm-1 may be assigned to the C=N—O stretching of the oxime. The peak around 537 cm-1 could be attributed to cobalt(III)-nitrogen stretching. The 1H NMR spectra of the complex in acetone-d6 shows three different signals corresponding to diphenyl glyoximate ring protons (Gupta, et al., 2004; Lopez, et al., 1991). The ortho H atoms of the ring shows a doublet at d= 7.4 p.p.m., the meta protons and the para proton give triplets at d = 7.6 and 7.9 p.p.m. respectively. The oxime –OH resonates at d=8.3 p.p.m.. The axial protons also appeared as multiplets along with phenyl protons at 7.2 and 7.4 p.p.m. as three proton signal (Silverstein & Bassler, 1984; Mandal & Gupta, 2005).

Refinement

All the hydrogen atoms could be located in difference Fourier maps. Nevertheless, the phenyl H atoms were geometrically positioned [C—H = 0.93 Å and U(H) = 1.2 Ueq(O)] and were refined using a riding model. H atoms bonded to O were refined isotropically with U(H) set to 1.2 Ueq(O). For the water molecule the O-H distances were restrained to 0.95 (1)Å and the H···H distance to 1.55 (1)Å. Refinement of the water oxygen with full occupancy showed abnormally high displacement parameters. Hence, the site occupancy factor set to 0.5.

Figures

Fig. 1.

Fig. 1.

The ORTEP representation

Fig. 2.

Fig. 2.

Packing of molecules in the unit cell. Hydrogen bonds are shown with dotted lines.

Crystal data

[Co(C14H11N2O2)2Cl(C3H4N2)]·0.5H2O Dx = 1.392 Mg m3
Mr = 649.97 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pbca Cell parameters from 5466 reflections
a = 19.1004 (11) Å θ = 2.1–24.9°
b = 12.0462 (7) Å µ = 0.69 mm1
c = 26.9627 (18) Å T = 293 K
V = 6203.8 (7) Å3 Needle, brown
Z = 8 0.30 × 0.20 × 0.20 mm
F(000) = 2680

Data collection

Bruker Kappa APEXII CCD diffractometer 5282 independent reflections
Radiation source: fine-focus sealed tube 3705 reflections with I > 2σ(I)
graphite Rint = 0.051
ω and φ scans θmax = 24.7°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 1999) h = −20→22
Tmin = 0.732, Tmax = 0.850 k = −14→13
28473 measured reflections l = −31→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0434P)2 + 2.9454P] where P = (Fo2 + 2Fc2)/3
5282 reflections (Δ/σ)max = 0.001
415 parameters Δρmax = 0.35 e Å3
3 restraints Δρmin = −0.26 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.63561 (15) 0.1880 (3) 0.00280 (11) 0.0409 (7)
C2 0.70947 (14) 0.1624 (2) 0.01198 (11) 0.0381 (7)
C3 0.60509 (15) 0.2080 (3) −0.04659 (11) 0.0464 (8)
C4 0.56950 (19) 0.3038 (3) −0.05731 (13) 0.0639 (10)
H4 0.5658 0.3596 −0.0336 0.077*
C5 0.5390 (2) 0.3174 (4) −0.10368 (17) 0.0861 (14)
H5 0.5154 0.3827 −0.1114 0.103*
C6 0.5438 (2) 0.2339 (5) −0.13802 (16) 0.0882 (15)
H6 0.5224 0.2427 −0.1688 0.106*
C7 0.5790 (2) 0.1389 (5) −0.12817 (15) 0.0837 (13)
H7 0.5823 0.0832 −0.1520 0.100*
C8 0.61007 (18) 0.1258 (3) −0.08218 (13) 0.0624 (10)
H8 0.6346 0.0610 −0.0751 0.075*
C9 0.76536 (15) 0.1743 (3) −0.02548 (10) 0.0406 (7)
C10 0.76866 (18) 0.2672 (3) −0.05512 (12) 0.0575 (9)
H10 0.7342 0.3215 −0.0526 0.069*
C11 0.8230 (2) 0.2803 (4) −0.08864 (14) 0.0707 (11)
H11 0.8251 0.3434 −0.1084 0.085*
C12 0.8733 (2) 0.2007 (4) −0.09260 (14) 0.0701 (11)
H12 0.9094 0.2094 −0.1154 0.084*
C13 0.87115 (19) 0.1089 (4) −0.06346 (14) 0.0664 (11)
H13 0.9060 0.0554 −0.0660 0.080*
C14 0.81727 (17) 0.0953 (3) −0.03009 (12) 0.0529 (9)
H14 0.8158 0.0320 −0.0104 0.064*
C15 0.57331 (14) 0.0802 (2) 0.18684 (11) 0.0364 (7)
C16 0.64821 (14) 0.0580 (2) 0.19665 (10) 0.0365 (7)
C17 0.51700 (14) 0.0551 (3) 0.22257 (11) 0.0402 (7)
C18 0.46087 (16) 0.1271 (3) 0.22873 (13) 0.0550 (9)
H18 0.4589 0.1930 0.2108 0.066*
C19 0.40809 (19) 0.1009 (4) 0.26147 (15) 0.0737 (12)
H19 0.3707 0.1495 0.2657 0.088*
C20 0.41012 (19) 0.0049 (4) 0.28760 (15) 0.0781 (13)
H20 0.3743 −0.0119 0.3097 0.094*
C21 0.46428 (19) −0.0669 (4) 0.28165 (15) 0.0758 (12)
H21 0.4651 −0.1331 0.2993 0.091*
C22 0.51801 (17) −0.0419 (3) 0.24951 (12) 0.0554 (9)
H22 0.5553 −0.0909 0.2460 0.067*
C23 0.67758 (14) 0.0249 (3) 0.24497 (11) 0.0434 (8)
C24 0.66383 (18) 0.0875 (3) 0.28642 (13) 0.0623 (10)
H24 0.6353 0.1499 0.2840 0.075*
C25 0.6919 (2) 0.0584 (5) 0.33133 (14) 0.0855 (14)
H25 0.6824 0.1008 0.3594 0.103*
C26 0.7334 (2) −0.0319 (5) 0.33480 (17) 0.0930 (16)
H26 0.7528 −0.0507 0.3653 0.112*
C27 0.7473 (2) −0.0954 (4) 0.29465 (17) 0.0851 (14)
H27 0.7752 −0.1582 0.2978 0.102*
C28 0.71984 (18) −0.0669 (3) 0.24888 (14) 0.0660 (10)
H28 0.7299 −0.1096 0.2210 0.079*
C29 0.57488 (16) −0.0595 (3) 0.04757 (12) 0.0548 (9)
H29 0.5386 −0.0170 0.0346 0.066*
C30 0.58509 (18) −0.1672 (3) 0.03882 (13) 0.0593 (9)
H30 0.5582 −0.2130 0.0187 0.071*
C31 0.66589 (16) −0.1065 (3) 0.08821 (12) 0.0488 (8)
H31 0.7053 −0.1042 0.1084 0.059*
N1 0.59804 (12) 0.1815 (2) 0.04272 (9) 0.0426 (6)
N2 0.72105 (11) 0.13202 (19) 0.05738 (9) 0.0361 (6)
N3 0.56368 (11) 0.1196 (2) 0.14284 (9) 0.0383 (6)
N4 0.68677 (11) 0.0763 (2) 0.15816 (8) 0.0382 (6)
N5 0.62594 (11) −0.0215 (2) 0.07856 (9) 0.0380 (6)
N6 0.64288 (15) −0.1966 (3) 0.06536 (11) 0.0552 (7)
O1 0.52933 (10) 0.1998 (2) 0.04167 (8) 0.0542 (6)
O2 0.78462 (9) 0.10740 (17) 0.07404 (7) 0.0425 (5)
O3 0.49944 (10) 0.14234 (19) 0.12648 (8) 0.0520 (6)
O4 0.75702 (10) 0.0645 (2) 0.16194 (8) 0.0496 (6)
O5 0.5658 (4) 0.4699 (6) 0.0555 (3) 0.127 (2) 0.50
H5B 0.611 (2) 0.438 (7) 0.055 (4) 0.152* 0.50
H5A 0.535 (4) 0.425 (7) 0.074 (4) 0.152* 0.50
Co1 0.642761 (18) 0.12847 (3) 0.100084 (14) 0.03524 (13)
Cl1 0.66393 (4) 0.30158 (7) 0.12458 (3) 0.0560 (2)
H2 0.7759 (17) 0.087 (3) 0.1270 (14) 0.070 (11)*
H3 0.509 (2) 0.169 (4) 0.0893 (17) 0.106 (15)*
H6A 0.6632 (18) −0.272 (3) 0.0650 (13) 0.075 (12)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0429 (17) 0.0496 (19) 0.0303 (18) −0.0003 (14) 0.0007 (14) 0.0066 (14)
C2 0.0378 (16) 0.0466 (18) 0.0301 (18) −0.0019 (13) 0.0026 (13) 0.0013 (13)
C3 0.0405 (17) 0.065 (2) 0.0334 (19) −0.0075 (16) 0.0008 (14) 0.0093 (16)
C4 0.074 (2) 0.067 (3) 0.050 (2) −0.002 (2) −0.0123 (19) 0.0156 (19)
C5 0.082 (3) 0.102 (4) 0.075 (3) −0.002 (3) −0.020 (2) 0.043 (3)
C6 0.080 (3) 0.138 (5) 0.046 (3) −0.030 (3) −0.014 (2) 0.015 (3)
C7 0.075 (3) 0.131 (4) 0.045 (3) −0.014 (3) −0.003 (2) −0.012 (3)
C8 0.055 (2) 0.089 (3) 0.043 (2) 0.0001 (19) 0.0009 (17) −0.003 (2)
C9 0.0409 (16) 0.0508 (19) 0.0301 (17) −0.0089 (15) 0.0017 (13) −0.0025 (15)
C10 0.058 (2) 0.066 (2) 0.048 (2) −0.0061 (18) 0.0019 (17) 0.0103 (18)
C11 0.080 (3) 0.080 (3) 0.052 (3) −0.028 (2) 0.011 (2) 0.013 (2)
C12 0.059 (2) 0.100 (3) 0.052 (3) −0.027 (2) 0.0202 (19) −0.009 (2)
C13 0.058 (2) 0.084 (3) 0.057 (3) −0.001 (2) 0.0203 (19) −0.011 (2)
C14 0.059 (2) 0.058 (2) 0.042 (2) −0.0033 (17) 0.0129 (16) −0.0043 (16)
C15 0.0348 (15) 0.0451 (18) 0.0293 (17) 0.0025 (13) 0.0024 (12) 0.0010 (13)
C16 0.0341 (15) 0.0463 (18) 0.0293 (17) 0.0019 (13) 0.0021 (13) −0.0015 (13)
C17 0.0342 (16) 0.054 (2) 0.0329 (17) 0.0007 (14) 0.0046 (13) 0.0020 (15)
C18 0.0485 (19) 0.060 (2) 0.057 (2) 0.0096 (17) 0.0165 (16) 0.0085 (17)
C19 0.054 (2) 0.090 (3) 0.078 (3) 0.019 (2) 0.031 (2) 0.012 (2)
C20 0.057 (2) 0.100 (3) 0.077 (3) 0.007 (2) 0.034 (2) 0.029 (3)
C21 0.061 (2) 0.085 (3) 0.082 (3) 0.006 (2) 0.028 (2) 0.033 (2)
C22 0.0460 (19) 0.063 (2) 0.057 (2) 0.0088 (16) 0.0122 (16) 0.0135 (19)
C23 0.0312 (15) 0.070 (2) 0.0294 (18) 0.0010 (15) −0.0004 (13) 0.0039 (15)
C24 0.062 (2) 0.088 (3) 0.038 (2) 0.0011 (19) −0.0025 (17) −0.0001 (19)
C25 0.079 (3) 0.142 (4) 0.035 (2) 0.002 (3) −0.011 (2) −0.002 (2)
C26 0.069 (3) 0.161 (5) 0.049 (3) −0.001 (3) −0.014 (2) 0.037 (3)
C27 0.068 (3) 0.120 (4) 0.068 (3) 0.028 (2) −0.005 (2) 0.036 (3)
C28 0.057 (2) 0.088 (3) 0.053 (2) 0.016 (2) 0.0057 (18) 0.015 (2)
C29 0.0425 (19) 0.067 (3) 0.054 (2) −0.0026 (17) −0.0135 (16) 0.0037 (18)
C30 0.057 (2) 0.063 (3) 0.057 (2) −0.0122 (18) −0.0107 (18) −0.0093 (19)
C31 0.0416 (17) 0.058 (2) 0.047 (2) 0.0045 (16) −0.0048 (15) −0.0061 (16)
N1 0.0347 (13) 0.0580 (17) 0.0350 (15) 0.0065 (12) −0.0001 (11) 0.0056 (12)
N2 0.0299 (12) 0.0463 (14) 0.0320 (14) −0.0004 (11) 0.0003 (10) −0.0002 (11)
N3 0.0294 (12) 0.0527 (15) 0.0330 (15) 0.0063 (11) 0.0025 (10) 0.0035 (12)
N4 0.0280 (12) 0.0570 (16) 0.0295 (14) 0.0033 (11) −0.0008 (10) −0.0025 (11)
N5 0.0324 (12) 0.0502 (15) 0.0316 (14) 0.0044 (11) −0.0007 (11) 0.0012 (12)
N6 0.0563 (18) 0.0526 (19) 0.057 (2) 0.0056 (15) 0.0025 (14) −0.0056 (15)
O1 0.0346 (11) 0.0849 (17) 0.0429 (14) 0.0141 (11) −0.0007 (10) 0.0164 (12)
O2 0.0293 (10) 0.0635 (14) 0.0347 (12) 0.0020 (9) 0.0022 (9) 0.0051 (10)
O3 0.0279 (10) 0.0848 (17) 0.0432 (14) 0.0143 (10) 0.0013 (9) 0.0154 (12)
O4 0.0258 (10) 0.0886 (17) 0.0343 (13) 0.0043 (10) 0.0010 (9) 0.0078 (12)
O5 0.144 (7) 0.109 (6) 0.127 (7) 0.037 (5) 0.001 (5) 0.011 (4)
Co1 0.0288 (2) 0.0490 (2) 0.0280 (2) 0.00340 (18) 0.00147 (16) 0.00213 (18)
Cl1 0.0571 (5) 0.0530 (5) 0.0580 (6) −0.0016 (4) 0.0119 (4) −0.0087 (4)

Geometric parameters (Å, °)

C1—N1 1.296 (4) C21—C22 1.376 (4)
C1—C2 1.465 (4) C21—H21 0.9300
C1—C3 1.473 (4) C22—H22 0.9300
C2—N2 1.296 (3) C23—C28 1.373 (5)
C2—C9 1.477 (4) C23—C24 1.374 (5)
C3—C4 1.370 (5) C24—C25 1.370 (5)
C3—C8 1.382 (5) C24—H24 0.9300
C4—C5 1.389 (5) C25—C26 1.348 (6)
C4—H4 0.9300 C25—H25 0.9300
C5—C6 1.370 (6) C26—C27 1.352 (6)
C5—H5 0.9300 C26—H26 0.9300
C6—C7 1.354 (6) C27—C28 1.384 (5)
C6—H6 0.9300 C27—H27 0.9300
C7—C8 1.384 (5) C28—H28 0.9300
C7—H7 0.9300 C29—C30 1.333 (5)
C8—H8 0.9300 C29—N5 1.364 (4)
C9—C10 1.377 (4) C29—H29 0.9300
C9—C14 1.380 (4) C30—N6 1.362 (4)
C10—C11 1.385 (5) C30—H30 0.9300
C10—H10 0.9300 C31—N5 1.304 (4)
C11—C12 1.362 (6) C31—N6 1.324 (4)
C11—H11 0.9300 C31—H31 0.9300
C12—C13 1.357 (5) N1—O1 1.331 (3)
C12—H12 0.9300 N1—Co1 1.879 (2)
C13—C14 1.377 (5) N2—O2 1.328 (3)
C13—H13 0.9300 N2—Co1 1.888 (2)
C14—H14 0.9300 N3—O3 1.332 (3)
C15—N3 1.291 (3) N3—Co1 1.903 (2)
C15—C17 1.475 (4) N4—O4 1.353 (3)
C15—C16 1.479 (4) N4—Co1 1.885 (2)
C16—N4 1.291 (3) N5—Co1 1.924 (2)
C16—C23 1.474 (4) N6—H6A 0.98 (4)
C17—C22 1.376 (4) O1—H3 1.39 (5)
C17—C18 1.389 (4) O2—H2 1.46 (4)
C18—C19 1.377 (4) O3—H3 1.07 (5)
C18—H18 0.9300 O4—H2 1.05 (4)
C19—C20 1.355 (5) O5—H5B 0.946 (10)
C19—H19 0.9300 O5—H5A 0.946 (10)
C20—C21 1.358 (5) Co1—Cl1 2.2244 (9)
C20—H20 0.9300
N1—C1—C2 112.3 (3) C28—C23—C24 119.5 (3)
N1—C1—C3 122.8 (3) C28—C23—C16 120.7 (3)
C2—C1—C3 124.6 (3) C24—C23—C16 119.8 (3)
N2—C2—C1 112.5 (2) C25—C24—C23 120.2 (4)
N2—C2—C9 123.4 (3) C25—C24—H24 119.9
C1—C2—C9 124.0 (3) C23—C24—H24 119.9
C4—C3—C8 119.4 (3) C26—C25—C24 119.9 (4)
C4—C3—C1 121.6 (3) C26—C25—H25 120.1
C8—C3—C1 118.9 (3) C24—C25—H25 120.1
C3—C4—C5 119.8 (4) C25—C26—C27 121.0 (4)
C3—C4—H4 120.1 C25—C26—H26 119.5
C5—C4—H4 120.1 C27—C26—H26 119.5
C6—C5—C4 119.6 (4) C26—C27—C28 120.0 (4)
C6—C5—H5 120.2 C26—C27—H27 120.0
C4—C5—H5 120.2 C28—C27—H27 120.0
C7—C6—C5 121.4 (4) C23—C28—C27 119.4 (4)
C7—C6—H6 119.3 C23—C28—H28 120.3
C5—C6—H6 119.3 C27—C28—H28 120.3
C6—C7—C8 119.0 (4) C30—C29—N5 109.3 (3)
C6—C7—H7 120.5 C30—C29—H29 125.3
C8—C7—H7 120.5 N5—C29—H29 125.3
C3—C8—C7 120.7 (4) C29—C30—N6 106.2 (3)
C3—C8—H8 119.6 C29—C30—H30 126.9
C7—C8—H8 119.6 N6—C30—H30 126.9
C10—C9—C14 118.4 (3) N5—C31—N6 110.9 (3)
C10—C9—C2 120.6 (3) N5—C31—H31 124.5
C14—C9—C2 120.9 (3) N6—C31—H31 124.5
C9—C10—C11 120.4 (4) C1—N1—O1 121.2 (2)
C9—C10—H10 119.8 C1—N1—Co1 116.91 (19)
C11—C10—H10 119.8 O1—N1—Co1 121.47 (18)
C12—C11—C10 120.0 (4) C2—N2—O2 122.6 (2)
C12—C11—H11 120.0 C2—N2—Co1 116.56 (19)
C10—C11—H11 120.0 O2—N2—Co1 120.84 (17)
C13—C12—C11 120.5 (3) C15—N3—O3 120.7 (2)
C13—C12—H12 119.8 C15—N3—Co1 117.66 (18)
C11—C12—H12 119.8 O3—N3—Co1 121.26 (18)
C12—C13—C14 119.9 (4) C16—N4—O4 119.1 (2)
C12—C13—H13 120.1 C16—N4—Co1 118.04 (19)
C14—C13—H13 120.1 O4—N4—Co1 122.67 (17)
C13—C14—C9 120.9 (3) C31—N5—C29 106.1 (3)
C13—C14—H14 119.6 C31—N5—Co1 125.4 (2)
C9—C14—H14 119.6 C29—N5—Co1 128.3 (2)
N3—C15—C17 124.9 (2) C31—N6—C30 107.5 (3)
N3—C15—C16 111.6 (2) C31—N6—H6A 129 (2)
C17—C15—C16 123.5 (3) C30—N6—H6A 124 (2)
N4—C16—C23 122.7 (2) N1—O1—H3 101.9 (17)
N4—C16—C15 112.2 (2) N2—O2—H2 105.3 (13)
C23—C16—C15 125.1 (2) N3—O3—H3 102 (2)
C22—C17—C18 118.6 (3) N4—O4—H2 104.2 (18)
C22—C17—C15 120.6 (3) H5B—O5—H5A 110.0 (17)
C18—C17—C15 120.9 (3) N1—Co1—N4 179.23 (11)
C19—C18—C17 119.9 (3) N1—Co1—N2 81.39 (10)
C19—C18—H18 120.0 N4—Co1—N2 99.27 (10)
C17—C18—H18 120.0 N1—Co1—N3 99.02 (10)
C20—C19—C18 120.6 (3) N4—Co1—N3 80.33 (10)
C20—C19—H19 119.7 N2—Co1—N3 178.07 (10)
C18—C19—H19 119.7 N1—Co1—N5 89.71 (11)
C19—C20—C21 120.3 (3) N4—Co1—N5 90.69 (10)
C19—C20—H20 119.9 N2—Co1—N5 88.25 (10)
C21—C20—H20 119.9 N3—Co1—N5 89.86 (10)
C20—C21—C22 120.2 (4) N1—Co1—Cl1 90.47 (8)
C20—C21—H21 119.9 N4—Co1—Cl1 89.13 (8)
C22—C21—H21 119.9 N2—Co1—Cl1 90.91 (7)
C17—C22—C21 120.5 (3) N3—Co1—Cl1 90.97 (8)
C17—C22—H22 119.8 N5—Co1—Cl1 179.11 (7)
C21—C22—H22 119.8
N1—C1—C2—N2 4.0 (4) C17—C15—N3—O3 0.9 (4)
C3—C1—C2—N2 −170.2 (3) C16—C15—N3—O3 178.3 (2)
N1—C1—C2—C9 −173.5 (3) C17—C15—N3—Co1 −172.4 (2)
C3—C1—C2—C9 12.3 (5) C16—C15—N3—Co1 5.0 (3)
N1—C1—C3—C4 62.3 (4) C23—C16—N4—O4 0.2 (4)
C2—C1—C3—C4 −124.1 (4) C15—C16—N4—O4 177.1 (2)
N1—C1—C3—C8 −114.9 (4) C23—C16—N4—Co1 −175.5 (2)
C2—C1—C3—C8 58.7 (4) C15—C16—N4—Co1 1.4 (3)
C8—C3—C4—C5 −0.1 (5) N6—C31—N5—C29 −0.4 (4)
C1—C3—C4—C5 −177.3 (3) N6—C31—N5—Co1 −175.6 (2)
C3—C4—C5—C6 1.1 (6) C30—C29—N5—C31 −0.3 (4)
C4—C5—C6—C7 −1.4 (7) C30—C29—N5—Co1 174.7 (2)
C5—C6—C7—C8 0.7 (7) N5—C31—N6—C30 0.9 (4)
C4—C3—C8—C7 −0.6 (5) C29—C30—N6—C31 −1.0 (4)
C1—C3—C8—C7 176.6 (3) C1—N1—Co1—N4 154 (9)
C6—C7—C8—C3 0.3 (6) O1—N1—Co1—N4 −33 (9)
N2—C2—C9—C10 −132.9 (3) C1—N1—Co1—N2 4.7 (2)
C1—C2—C9—C10 44.3 (4) O1—N1—Co1—N2 177.4 (2)
N2—C2—C9—C14 44.1 (4) C1—N1—Co1—N3 −173.4 (2)
C1—C2—C9—C14 −138.7 (3) O1—N1—Co1—N3 −0.7 (2)
C14—C9—C10—C11 0.0 (5) C1—N1—Co1—N5 −83.6 (2)
C2—C9—C10—C11 177.1 (3) O1—N1—Co1—N5 89.1 (2)
C9—C10—C11—C12 0.3 (6) C1—N1—Co1—Cl1 95.5 (2)
C10—C11—C12—C13 −0.8 (6) O1—N1—Co1—Cl1 −91.7 (2)
C11—C12—C13—C14 0.9 (6) C16—N4—Co1—N1 33 (9)
C12—C13—C14—C9 −0.5 (6) O4—N4—Co1—N1 −142 (9)
C10—C9—C14—C13 0.1 (5) C16—N4—Co1—N2 −177.2 (2)
C2—C9—C14—C13 −177.0 (3) O4—N4—Co1—N2 7.3 (2)
N3—C15—C16—N4 −4.0 (4) C16—N4—Co1—N3 0.9 (2)
C17—C15—C16—N4 173.4 (3) O4—N4—Co1—N3 −174.6 (2)
N3—C15—C16—C23 172.8 (3) C16—N4—Co1—N5 −88.8 (2)
C17—C15—C16—C23 −9.8 (5) O4—N4—Co1—N5 95.6 (2)
N3—C15—C17—C22 136.0 (3) C16—N4—Co1—Cl1 92.1 (2)
C16—C15—C17—C22 −41.1 (4) O4—N4—Co1—Cl1 −83.5 (2)
N3—C15—C17—C18 −42.1 (5) C2—N2—Co1—N1 −2.2 (2)
C16—C15—C17—C18 140.8 (3) O2—N2—Co1—N1 176.0 (2)
C22—C17—C18—C19 0.4 (5) C2—N2—Co1—N4 178.2 (2)
C15—C17—C18—C19 178.5 (3) O2—N2—Co1—N4 −3.6 (2)
C17—C18—C19—C20 −0.4 (6) C2—N2—Co1—N3 100 (3)
C18—C19—C20—C21 −0.2 (7) O2—N2—Co1—N3 −82 (3)
C19—C20—C21—C22 0.9 (7) C2—N2—Co1—N5 87.8 (2)
C18—C17—C22—C21 0.3 (5) O2—N2—Co1—N5 −94.1 (2)
C15—C17—C22—C21 −177.9 (3) C2—N2—Co1—Cl1 −92.5 (2)
C20—C21—C22—C17 −0.9 (6) O2—N2—Co1—Cl1 85.63 (19)
N4—C16—C23—C28 −55.4 (4) C15—N3—Co1—N1 176.9 (2)
C15—C16—C23—C28 128.1 (3) O3—N3—Co1—N1 3.7 (2)
N4—C16—C23—C24 123.3 (3) C15—N3—Co1—N4 −3.5 (2)
C15—C16—C23—C24 −53.2 (4) O3—N3—Co1—N4 −176.7 (2)
C28—C23—C24—C25 −0.2 (5) C15—N3—Co1—N2 75 (3)
C16—C23—C24—C25 −178.8 (3) O3—N3—Co1—N2 −99 (3)
C23—C24—C25—C26 0.2 (6) C15—N3—Co1—N5 87.2 (2)
C24—C25—C26—C27 −0.8 (7) O3—N3—Co1—N5 −86.0 (2)
C25—C26—C27—C28 1.3 (7) C15—N3—Co1—Cl1 −92.4 (2)
C24—C23—C28—C27 0.7 (5) O3—N3—Co1—Cl1 94.3 (2)
C16—C23—C28—C27 179.3 (3) C31—N5—Co1—N1 149.3 (3)
C26—C27—C28—C23 −1.2 (6) C29—N5—Co1—N1 −24.8 (3)
N5—C29—C30—N6 0.8 (4) C31—N5—Co1—N4 −31.4 (3)
C2—C1—N1—O1 −178.7 (3) C29—N5—Co1—N4 154.5 (3)
C3—C1—N1—O1 −4.4 (5) C31—N5—Co1—N2 67.9 (3)
C2—C1—N1—Co1 −5.9 (3) C29—N5—Co1—N2 −106.2 (3)
C3—C1—N1—Co1 168.4 (2) C31—N5—Co1—N3 −111.7 (3)
C1—C2—N2—O2 −178.4 (2) C29—N5—Co1—N3 74.2 (3)
C9—C2—N2—O2 −0.9 (4) C31—N5—Co1—Cl1 47 (5)
C1—C2—N2—Co1 −0.3 (3) C29—N5—Co1—Cl1 −127 (5)
C9—C2—N2—Co1 177.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O4—H2···O2 1.05 (4) 1.46 (4) 2.482 (3) 165 (3)
O3—H3···O1 1.07 (5) 1.39 (5) 2.456 (3) 174 (4)
N6—H6A···O2i 0.98 (4) 1.78 (4) 2.747 (4) 166 (3)
N6—H6A···N2i 0.98 (4) 2.50 (4) 3.326 (4) 141 (3)
O5—H5B···Cl1 0.95 (1) 2.69 (8) 3.331 (7) 126 (7)

Symmetry codes: (i) −x+3/2, y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2831).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
  2. Bruker (1999). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Calleri, M., Ferraris, G. & Viterbo, D. (1967). Acta Cryst.22, 468–475.
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Gupta, B. D., Tiwari, U., Barley, T. & Cordes, W. (2001). J. Organomet. Chem.629, 83–92.
  7. Gupta, B. D., Vijayaikanth, V. & Sing, V. (2004). Organometallics, 23, 2067–2079.
  8. Lopez, C., Alavarez, S., Solans, X. & Font-Bardia, M. (1991). J. Organomet. Chem.414, 245–259.
  9. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  10. Mandal, D. & Gupta, B. D. (2005). J. Organomet. Chem.690, 3746–3754.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Silverstein, R. M. & Bassler, G. C. (1984). Spectrometric Identification of Organic Compounds, 2nd ed., pp. 459-460. New York: John Wiley & Sons.
  13. Toscano, P. J., Swider, S., Marzilli, L. G., Bresciani Phor, N. & Randaccio, L. (1983). Inorg. Chem.22, 3416–3421.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680804347X/bt2831sup1.cif

e-65-0m140-sup1.cif (28.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680804347X/bt2831Isup2.hkl

e-65-0m140-Isup2.hkl (253.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES