Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Feb 21;65(Pt 3):o564–o565. doi: 10.1107/S1600536809005029

5-Acetyl-4-(4-chloro­phen­yl)-6-methyl-3,4-dihydro­pyrimidine-2(1H)-thione

N Anuradha a, A Thiruvalluvar a,*, K Pandiarajan b, S Chitra b, R J Butcher c
PMCID: PMC2968427  PMID: 21582221

Abstract

In the title mol­ecule, C13H13ClN2OS, the heterocyclic ring adopts a flattened boat conformation, and the plane through the four coplanar atoms makes a dihedral angle of 87.92 (10)° with the benzene ring. The thione, acetyl and methyl groups have equatorial orientations with respect to the attached heterocyclic ring. The chloro­phenyl group has an axial orientation. Inter­molecular N—H⋯O, N—H⋯S and C—H⋯O hydrogen bonds are found in the crystal structure.

Related literature

For dihydro­pyrimidin-2(1H)-ones as anti-oxidant agents, see: Stefani et al. (2006), and for their biological activity, see: Patil et al. (1995). For dihydro­pyrimidinones as calcium channel blockers, see: Rovnyak et al. (1995); Atwal et al. (1990) and as anti­hypertensive agents, see: Atwal et al. (1991); Grover et al. (1995). For the biological activity of marine alkaloids possessing a dihydro­pyrimidine-5-carboxyl­ate core, see: Patil et al. (1995). For the biological activity of dihydropyrimidin-2(1H)-thiones, see: Kappe (1993).graphic file with name e-65-0o564-scheme1.jpg

Experimental

Crystal data

  • C13H13ClN2OS

  • M r = 280.77

  • Triclinic, Inline graphic

  • a = 7.2389 (6) Å

  • b = 8.2304 (7) Å

  • c = 12.9038 (11) Å

  • α = 73.366 (7)°

  • β = 89.373 (7)°

  • γ = 72.613 (7)°

  • V = 700.62 (11) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 3.72 mm−1

  • T = 295 K

  • 0.42 × 0.25 × 0.22 mm

Data collection

  • Oxford Diffraction Gemini R diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) T min = 0.182, T max = 1.000 (expected range = 0.080–0.441)

  • 6666 measured reflections

  • 2878 independent reflections

  • 2105 reflections with I > 2σ(I)

  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.071

  • wR(F 2) = 0.202

  • S = 1.03

  • 2878 reflections

  • 173 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809005029/hg2476sup1.cif

e-65-0o564-sup1.cif (20.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809005029/hg2476Isup2.hkl

e-65-0o564-Isup2.hkl (138.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O15i 0.83 (4) 2.06 (4) 2.882 (3) 175 (4)
N3—H3⋯S2ii 0.90 (4) 2.43 (4) 3.328 (3) 172 (3)
C61—H61B⋯O15i 0.96 2.58 3.405 (4) 144

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

AT thanks the UGC, India, for the award of a Minor Research Project [File No. MRP-2355/06(UGC-SERO), Link No. 2355, 10/01/2007]. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

supplementary crystallographic information

Comment

Dihydropyrimidin-2(1H)-ones are pharmacologically acitive as antioxidant agents (Stefani et al., 2006). In recent years, much research has been focused on the synthesis of dihydropyrimidinones, which are important compounds due to their therapeutic and pharmacological properties. For example, they can serve as the integral of several calcium channel blockers (Rovnyak et al., 1995; Atwal et al., 1990), antihypertensive agents (Atwal et al., 1991; Grover et al., 1995). Recently, some marine alkaloids possessing dihydropyrimidine-5-carboxylate core have been shown to exhibit interesting biological activities such as potent HIV-gp-120-CD4 inhibitors as well as anti-HIV agents (Patil et al., 1995). Dihydropyrimidin-2(1H)-thiones are also of much interest with regard to biological activity (Kappe, 1993).

In the title molecule, C13H13ClN2OS, Fig.1., the heterocyclic ring adopts a flattened boat conformation, and the plane through the four coplanar atoms(C2,N3,C5 and C6) makes a dihedral angle of 87.92 (10)° with the benzene ring. The thione, acetyl and methyl groups have equatorial orientation, with the attached heterocyclic ring. The chlorophenyl group has an axial orientation. N1—H1···O15(1 + x, y, z), N3—H3···S2(2 - x, 1 - y, 1 - z) and C61—H61B···O15(1 + x, y, z) intermolecular hydrogen bonds are found in the crystal structure(Fig.2., Table 1).

Experimental

A solution of acetylacetone (1.0012 g, 0.01 mol), 4-chlorobenzaldehyde (1.40 g, 0.01 mol) and thiourea (1.14 g, 0.015 mol) was heated under reflux in the presence of calcium fluoride (0.07 g, 0.001 mol) for 2 h (monitored by TLC). After, completion of the reaction, the reaction mixture was cooled to room temperature and poured into crushed ice. The solid product was filtered under suction and purified by recrystallization from hot methanol to gave the product in the pure form. Yield 1.02 g (90%).

Refinement

H1 at N1 and H3 at N3 atoms were located in a difference Fourier map and refined isotropically. Remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 - 0.98 Å and Uiso(H) = 1.2 - 1.5 times Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

The packing of the title compound, viewed down the a axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.

Crystal data

C13H13ClN2OS Z = 2
Mr = 280.77 F(000) = 292
Triclinic, P1 Dx = 1.331 Mg m3
Hall symbol: -P 1 Melting point: 529.5 K
a = 7.2389 (6) Å Cu Kα radiation, λ = 1.54184 Å
b = 8.2304 (7) Å Cell parameters from 2326 reflections
c = 12.9038 (11) Å θ = 5.9–77.2°
α = 73.366 (7)° µ = 3.72 mm1
β = 89.373 (7)° T = 295 K
γ = 72.613 (7)° Prism, colourless
V = 700.62 (11) Å3 0.42 × 0.25 × 0.22 mm

Data collection

Oxford Diffraction Gemini R diffractometer 2878 independent reflections
Radiation source: fine-focus sealed tube 2105 reflections with I > 2σ(I)
graphite Rint = 0.036
Detector resolution: 10.5081 pixels mm-1 θmax = 77.4°, θmin = 5.9°
φ and ω scans h = −9→5
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) k = −10→9
Tmin = 0.182, Tmax = 1.000 l = −16→16
6666 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.202 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.1275P)2 + 0.1258P] where P = (Fo2 + 2Fc2)/3
2878 reflections (Δ/σ)max = 0.001
173 parameters Δρmax = 0.53 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.5516 (3) 0.8292 (2) −0.08141 (12) 0.1388 (8)
S2 1.30462 (11) 0.38375 (11) 0.46485 (8) 0.0548 (3)
O15 0.6554 (3) 0.0586 (3) 0.3317 (3) 0.0656 (9)
N1 1.2495 (3) 0.1540 (3) 0.3701 (2) 0.0469 (8)
N3 0.9758 (3) 0.3326 (3) 0.4163 (2) 0.0449 (8)
C2 1.1665 (4) 0.2871 (4) 0.4144 (3) 0.0429 (8)
C4 0.8486 (4) 0.2810 (4) 0.3534 (3) 0.0418 (8)
C5 0.9546 (4) 0.1023 (4) 0.3372 (3) 0.0410 (8)
C6 1.1509 (4) 0.0490 (4) 0.3417 (2) 0.0410 (8)
C15 0.8251 (4) 0.0061 (4) 0.3157 (3) 0.0467 (9)
C16 0.8904 (5) −0.1503 (5) 0.2717 (4) 0.0669 (13)
C41 0.7733 (5) 0.4234 (4) 0.2449 (3) 0.0486 (9)
C42 0.8999 (6) 0.4851 (5) 0.1744 (3) 0.0681 (12)
C43 0.8321 (8) 0.6118 (6) 0.0741 (4) 0.0832 (16)
C44 0.6360 (9) 0.6762 (6) 0.0464 (4) 0.0843 (16)
C45 0.5095 (8) 0.6201 (7) 0.1132 (5) 0.0967 (19)
C46 0.5777 (6) 0.4951 (6) 0.2145 (4) 0.0738 (16)
C61 1.2863 (4) −0.1154 (4) 0.3226 (3) 0.0563 (12)
H1 1.367 (5) 0.131 (4) 0.361 (3) 0.040 (8)*
H3 0.910 (5) 0.415 (5) 0.448 (3) 0.058 (10)*
H4 0.73685 0.26846 0.39490 0.0500*
H16A 0.78061 −0.18685 0.25915 0.1003*
H16B 0.98424 −0.24715 0.32324 0.1003*
H16C 0.94799 −0.11707 0.20472 0.1003*
H42 1.03260 0.44097 0.19439 0.0819*
H43 0.91806 0.65179 0.02692 0.0998*
H45 0.37713 0.66430 0.09217 0.1159*
H46 0.48960 0.45990 0.26195 0.0886*
H61A 1.25700 −0.21851 0.36724 0.0843*
H61B 1.41785 −0.12402 0.34080 0.0843*
H61C 1.27086 −0.10909 0.24764 0.0843*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.2014 (19) 0.0993 (10) 0.0671 (8) −0.0081 (12) −0.0255 (10) 0.0105 (7)
S2 0.0423 (4) 0.0610 (5) 0.0724 (6) −0.0201 (3) 0.0039 (3) −0.0325 (4)
O15 0.0355 (11) 0.0666 (14) 0.105 (2) −0.0201 (10) 0.0099 (12) −0.0365 (14)
N1 0.0286 (11) 0.0521 (14) 0.0644 (17) −0.0132 (10) 0.0056 (10) −0.0232 (12)
N3 0.0377 (12) 0.0493 (13) 0.0526 (15) −0.0123 (10) 0.0049 (10) −0.0238 (12)
C2 0.0392 (14) 0.0462 (14) 0.0448 (16) −0.0147 (12) 0.0011 (12) −0.0141 (12)
C4 0.0353 (13) 0.0450 (14) 0.0465 (16) −0.0120 (11) 0.0055 (11) −0.0164 (12)
C5 0.0373 (13) 0.0388 (13) 0.0467 (16) −0.0110 (10) 0.0029 (11) −0.0133 (12)
C6 0.0368 (13) 0.0406 (13) 0.0465 (16) −0.0135 (11) 0.0033 (11) −0.0126 (11)
C15 0.0375 (14) 0.0459 (15) 0.0549 (18) −0.0152 (12) −0.0018 (12) −0.0094 (13)
C16 0.0512 (18) 0.064 (2) 0.098 (3) −0.0223 (16) 0.0000 (19) −0.038 (2)
C41 0.0530 (16) 0.0433 (15) 0.0510 (18) −0.0114 (12) 0.0036 (14) −0.0200 (13)
C42 0.065 (2) 0.067 (2) 0.063 (2) −0.0151 (18) 0.0140 (18) −0.0108 (18)
C43 0.114 (4) 0.070 (2) 0.059 (2) −0.027 (3) 0.019 (2) −0.011 (2)
C44 0.120 (4) 0.059 (2) 0.054 (2) −0.006 (2) −0.010 (2) −0.0086 (18)
C45 0.081 (3) 0.095 (4) 0.082 (3) 0.000 (3) −0.025 (3) −0.005 (3)
C46 0.055 (2) 0.078 (3) 0.069 (3) −0.0081 (18) −0.0066 (18) −0.005 (2)
C61 0.0390 (15) 0.0486 (16) 0.085 (3) −0.0129 (12) 0.0042 (15) −0.0259 (16)

Geometric parameters (Å, °)

Cl1—C44 1.747 (5) C41—C42 1.386 (6)
S2—C2 1.686 (3) C42—C43 1.392 (6)
O15—C15 1.211 (4) C43—C44 1.370 (9)
N1—C2 1.359 (4) C44—C45 1.343 (9)
N1—C6 1.395 (4) C45—C46 1.397 (8)
N3—C2 1.320 (4) C4—H4 0.9800
N3—C4 1.461 (4) C16—H16A 0.9600
N1—H1 0.83 (4) C16—H16B 0.9600
N3—H3 0.90 (4) C16—H16C 0.9600
C4—C41 1.525 (5) C42—H42 0.9300
C4—C5 1.515 (5) C43—H43 0.9300
C5—C6 1.353 (4) C45—H45 0.9300
C5—C15 1.469 (4) C46—H46 0.9300
C6—C61 1.498 (5) C61—H61A 0.9600
C15—C16 1.501 (5) C61—H61B 0.9600
C41—C46 1.374 (6) C61—H61C 0.9600
Cl1···O15i 3.332 (4) C16···H61C 2.8800
S2···N3ii 3.328 (3) C16···H61A 2.7700
S2···H46iii 2.9200 C42···H16Aiv 3.0800
S2···H61Aiv 3.0700 C43···H43viii 2.9800
S2···H4iii 3.1900 C61···H16B 2.7100
S2···H3ii 2.43 (4) C61···H16C 2.9000
S2···H61Bv 3.0600 H1···O15iii 2.06 (4)
O15···N1vi 2.882 (3) H1···H61B 2.1100
O15···C41 3.253 (4) H3···S2ii 2.43 (4)
O15···C46 3.348 (6) H4···S2vi 3.1900
O15···C61vi 3.405 (4) H4···O15 2.3300
O15···Cl1i 3.332 (4) H4···H46 2.3400
O15···H4 2.3300 H16A···C42vii 3.0800
O15···H61Bvi 2.5800 H16B···C6 3.0900
O15···H1vi 2.06 (4) H16B···C61 2.7100
N1···O15iii 2.882 (3) H16B···H61A 2.1600
N3···S2ii 3.328 (3) H16C···C61 2.9000
N1···H42 2.8200 H16C···H61C 2.4300
N3···H42 2.8100 H42···N1 2.8200
C2···C42 3.366 (5) H42···N3 2.8100
C6···C42 3.549 (5) H42···C2 2.8100
C16···C61 3.061 (5) H42···C5 3.0800
C16···C42vii 3.552 (6) H43···C43viii 2.9800
C41···O15 3.253 (4) H46···S2vi 2.9200
C42···C6 3.549 (5) H46···H4 2.3400
C42···C2 3.366 (5) H61A···S2vii 3.0700
C42···C16iv 3.552 (6) H61A···C15 3.0900
C43···C43viii 3.492 (7) H61A···C16 2.7700
C46···O15 3.348 (6) H61A···H16B 2.1600
C61···C16 3.061 (5) H61B···O15iii 2.5800
C61···O15iii 3.405 (4) H61B···H1 2.1100
C2···H42 2.8100 H61B···S2v 3.0600
C5···H42 3.0800 H61C···C16 2.8800
C6···H16B 3.0900 H61C···H16C 2.4300
C15···H61A 3.0900
C2—N1—C6 124.2 (2) C43—C44—C45 121.7 (5)
C2—N3—C4 124.3 (3) Cl1—C44—C45 119.8 (5)
C2—N1—H1 118 (2) C44—C45—C46 119.7 (5)
C6—N1—H1 118 (2) C41—C46—C45 120.8 (4)
C2—N3—H3 122 (2) N3—C4—H4 108.00
C4—N3—H3 113 (2) C5—C4—H4 108.00
S2—C2—N3 123.2 (3) C41—C4—H4 108.00
N1—C2—N3 116.3 (3) C15—C16—H16A 109.00
S2—C2—N1 120.5 (2) C15—C16—H16B 109.00
N3—C4—C5 110.0 (3) C15—C16—H16C 110.00
N3—C4—C41 111.2 (3) H16A—C16—H16B 109.00
C5—C4—C41 111.1 (3) H16A—C16—H16C 110.00
C4—C5—C15 113.8 (3) H16B—C16—H16C 110.00
C6—C5—C15 127.1 (3) C41—C42—H42 119.00
C4—C5—C6 119.1 (3) C43—C42—H42 119.00
N1—C6—C5 118.6 (3) C42—C43—H43 121.00
N1—C6—C61 112.4 (3) C44—C43—H43 121.00
C5—C6—C61 129.0 (3) C44—C45—H45 120.00
C5—C15—C16 123.5 (3) C46—C45—H45 120.00
O15—C15—C5 118.3 (3) C41—C46—H46 120.00
O15—C15—C16 118.2 (3) C45—C46—H46 120.00
C4—C41—C46 120.9 (3) C6—C61—H61A 109.00
C42—C41—C46 118.0 (4) C6—C61—H61B 109.00
C4—C41—C42 121.1 (3) C6—C61—H61C 109.00
C41—C42—C43 121.2 (4) H61A—C61—H61B 109.00
C42—C43—C44 118.5 (5) H61A—C61—H61C 109.00
Cl1—C44—C43 118.5 (4) H61B—C61—H61C 109.00
C6—N1—C2—S2 169.9 (2) C4—C5—C6—C61 −176.4 (3)
C6—N1—C2—N3 −9.4 (5) C15—C5—C6—N1 −176.0 (3)
C2—N1—C6—C5 13.7 (4) C15—C5—C6—C61 2.4 (6)
C2—N1—C6—C61 −164.9 (3) C4—C5—C15—O15 −12.9 (5)
C4—N3—C2—S2 166.0 (3) C4—C5—C15—C16 165.2 (4)
C4—N3—C2—N1 −14.8 (5) C6—C5—C15—O15 168.3 (4)
C2—N3—C4—C5 30.5 (4) C6—C5—C15—C16 −13.7 (6)
C2—N3—C4—C41 −93.1 (4) C4—C41—C42—C43 178.4 (4)
N3—C4—C5—C6 −24.4 (4) C46—C41—C42—C43 −2.0 (6)
N3—C4—C5—C15 156.7 (3) C4—C41—C46—C45 −177.3 (4)
C41—C4—C5—C6 99.1 (4) C42—C41—C46—C45 3.1 (7)
C41—C4—C5—C15 −79.8 (4) C41—C42—C43—C44 0.6 (7)
N3—C4—C41—C42 53.6 (4) C42—C43—C44—Cl1 −177.8 (4)
N3—C4—C41—C46 −126.0 (4) C42—C43—C44—C45 −0.1 (8)
C5—C4—C41—C42 −69.3 (4) Cl1—C44—C45—C46 178.7 (4)
C5—C4—C41—C46 111.1 (4) C43—C44—C45—C46 1.1 (8)
C4—C5—C6—N1 5.3 (5) C44—C45—C46—C41 −2.7 (8)

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+2, −y+1, −z+1; (iii) x+1, y, z; (iv) x, y+1, z; (v) −x+3, −y, −z+1; (vi) x−1, y, z; (vii) x, y−1, z; (viii) −x+2, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O15iii 0.83 (4) 2.06 (4) 2.882 (3) 175 (4)
N3—H3···S2ii 0.90 (4) 2.43 (4) 3.328 (3) 172 (3)
C61—H61B···O15iii 0.96 2.58 3.405 (4) 144

Symmetry codes: (iii) x+1, y, z; (ii) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2476).

References

  1. Atwal, K. S., Rovnyak, G. C., Kimball, S. D., Floyd, D. M., Moreland, S., Swanson, B. N., Gougoutas, J. Z., Schwartz, J., Smillie, K. M. & Malley, M. F. (1990). J. Med. Chem.33, 2629–2635. [DOI] [PubMed]
  2. Atwal, K. S., Swanson, B. N., Unger, S. E., Floyd, D. M., Moreland, S., Hedberg, A. & O’Reilly, B. C. (1991). J. Med. Chem.34, 806–811. [DOI] [PubMed]
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Grover, G. J., Dzwonczyk, S., McMullen, D. M., Normadinam, C. S., Sleph, P. G. & Moreland, S. J. (1995). J. Cardiovasc. Pharm.26, 289–294. [DOI] [PubMed]
  5. Kappe, C. O. (1993). Tetrahedron, 49, 6937–6963.
  6. Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  7. Patil, A. D., Kumar, N. V., Kokke, W. C., Bean, M. F., Freyer, A. J., De Brosse, C., Mai, S., Truneh, A., Faulkner, D. J., Carte, B., Breen, A. L., Hertzberg, R. P., Johnson, R. K., Westley, J. W. & Potts, B. C. M. (1995). J. Org. Chem.60, 1182–1188.
  8. Rovnyak, G. C., Kimball, S. D., Beyer, B., Cucinotta, G., Dimarco, J. D., Gougoutas, J. Z., Hedberg, A., Malley, M., McCarthy, J. P., Zhang, R. & Moreland, S. (1995). J. Med. Chem.38, 119–129. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Stefani, H. A., Oliveira, C. B., Almeida, R. B., Pereira, C. M. P., Braga, R. C., Cella, R., Borges, V. C., Savegnago, L. & Nogueira, C. W. (2006). Eur. J. Med. Chem.41, 513–518. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809005029/hg2476sup1.cif

e-65-0o564-sup1.cif (20.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809005029/hg2476Isup2.hkl

e-65-0o564-Isup2.hkl (138.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES