Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Feb 21;65(Pt 3):o575. doi: 10.1107/S160053680900556X

2-Hydr­oxy-N′-(4-isopropyl­cyclo­hexyl­carbon­yl)-3-methyl­benzohydrazide

Tian-Pin Shu a, Jun-Long Wen a, Su-Zhen Chen a, Ke-Wei Lei a,*
PMCID: PMC2968433  PMID: 21582230

Abstract

The crystal structure of the title compound, C18H26N2O3, is stabilized by inter­molecular N—H⋯O and O—H⋯O hydrogen bonds. One of the methyl groups is disordered with occupancies of 0.51 (3):0.49 (3).

Related literature

For the properties of metallocrowns, see: Alexiou et al. (2002); Gaynor et al. (2002); Lah & Pecoraro (1989); Lehaire et al. (2002); Liu et al. (2001, 2008); Saalfrank et al. (2001).graphic file with name e-65-0o575-scheme1.jpg

Experimental

Crystal data

  • C18H26N2O3

  • M r = 318.41

  • Monoclinic, Inline graphic

  • a = 16.193 (5) Å

  • b = 16.194 (5) Å

  • c = 6.856 (2) Å

  • β = 97.892 (4)°

  • V = 1780.8 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.43 × 0.26 × 0.22 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: none T min = 0.970, T max = 0.983

  • 8728 measured reflections

  • 6453 independent reflections

  • 3925 reflections with I > 2σ(I)

  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.080

  • wR(F 2) = 0.211

  • S = 1.05

  • 6453 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.60 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680900556X/jh2073sup1.cif

e-65-0o575-sup1.cif (20.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680900556X/jh2073Isup2.hkl

e-65-0o575-Isup2.hkl (111KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.86 2.05 2.821 (4) 149
O1—H1B⋯O3 0.82 1.92 2.636 (4) 145
N2—H2A⋯O3ii 0.86 2.10 2.898 (4) 154

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This project was sponsored by the K. C. Wong Magna Fund of Ningbo University and Ningbo Munic­ipal Natural Science Foundation (2008 A610051)

supplementary crystallographic information

Comment

Metallacrowns are important compounds. Because of their potentially unique properties (Alexiou et al., 2002; Gaynor et al., 2002; Lah & Pecoraro, 1989; Lehaire et al., 2002; Liu et al., 2001; Saalfrank et al., 2001), they have gained increasing attention over the past decade. These compounds can be readily assembled using a trianionic pentadentate ligand,N-acylsalicylhydrazide,having a trivalent octahedral metal ion. The size of the metallacrown can be controlled by modifying the close-contact interaction between the N-acyl residues of the ligands (Liu et al., 2008). We now report structure of a designed pentadentate ligand, N-4-isoPropylcyclohexyl-3-methyl-salicylhydrazide.

A view of the title structure is illustrated in Fig.1. Because of C1 splited into C1 and C1', It made the Ueq of neighbor atoms lower or larger than usual Ueq. The molecular conformation is characterized by N—H···O hydrogen bonds and the crystal packing is stabilized by N—H···O and O—H···O hydrogen bonds(Fig.2).

Experimental

Trimethylaceto chloride (6.025 g, 50.0 mmol) was added to 50 ml chloroform solution of 4-isoPropylcyclohexyl acid with an external ice-water bath and triethylamine(5.200 g, 50.0 mmol). stirred for about 30 min slowly warmed to ambient temperature. To the above solution, 3-methyl-salicylhydrazide (7.636 g, 46.0 mmol)was added and stirred for 30 min. A white suspension began to appear after a while.the resulting white precipitate was filtered and rinsed with chloroform and diethyl ether. The title compound was recrystallized from methanol solution.

Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms (C—H = 0.93%A; N—H = 0.86 Å; O—H = 0.82 Å) and Uiso(H) values weren taken to be equal to 1.2 Ueq(C, N) and 1.5Ueq(O). The C1 atom is disordered. Due to C12 is bonded to C3, which is not disordered. It has a smaller Ueq than other atoms, and thus has less freedom of movement. The larger than normal range of thermal motion is mostly due to the difference between the disordered group and the other atoms which are not disordered. The splited atom was dealed in the .ins file. the C1 atom is splited into C1 and C1', each of which has a half share. Then refinement, anisotropic refinement to convergence use the least-squares method.

Figures

Fig. 1.

Fig. 1.

The structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. [symmetry code: (i) –X, 0.5+Y, 0.5-Z].

Fig. 2.

Fig. 2.

Packing diagram of (I). hydrogen bonds are shown as dashed lines.

Crystal data

C18H26N2O3 F(000) = 688
Mr = 318.41 Dx = 1.188 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5099 reflections
a = 16.193 (5) Å θ = 2.5–26.2°
b = 16.194 (5) Å µ = 0.08 mm1
c = 6.856 (2) Å T = 296 K
β = 97.892 (4)° Block, colourless
V = 1780.8 (9) Å3 0.43 × 0.26 × 0.22 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer 3925 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.025
graphite θmax = 32.5°, θmin = 1.8°
φ and ω scans h = −16→24
8728 measured reflections k = −17→24
6453 independent reflections l = −7→10

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.080 H-atom parameters constrained
wR(F2) = 0.211 w = 1/[σ2(Fo2) + (0.0912P)2 + 2.6628P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.001
6453 reflections Δρmax = 0.40 e Å3
217 parameters Δρmin = −0.60 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.016 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.26649 (17) 0.4109 (2) 0.1034 (4) 0.0739 (9)
H1B 0.2257 0.4290 0.1481 0.111*
O2 −0.02604 (18) 0.29519 (17) 0.2523 (4) 0.0721 (9)
O3 0.10747 (16) 0.44725 (15) 0.0967 (4) 0.0527 (7)
N1 0.01874 (18) 0.36122 (18) −0.0854 (5) 0.0512 (9)
H1A 0.0117 0.3227 −0.1724 0.061*
N2 −0.04755 (18) 0.38761 (18) 0.0058 (5) 0.0513 (8)
H2A −0.0782 0.4274 −0.0462 0.062*
C1 −0.458 (2) 0.3768 (18) 0.388 (6) 0.056 (4) 0.49 (3)
H1C −0.4868 0.4194 0.3090 0.084* 0.49 (3)
H1D −0.4921 0.3564 0.4804 0.084* 0.49 (3)
H1E −0.4444 0.3325 0.3043 0.084* 0.49 (3)
C1' −0.454 (2) 0.3490 (17) 0.412 (6) 0.056 (4) 0.51 (3)
H1'A −0.5058 0.3693 0.4471 0.084* 0.51 (3)
H1'B −0.4431 0.2950 0.4669 0.084* 0.51 (3)
H1'C −0.4580 0.3460 0.2709 0.084* 0.51 (3)
C2 0.3959 (3) 0.3661 (4) −0.0978 (10) 0.106 (2)
H2B 0.4317 0.3483 −0.1904 0.159*
H2C 0.4051 0.3319 0.0176 0.159*
H2D 0.4082 0.4225 −0.0618 0.159*
C3 −0.3787 (3) 0.4114 (4) 0.4969 (7) 0.0834 (15)
H3A −0.3790 0.4699 0.4600 0.100*
C4 −0.2983 (3) 0.3734 (3) 0.2158 (6) 0.0757 (14)
H4A −0.3073 0.4287 0.1626 0.091*
H4B −0.3448 0.3394 0.1591 0.091*
C5 −0.3791 (4) 0.4114 (5) 0.7111 (8) 0.119 (2)
H5A −0.4301 0.4355 0.7407 0.179*
H5B −0.3326 0.4430 0.7733 0.179*
H5C −0.3748 0.3556 0.7591 0.179*
C6 −0.2185 (2) 0.3391 (3) 0.1563 (6) 0.0697 (12)
H6A −0.2224 0.3394 0.0138 0.084*
H6B −0.2116 0.2824 0.2005 0.084*
C7 0.2006 (3) 0.3240 (3) −0.4629 (6) 0.0659 (12)
H7A 0.1872 0.3061 −0.5923 0.079*
C8 0.2827 (3) 0.3312 (3) −0.3797 (7) 0.0722 (13)
H8A 0.3242 0.3168 −0.4546 0.087*
C9 −0.2194 (3) 0.4244 (3) 0.5271 (6) 0.0668 (12)
H9A −0.2261 0.4820 0.4885 0.080*
H9B −0.2155 0.4219 0.6694 0.080*
C10 0.3056 (3) 0.3589 (3) −0.1909 (7) 0.0667 (12)
C11 −0.1385 (2) 0.3919 (3) 0.4654 (6) 0.0639 (11)
H11A −0.0927 0.4272 0.5202 0.077*
H11B −0.1278 0.3368 0.5182 0.077*
C12 −0.2964 (2) 0.3765 (3) 0.4368 (6) 0.0594 (11)
H12A −0.2903 0.3197 0.4858 0.071*
C13 0.1385 (3) 0.3435 (2) −0.3521 (5) 0.0519 (10)
H13A 0.0829 0.3375 −0.4057 0.062*
C14 −0.0656 (2) 0.3531 (2) 0.1735 (5) 0.0489 (9)
C15 0.2426 (2) 0.3815 (2) −0.0817 (6) 0.0525 (10)
C16 −0.1424 (2) 0.3893 (2) 0.2434 (5) 0.0491 (9)
H16A −0.1494 0.4459 0.1934 0.059*
C17 0.1590 (2) 0.3722 (2) −0.1597 (5) 0.0438 (9)
C18 0.0941 (2) 0.3959 (2) −0.0379 (5) 0.0432 (9)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0567 (17) 0.097 (2) 0.0653 (19) −0.0119 (16) 0.0002 (14) −0.0117 (16)
O2 0.078 (2) 0.0557 (17) 0.084 (2) 0.0235 (15) 0.0142 (16) 0.0192 (15)
O3 0.0640 (16) 0.0435 (14) 0.0507 (15) −0.0001 (12) 0.0089 (12) −0.0073 (12)
N1 0.0474 (18) 0.0430 (17) 0.065 (2) −0.0004 (14) 0.0150 (15) −0.0112 (14)
N2 0.0483 (18) 0.0446 (17) 0.063 (2) 0.0103 (14) 0.0156 (15) 0.0052 (15)
C1 0.052 (4) 0.062 (15) 0.054 (8) 0.001 (11) 0.007 (5) −0.002 (10)
C1' 0.052 (4) 0.062 (15) 0.054 (8) 0.001 (11) 0.007 (5) −0.002 (10)
C2 0.049 (3) 0.133 (5) 0.137 (5) −0.003 (3) 0.021 (3) 0.000 (4)
C3 0.066 (3) 0.111 (4) 0.078 (3) 0.003 (3) 0.026 (2) −0.003 (3)
C4 0.052 (2) 0.114 (4) 0.060 (3) 0.003 (2) 0.005 (2) −0.012 (2)
C5 0.089 (4) 0.182 (7) 0.091 (4) −0.019 (4) 0.029 (3) −0.020 (4)
C6 0.055 (2) 0.094 (3) 0.060 (2) −0.002 (2) 0.0059 (19) −0.022 (2)
C7 0.091 (3) 0.052 (2) 0.060 (2) −0.007 (2) 0.028 (2) −0.0087 (19)
C8 0.077 (3) 0.061 (3) 0.087 (3) 0.001 (2) 0.041 (3) −0.007 (2)
C9 0.066 (3) 0.080 (3) 0.056 (2) −0.004 (2) 0.013 (2) −0.015 (2)
C10 0.052 (2) 0.064 (3) 0.087 (3) −0.0014 (19) 0.021 (2) 0.004 (2)
C11 0.055 (2) 0.079 (3) 0.057 (2) −0.007 (2) 0.0021 (19) −0.006 (2)
C12 0.059 (2) 0.062 (2) 0.058 (2) −0.0005 (19) 0.0116 (19) 0.0021 (19)
C13 0.062 (2) 0.042 (2) 0.052 (2) −0.0038 (17) 0.0107 (18) −0.0033 (16)
C14 0.050 (2) 0.039 (2) 0.058 (2) 0.0026 (17) 0.0056 (17) 0.0026 (17)
C15 0.051 (2) 0.049 (2) 0.058 (2) −0.0037 (17) 0.0101 (18) 0.0030 (17)
C16 0.052 (2) 0.043 (2) 0.053 (2) 0.0033 (16) 0.0103 (17) 0.0060 (16)
C17 0.049 (2) 0.0339 (18) 0.050 (2) −0.0022 (15) 0.0113 (16) 0.0022 (15)
C18 0.052 (2) 0.0313 (17) 0.046 (2) 0.0023 (15) 0.0077 (16) 0.0037 (16)

Geometric parameters (Å, °)

O1—C15 1.360 (5) C4—H4B 0.9700
O1—H1B 0.8200 C5—H5A 0.9600
O2—C14 1.220 (4) C5—H5B 0.9600
O3—C18 1.239 (4) C5—H5C 0.9600
N1—C18 1.342 (5) C6—C16 1.527 (6)
N1—N2 1.382 (4) C6—H6A 0.9700
N1—H1A 0.8600 C6—H6B 0.9700
N2—C14 1.346 (5) C7—C13 1.376 (6)
N2—H2A 0.8600 C7—C8 1.378 (7)
C1—C3 1.50 (4) C7—H7A 0.9300
C1—H1C 0.9600 C8—C10 1.372 (6)
C1—H1D 0.9600 C8—H8A 0.9300
C1—H1E 0.9600 C9—C11 1.525 (6)
C1'—C3 1.63 (4) C9—C12 1.526 (6)
C1'—H1'A 0.9600 C9—H9A 0.9700
C1'—H1'B 0.9600 C9—H9B 0.9700
C1'—H1'C 0.9600 C10—C15 1.394 (6)
C2—C10 1.518 (7) C11—C16 1.515 (5)
C2—H2B 0.9600 C11—H11A 0.9700
C2—H2C 0.9600 C11—H11B 0.9700
C2—H2D 0.9600 C12—H12A 0.9800
C3—C5 1.469 (7) C13—C17 1.395 (5)
C3—C12 1.554 (6) C13—H13A 0.9300
C3—H3A 0.9800 C14—C16 1.511 (5)
C4—C12 1.512 (6) C15—C17 1.395 (5)
C4—C6 1.514 (6) C16—H16A 0.9800
C4—H4A 0.9700 C17—C18 1.479 (5)
C15—O1—H1B 109.5 H6A—C6—H6B 107.9
C18—N1—N2 119.8 (3) C13—C7—C8 119.2 (4)
C18—N1—H1A 120.1 C13—C7—H7A 120.4
N2—N1—H1A 120.1 C8—C7—H7A 120.4
C14—N2—N1 122.1 (3) C10—C8—C7 122.6 (4)
C14—N2—H2A 118.9 C10—C8—H8A 118.7
N1—N2—H2A 118.9 C7—C8—H8A 118.7
C3—C1—H1C 109.5 C11—C9—C12 113.4 (3)
C3—C1—H1D 109.5 C11—C9—H9A 108.9
C3—C1—H1E 109.5 C12—C9—H9A 108.9
C3—C1'—H1'A 109.5 C11—C9—H9B 108.9
C3—C1'—H1'B 109.5 C12—C9—H9B 108.9
H1'A—C1'—H1'B 109.5 H9A—C9—H9B 107.7
C3—C1'—H1'C 109.5 C8—C10—C15 118.0 (4)
H1'A—C1'—H1'C 109.5 C8—C10—C2 122.8 (4)
H1'B—C1'—H1'C 109.5 C15—C10—C2 119.2 (4)
C10—C2—H2B 109.5 C16—C11—C9 111.7 (3)
C10—C2—H2C 109.5 C16—C11—H11A 109.3
H2B—C2—H2C 109.5 C9—C11—H11A 109.3
C10—C2—H2D 109.5 C16—C11—H11B 109.3
H2B—C2—H2D 109.5 C9—C11—H11B 109.3
H2C—C2—H2D 109.5 H11A—C11—H11B 107.9
C5—C3—C1 112.2 (16) C4—C12—C9 109.0 (4)
C5—C3—C12 112.8 (4) C4—C12—C3 112.2 (4)
C1—C3—C12 115.8 (16) C9—C12—C3 112.9 (4)
C5—C3—C1' 104.6 (14) C4—C12—H12A 107.5
C1—C3—C1' 17.0 (13) C9—C12—H12A 107.5
C12—C3—C1' 107.9 (14) C3—C12—H12A 107.5
C5—C3—H3A 104.9 C7—C13—C17 120.1 (4)
C1—C3—H3A 104.9 C7—C13—H13A 119.9
C12—C3—H3A 104.9 C17—C13—H13A 119.9
C1'—C3—H3A 121.9 O2—C14—N2 122.3 (3)
C12—C4—C6 112.4 (4) O2—C14—C16 124.3 (3)
C12—C4—H4A 109.1 N2—C14—C16 113.3 (3)
C6—C4—H4A 109.1 O1—C15—C10 117.2 (4)
C12—C4—H4B 109.1 O1—C15—C17 122.1 (3)
C6—C4—H4B 109.1 C10—C15—C17 120.6 (4)
H4A—C4—H4B 107.8 C14—C16—C11 114.0 (3)
C3—C5—H5A 109.5 C14—C16—C6 108.9 (3)
C3—C5—H5B 109.5 C11—C16—C6 109.1 (3)
H5A—C5—H5B 109.5 C14—C16—H16A 108.2
C3—C5—H5C 109.5 C11—C16—H16A 108.2
H5A—C5—H5C 109.5 C6—C16—H16A 108.2
H5B—C5—H5C 109.5 C15—C17—C13 119.4 (3)
C4—C6—C16 111.9 (4) C15—C17—C18 118.9 (3)
C4—C6—H6A 109.2 C13—C17—C18 121.7 (3)
C16—C6—H6A 109.2 O3—C18—N1 121.5 (3)
C4—C6—H6B 109.2 O3—C18—C17 122.0 (3)
C16—C6—H6B 109.2 N1—C18—C17 116.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O2i 0.86 2.05 2.821 (4) 149
O1—H1B···O3 0.82 1.92 2.636 (4) 145
N2—H2A···O3ii 0.86 2.10 2.898 (4) 154

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2073).

References

  1. Alexiou, M., Dendrinou-Samara, C., Raptopoulou, C. P., Terzis, A. & Kessissoglou, D. P. (2002). Inorg. Chem.41, 4732–4738. [DOI] [PubMed]
  2. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Gaynor, D., Starikova, Z. A., Ostrovsky, S., Haase, W. & Nolan, K. B. (2002). Chem. Commun. pp. 506–507. [DOI] [PubMed]
  4. Lah, M. S. & Pecoraro, V. L. (1989). J. Am. Chem. Soc.111, 7258–7259.
  5. Lehaire, M. L., Scopelliti, R., Piotrowski, H. & Severin, K. (2002). Angew. Chem. Int. Ed.41, 1419–1421. [DOI] [PubMed]
  6. Liu, W., Lee, K., Park, M., John, R. P., Moon, D., Zou, Y., Liu, X., Ri, H.-C., Kim, G. H. & Lah, M. S. (2008). Inorg. Chem.47, 8807–8812. [DOI] [PubMed]
  7. Liu, S. X., Lin, S., Lin, B. Z., Lin, C. C. & Huang, J. Q. (2001). Angew. Chem. Int. Ed.40, 1084–1087.
  8. Saalfrank, R. W., Bernt, I., Chowdhry, M. M., Hampel, F. & Vaughan, G. B. M. (2001). Chem. Eur. J.7, 2765–2768. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680900556X/jh2073sup1.cif

e-65-0o575-sup1.cif (20.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680900556X/jh2073Isup2.hkl

e-65-0o575-Isup2.hkl (111KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES