Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Feb 28;65(Pt 3):m334. doi: 10.1107/S1600536809006102

(2,2-Dichloro­vinyl)ferrocene

Sébastien Clément a, Laurent Guyard a, Michael Knorr a, Viktoria H Gessner b, Carsten Strohmann b,*
PMCID: PMC2968422  PMID: 21582103

Abstract

The title compound, [Fe(C5H5)(C7H5Cl2)], represents a versatile building block for the preparation of π-conjugated redox-active compounds or polymetallic organometallic systems due to the presence of the electrochemically active ferrocenyl unit. It is therefore a potential starting material for the preperation of the corresponding alkyne. In the crystal, the alkenyl unit and the cyclo­penta­dienide ring are almost parallel, with an angle between the best planes of only 10.6 (4)°.

Related literature

The title compound was first prepared in 1963, see: Schloegl et al. (1963). For an alternative synthesis using a Corey–Fuchs route, see: Luo et al. (2000). For the preparation of some other halo-vinyl ferrocenes, see: Naskar et al. (2000). For related functionalized ferrocenes, see: Clément et al. (2007a ) and for [2.2]paracyclo­phanes, see: Clément et al. (2007b ). For the parent compound, ethenylferrocene, see: McAdam et al. (2008).graphic file with name e-65-0m334-scheme1.jpg

Experimental

Crystal data

  • [Fe(C5H5)(C7H5Cl2)]

  • M r = 280.95

  • Monoclinic, Inline graphic

  • a = 14.340 (3) Å

  • b = 7.4370 (15) Å

  • c = 10.932 (2) Å

  • β = 108.48 (3)°

  • V = 1105.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.81 mm−1

  • T = 173 K

  • 0.3 × 0.2 × 0.2 mm

Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999) T min = 0.594, T max = 0.694

  • 3293 measured reflections

  • 1908 independent reflections

  • 1372 reflections with I > 2σ(I)

  • R int = 0.05

Refinement

  • R[F 2 > 2σ(F 2)] = 0.063

  • wR(F 2) = 0.174

  • S = 1.02

  • 1908 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 1.04 e Å−3

  • Δρmin = −0.46 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS90 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809006102/zl2181sup1.cif

e-65-0m334-sup1.cif (16KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809006102/zl2181Isup2.hkl

e-65-0m334-Isup2.hkl (93.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to the French Ministere de la Recherche et Technologie for a PhD grant for SC. We also thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support and the award of a scholarship (VHG).

supplementary crystallographic information

Comment

π-Conjugated ligands are widely applied in coordination chemistry, catalysis or polymer sciences. Among them, ethynylferrocene and its derivatives have gained special interest due to their use as building blocks for the synthesis of di- and polymetallic organometallic systems and advanced materials. In the context of our research into developing novel π-conjugated ligands such as functionalized ferrocenes (Clément et al., 2007a) and [2.2]paracyclophanes (Clément et al., 2007b) for potential applications in coordination chemistry, we have recently reported dehalobromation of (2,2-dibromovinyl)ferrocene and dibromovinyl[2.2]paracyclophane as a convenient route to the synthesis of the corresponding alkynes.

In order to take a closer glance on the influence of the halide leaving group in the starting materials {[Cl2C=C(H)—Fc] versus [Br2C=C(H)—Fc] (Fc = ferrocenyl)}, we prepared the title compound (2) according to a slightly modified literature procedure (Luo et al., 2000) under Corey-Fuchs conditions by treatment of ferrocenecarbaldehyde (1) with CCl4 in the presence of zinc dust and triphenyl phosphane (Figure 3).

The molecular structure of 2 is shown in Figure 1. (2,2-Dichlorovinyl)ferrocene (2) crystallizes in the monoclinic crystal system, space group P21/c. The two cyclopentadienyl rings are almost eclipsed with a mean cyclopentadienyl twist angle of 6.17°. The dihedral angle between the Cp ring planes is 0.1 (5)°. The bond distance of the vinylic double bond between C(1) and C(2) of 1.321 (9) Å is almost identical with that of (2,2-dibromovinyl)ferrocene [1.318 (4) Å]. The alkenyl unit and the cyclopentadienido ring are fairly coplanar with an angle between the two best planes [(C1 C2 Cl1 Cl2) and (C3 C4 C5 C6 C7)] of only 10.6 (4)°. This value determined for 2 is comparable to that determined for (2,2-dibromovinyl)ferrocene (10.43°) (Clément et al., 2007a). Cl1 is involved in week C–H···Cl interactions (H8···Cl1i: 2.901 Å and C8–H8···Cl1i 166.8°; symmetry operator i: x,-y+1/2,+z-1/2). Overall, it seems that the influence of the halide on the molecular geometry is negligeable. In contrast to the parent compound ethenylferrocene (McAdam et al., 2008), where intermolecular C–H···π interactions are present in the solid state, no significant intermolecular interactions are observed in the packing of (2) (Figure 2).

Experimental

(2,2-Dichlorovinyl)ferrocene (2): Triphenyl phosphane (2.40 g, 8.5 mmol), CCl4 (0.82 ml, 8.5 mmol) and zinc dust (0.55 g, 8.5 mmol) were placed in a Schlenk tube and 25 ml CH2Cl2 were slowly added. After stirring at room temperature for 28 h, ferrocenecarbaldehyde (1) (1.00 g, 4.24 mmol), dissolved in CH2Cl2 (10 ml), was added and stirring was continued for further 2 h. The reaction mixture was extracted with three 50 ml portions of pentane and CH2Cl2 was added when the reaction mixture became too viscous for further extractions. The extracts were filtered and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel with CH2Cl2/petroleum ether (1:1). Slow evaporation yielded red crystals of 2 (Yield: 91%). Characterization data have been previously described in the literature. (Luo et al., 2000)

Refinement

All H atoms were refined using a riding model in their ideal geometric positions. Uiso(H) = -1.2Ueq(C) was used for CH with C—H distances of 1.00 Å for the cyclopentadienyl H atoms and 0.95Å for the alkenyl hydrogen.

Figures

Fig. 1.

Fig. 1.

ORTEP presentation of (2) at the 30% probability level.

Fig. 2.

Fig. 2.

Packing diagramm of (2).

Fig. 3.

Fig. 3.

Synthesis of (2,2-Dichlorovinyl)ferrocene (2) under COREY-FUCHS reaction conditions.

Crystal data

[Fe(C5H5)(C7H5Cl2)] F(000) = 568
Mr = 280.95 Dx = 1.688 Mg m3
Monoclinic, P21/c Melting point: 382 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 14.340 (3) Å Cell parameters from 1338 reflections
b = 7.4370 (15) Å θ = 1.5–25.0°
c = 10.932 (2) Å µ = 1.81 mm1
β = 108.48 (3)° T = 173 K
V = 1105.8 (4) Å3 Irregular, red
Z = 4 0.3 × 0.2 × 0.2 mm

Data collection

Bruker APEX CCD diffractometer 1908 independent reflections
Radiation source: fine-focus sealed tube 1372 reflections with I > 2σ(I)
graphite Rint = 0.05
ω scans θmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Bruker, 1999) h = −10→17
Tmin = 0.594, Tmax = 0.694 k = −8→7
3293 measured reflections l = −12→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.174 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0967P)2 + 0.0275P] where P = (Fo2 + 2Fc2)/3
1908 reflections (Δ/σ)max < 0.001
136 parameters Δρmax = 1.04 e Å3
0 restraints Δρmin = −0.46 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.3941 (5) 0.1149 (9) 1.0606 (6) 0.0309 (16)
C2 0.3017 (5) 0.0654 (9) 1.0059 (6) 0.0286 (16)
H2 0.2812 −0.0326 1.0468 0.034*
C3 0.2268 (5) 0.1356 (9) 0.8940 (6) 0.0262 (15)
C4 0.2322 (5) 0.2584 (8) 0.7962 (6) 0.0297 (16)
H4 0.2932 0.3182 0.7905 0.036*
C5 0.1361 (6) 0.2818 (9) 0.7090 (7) 0.0339 (17)
H5 0.1177 0.3602 0.6306 0.041*
C6 0.0706 (5) 0.1740 (10) 0.7506 (7) 0.0350 (18)
H6 −0.0018 0.1629 0.7067 0.042*
C7 0.1254 (5) 0.0827 (10) 0.8631 (6) 0.0319 (17)
H7 0.0985 −0.0039 0.9133 0.038*
C8 0.2636 (6) −0.0694 (10) 0.6107 (7) 0.0389 (19)
H8 0.32 −0.0011 0.5981 0.047*
C9 0.2703 (6) −0.1880 (10) 0.7137 (8) 0.0372 (18)
H9 0.3317 −0.2198 0.7847 0.045*
C10 0.1753 (5) −0.2558 (9) 0.6980 (7) 0.0320 (17)
H10 0.1576 −0.343 0.7567 0.038*
C11 0.1090 (5) −0.1753 (9) 0.5874 (7) 0.0327 (17)
H11 0.0365 −0.1969 0.5529 0.039*
C12 0.1664 (5) −0.0579 (11) 0.5309 (6) 0.0366 (19)
H12 0.1408 0.0166 0.4511 0.044*
Cl1 0.45229 (14) 0.2850 (3) 1.00576 (19) 0.0410 (5)
Cl2 0.46791 (14) 0.0177 (3) 1.20093 (18) 0.0452 (6)
Fe1 0.17755 (7) 0.01793 (12) 0.71562 (9) 0.0219 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.031 (4) 0.032 (4) 0.022 (4) 0.001 (3) −0.002 (3) −0.003 (3)
C2 0.030 (4) 0.029 (4) 0.026 (4) −0.001 (3) 0.007 (3) 0.000 (3)
C3 0.030 (4) 0.023 (4) 0.021 (3) 0.001 (3) 0.002 (3) −0.005 (3)
C4 0.034 (4) 0.024 (4) 0.023 (3) −0.003 (3) −0.003 (3) −0.001 (3)
C5 0.039 (4) 0.024 (4) 0.029 (4) 0.007 (3) −0.002 (3) −0.006 (3)
C6 0.030 (4) 0.039 (5) 0.034 (4) 0.008 (3) 0.007 (3) −0.005 (3)
C7 0.036 (4) 0.036 (4) 0.023 (4) −0.003 (3) 0.009 (3) −0.007 (3)
C8 0.043 (5) 0.037 (4) 0.041 (5) −0.004 (4) 0.021 (4) −0.011 (3)
C9 0.029 (4) 0.034 (4) 0.047 (5) 0.011 (3) 0.008 (4) −0.002 (3)
C10 0.035 (4) 0.022 (4) 0.041 (4) −0.002 (3) 0.015 (4) −0.009 (3)
C11 0.025 (4) 0.036 (4) 0.035 (4) −0.008 (3) 0.006 (3) −0.016 (3)
C12 0.034 (4) 0.054 (5) 0.020 (4) 0.012 (4) 0.006 (3) −0.011 (3)
Cl1 0.0320 (10) 0.0469 (12) 0.0410 (10) −0.0091 (9) 0.0072 (8) −0.0002 (9)
Cl2 0.0374 (12) 0.0488 (13) 0.0356 (10) 0.0041 (9) −0.0081 (9) 0.0021 (8)
Fe1 0.0202 (5) 0.0199 (6) 0.0227 (5) −0.0013 (4) 0.0026 (4) −0.0025 (4)

Geometric parameters (Å, °)

C1—C2 1.321 (9) C7—Fe1 2.038 (7)
C1—Cl1 1.725 (7) C7—H7 1
C1—Cl2 1.723 (7) C8—C12 1.393 (10)
C2—C3 1.446 (9) C8—C9 1.410 (10)
C2—H2 0.95 C8—Fe1 2.040 (7)
C3—C4 1.427 (9) C8—H8 1
C3—C7 1.438 (10) C9—C10 1.412 (10)
C3—Fe1 2.048 (6) C9—Fe1 2.033 (7)
C4—C5 1.416 (10) C9—H9 1
C4—Fe1 2.038 (6) C10—C11 1.412 (10)
C4—H4 1 C10—Fe1 2.044 (6)
C5—C6 1.415 (10) C10—H10 1
C5—Fe1 2.045 (7) C11—C12 1.465 (10)
C5—H5 1 C11—Fe1 2.030 (7)
C6—C7 1.407 (9) C11—H11 1
C6—Fe1 2.054 (7) C12—Fe1 2.054 (6)
C6—H6 1 C12—H12 1
C2—C1—Cl1 125.0 (6) C12—C11—Fe1 69.8 (4)
C2—C1—Cl2 122.1 (6) C10—C11—H11 126.3
Cl1—C1—Cl2 112.9 (4) C12—C11—H11 126.3
C1—C2—C3 130.7 (7) Fe1—C11—H11 126.3
C1—C2—H2 114.6 C8—C12—C11 106.5 (7)
C3—C2—H2 114.6 C8—C12—Fe1 69.6 (4)
C4—C3—C2 131.5 (7) C11—C12—Fe1 68.1 (4)
C4—C3—C7 106.8 (6) C8—C12—H12 126.8
C2—C3—C7 121.7 (6) C11—C12—H12 126.7
C4—C3—Fe1 69.2 (4) Fe1—C12—H12 126.7
C2—C3—Fe1 126.2 (5) C11—Fe1—C9 68.6 (3)
C7—C3—Fe1 69.0 (4) C11—Fe1—C4 162.8 (3)
C5—C4—C3 108.1 (6) C9—Fe1—C4 120.2 (3)
C5—C4—Fe1 70.0 (4) C11—Fe1—C10 40.6 (3)
C3—C4—Fe1 69.9 (4) C9—Fe1—C10 40.5 (3)
C5—C4—H4 125.9 C4—Fe1—C10 155.2 (3)
C3—C4—H4 126 C11—Fe1—C7 119.6 (3)
Fe1—C4—H4 126 C9—Fe1—C7 126.3 (3)
C6—C5—C4 108.5 (6) C4—Fe1—C7 68.8 (3)
C6—C5—Fe1 70.1 (4) C10—Fe1—C7 108.1 (3)
C4—C5—Fe1 69.4 (4) C11—Fe1—C8 68.5 (3)
C6—C5—H5 125.7 C9—Fe1—C8 40.5 (3)
C4—C5—H5 125.7 C4—Fe1—C8 107.7 (3)
Fe1—C5—H5 125.7 C10—Fe1—C8 67.9 (3)
C5—C6—C7 108.1 (6) C7—Fe1—C8 163.6 (3)
C5—C6—Fe1 69.5 (4) C11—Fe1—C12 42.0 (3)
C7—C6—Fe1 69.3 (4) C9—Fe1—C12 68.3 (3)
C5—C6—H6 126 C4—Fe1—C12 124.4 (3)
C7—C6—H6 126 C10—Fe1—C12 68.9 (3)
Fe1—C6—H6 126 C7—Fe1—C12 155.4 (3)
C6—C7—C3 108.5 (6) C8—Fe1—C12 39.8 (3)
C6—C7—Fe1 70.5 (4) C11—Fe1—C5 125.7 (3)
C3—C7—Fe1 69.8 (4) C9—Fe1—C5 155.0 (3)
C6—C7—H7 125.8 C4—Fe1—C5 40.6 (3)
C3—C7—H7 125.8 C10—Fe1—C5 163.0 (3)
Fe1—C7—H7 125.8 C7—Fe1—C5 68.0 (3)
C12—C8—C9 109.8 (7) C8—Fe1—C5 120.4 (3)
C12—C8—Fe1 70.6 (4) C12—Fe1—C5 107.3 (3)
C9—C8—Fe1 69.5 (4) C11—Fe1—C3 154.8 (3)
C12—C8—H8 125.1 C9—Fe1—C3 107.6 (3)
C9—C8—H8 125.1 C4—Fe1—C3 40.9 (3)
Fe1—C8—H8 125.1 C10—Fe1—C3 120.4 (3)
C8—C9—C10 108.0 (7) C7—Fe1—C3 41.2 (3)
C8—C9—Fe1 70.0 (4) C8—Fe1—C3 125.8 (3)
C10—C9—Fe1 70.2 (4) C12—Fe1—C3 161.7 (3)
C8—C9—H9 126 C5—Fe1—C3 68.4 (3)
C10—C9—H9 126 C11—Fe1—C6 107.6 (3)
Fe1—C9—H9 126 C9—Fe1—C6 163.2 (3)
C9—C10—C11 108.3 (7) C4—Fe1—C6 68.3 (3)
C9—C10—Fe1 69.3 (4) C10—Fe1—C6 126.1 (3)
C11—C10—Fe1 69.2 (4) C7—Fe1—C6 40.2 (3)
C9—C10—H10 125.8 C8—Fe1—C6 154.9 (3)
C11—C10—H10 125.8 C12—Fe1—C6 120.5 (3)
Fe1—C10—H10 125.8 C5—Fe1—C6 40.4 (3)
C10—C11—C12 107.4 (6) C3—Fe1—C6 68.5 (3)
C10—C11—Fe1 70.2 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2181).

References

  1. Bruker (1999). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2001). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Clément, S., Guyard, L., Knorr, M., Dilsky, S., Strohmann, C. & Arroyo, M. (2007b). J. Organomet. Chem.692, 839–850.
  4. Clément, S., Guyard, L., Knorr, M., Villafañe, F., Strohmann, C. & Kubicki, M. M. (2007a). Eur. J. Inorg. Chem. pp. 5052–5061.
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Luo, S.-J., Liu, Y.-H., Liu, C.-M., Liang, Y.-M. & Ma, Y.-X. (2000). Synth. Commun.30, 1569–1572.
  7. McAdam, C. J., Robinson, B. H. & Simpson, J. (2008). Inorg. Chim. Acta, 361, 2172–2175.
  8. Naskar, D., Das, S. K., Giribabu, L., Maiya, B. G. & Roy, S. (2000). Organometallics, 19, 1464–1469.
  9. Schloegl, K. & Egger, H. (1963). Monatsh. Chem.94, 376-392.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809006102/zl2181sup1.cif

e-65-0m334-sup1.cif (16KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809006102/zl2181Isup2.hkl

e-65-0m334-Isup2.hkl (93.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES