Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Feb 25;65(Pt 3):o592. doi: 10.1107/S1600536809006060

Pyrrolidinium chloride

Helene Giglmeier a, Tobias Kerscher a, Peter Klüfers a,*, Peter Mayer a
PMCID: PMC2968435  PMID: 21582247

Abstract

The title compound, C4H10N+·Cl, was obtained as a decomposition product from 2,6-bis­(pyrrolidin­yl)pyridine. The anion lies on the same cristallographic mirror plane as the N atom of the cation, the complete cation being generated by mirror symmetry. The anions and cations are connected by N+—H⋯Cl hydrogen bonds into chains along [100]. The pyrrolidinium cation is puckered in an envelope conformation E N1.

Related literature

For details of the synthesis of 2,6-bis­(pyrrolidin­yl)pyridine, see: Folmer-Anderson et al. (2005). For related structures containing the pyrrolidinium cation, see: Kashino et al. (1978); Moritani et al. (1987); Jakubas et al. (2005). For a description of the E N1 conformation of the five-membered ring, see: Cremer & Pople (1975).graphic file with name e-65-0o592-scheme1.jpg

Experimental

Crystal data

  • C4H10N+·Cl

  • M r = 107.58

  • Orthorhombic, Inline graphic

  • a = 7.4429 (4) Å

  • b = 9.4104 (5) Å

  • c = 8.9021 (4) Å

  • V = 623.51 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.48 mm−1

  • T = 200 K

  • 0.22 × 0.13 × 0.12 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 4239 measured reflections

  • 756 independent reflections

  • 608 reflections with I > 2σ(I)

  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.120

  • S = 1.07

  • 756 reflections

  • 31 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: COLLECT (Nonius, 2004); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809006060/bi2348sup1.cif

e-65-0o592-sup1.cif (11.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809006060/bi2348Isup2.hkl

e-65-0o592-Isup2.hkl (37KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H101⋯Cl1 0.92 2.17 3.091 (3) 180
N1—H102⋯Cl1i 0.92 2.18 3.097 (2) 177

Symmetry code: (i) Inline graphic.

Acknowledgments

TK thanks the Hanns Seidel Stiftung for a personal grant funded by the German Bundesministerium für Bildung und Forschung.

supplementary crystallographic information

Comment

The title compound was obtained as a decomposition product. The organic salt is composed of the pyrrolidinium cation and a chloride anion (Fig. 1). The crystal packing is shown in Fig. 2. In the crystal, both H atoms bonded to N1 of the pyrrolidinium cation are involved in hydrogen bonds with chloride as acceptor. Both can be described according to graph set analysis with a D11(2) descriptor on the unitary level. This bonding pattern leads to chains along [1 0 0] which, starting from chloride, can be described according to graph set analysis with a C21(4) descriptor on the binary level. The hydrogen bonding pattern is shown in Fig. 3.

The Cs symmetric five-membered pyrrolidinium ring can be described according to Cremer & Pople (1975) by the puckering parameters q2 = 0.3061 Å and Φ2 = 180.0000. The closest pucker descriptor is an envelope EN1.

Experimental

The title compound was obtained as decomposition product of 2,6-bis(pyrrolidinyl)pyridine, which was synthesized according to Folmer-Anderson et al. (2005), after 4 months at room temperature.

Refinement

H atoms were placed in calculated positions (C—H = 0.99 Å, N—H = 0.92 Å) and were included in the refinement in the riding model approximation with Uiso(H) = 1.2 Ueq(C/N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the Cs symmetric title compound with anisotropic displacement ellipsoids drawn at 50% probability for non-H atoms. Symmetry code: (i) x, -y + 1/2, z.

Fig. 2.

Fig. 2.

Packing of the title compound, viewed along [0 1 0].

Fig. 3.

Fig. 3.

N—H···Cl hydrogen bonds lead to chain-like structures in the crystal structure along [1 0 0], shown here normal to [0 1 0]. Symmetry codes: (i) x + 1/2, -y + 1/2, -z + 1/2; (ii) x - 1/2, -y + 1/2, -z + 1/2; (iii) x - 1, y, z.

Crystal data

C4H10N+·Cl F(000) = 232
Mr = 107.58 Dx = 1.146 Mg m3
Orthorhombic, Pnma Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2n Cell parameters from 2321 reflections
a = 7.4429 (4) Å θ = 3.1–27.5°
b = 9.4104 (5) Å µ = 0.48 mm1
c = 8.9021 (4) Å T = 200 K
V = 623.51 (5) Å3 Block, colourless
Z = 4 0.22 × 0.13 × 0.12 mm

Data collection

Nonius KappaCCD diffractometer 608 reflections with I > 2σ(I)
Radiation source: rotating anode Rint = 0.037
MONTEL, graded multilayered X-ray optics θmax = 27.5°, θmin = 3.2°
φ and ω scans h = −8→9
4239 measured reflections k = −12→12
756 independent reflections l = −11→10

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0625P)2 + 0.1854P] where P = (Fo2 + 2Fc2)/3
756 reflections (Δ/σ)max < 0.001
31 parameters Δρmax = 0.21 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Refinement. Hydrogen atoms were placed in calculated positions (C–H 0.99 Å for methylene C atoms and N–H 0.92 Å for N atoms) and were included in the refinement in the riding model approximation with U(H) set to 1.2 Ueq(C) for C atoms and 1.2 Ueq(N) for N atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.2072 (3) 0.2500 0.3955 (3) 0.0473 (6)
H101 0.2341 0.2500 0.2946 0.057*
H102 0.0843 0.2500 0.4065 0.057*
C1 0.3204 (4) 0.1712 (3) 0.6283 (3) 0.0781 (8)
H11 0.2249 0.1348 0.6954 0.094*
H12 0.4376 0.1348 0.6641 0.094*
C2 0.2871 (3) 0.1242 (2) 0.4702 (3) 0.0623 (6)
H21 0.4009 0.0963 0.4208 0.075*
H22 0.2032 0.0427 0.4677 0.075*
Cl1 0.29515 (8) 0.2500 0.05610 (7) 0.0488 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0466 (12) 0.0500 (13) 0.0452 (12) 0.000 −0.0007 (10) 0.000
C1 0.102 (2) 0.0775 (16) 0.0553 (14) 0.0109 (14) −0.0060 (13) 0.0106 (12)
C2 0.0803 (16) 0.0411 (11) 0.0657 (14) 0.0045 (10) 0.0013 (11) 0.0050 (9)
Cl1 0.0477 (4) 0.0528 (4) 0.0459 (4) 0.000 −0.0020 (3) 0.000

Geometric parameters (Å, °)

N1—C2i 1.482 (3) C1—C2 1.495 (4)
N1—C2 1.482 (2) C1—H11 0.9900
N1—H101 0.9200 C1—H12 0.9900
N1—H102 0.9200 C2—H21 0.9900
C1—C1i 1.482 (5) C2—H22 0.9900
C2i—N1—C2 105.9 (2) C1i—C1—H12 110.3
C2i—N1—H101 110.5 C2—C1—H12 110.3
C2—N1—H101 110.5 H11—C1—H12 108.5
C2i—N1—H102 110.5 N1—C2—C1 104.64 (19)
C2—N1—H102 110.5 N1—C2—H21 110.8
H101—N1—H102 108.7 C1—C2—H21 110.8
C1i—C1—C2 107.20 (13) N1—C2—H22 110.8
C1i—C1—H11 110.3 C1—C2—H22 110.8
C2—C1—H11 110.3 H21—C2—H22 108.9
C2i—N1—C2—C1 31.4 (3) C1i—C1—C2—N1 −19.16 (18)

Symmetry codes: (i) x, −y+1/2, z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H101···Cl1 0.92 2.17 3.091 (3) 180
N1—H102···Cl1ii 0.92 2.18 3.097 (2) 177

Symmetry codes: (ii) x−1/2, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2348).

References

  1. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  2. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  3. Folmer-Anderson, J. F., Lynch, V. M. & Anslyn, E. V. (2005). Chem. Eur. J.11, 5319–5326. [DOI] [PubMed]
  4. Jakubas, R., Bednarska-Bolek, B., Zaleski, J., Medycki, W., Holderna-Natkaniec, K., Zielinski, P. & Galazka, M. (2005). Solid State Sci.7, 381–390.
  5. Kashino, S., Kataoka, S. & Haisa, M. (1978). Bull. Chem. Soc. Jpn, 51, 1717–1722.
  6. Moritani, Y., Sasahara, N., Kashino, S. & Haisa, M. (1987). Acta Cryst. C43, 154–158.
  7. Nonius (2004). COLLECT Nonius BV, Delft, The Netherlands.
  8. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809006060/bi2348sup1.cif

e-65-0o592-sup1.cif (11.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809006060/bi2348Isup2.hkl

e-65-0o592-Isup2.hkl (37KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES