Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Feb 25;65(Pt 3):m324–m325. doi: 10.1107/S1600536809006047

Diaqua­bis(N,N-diethyl­nicotinamide-κN 1)bis­(4-formyl­benzoato-κO 1)manganese(II)

Mustafa Sertçelik a, Barış Tercan b, Ertan Şahin c, Hacali Necefoğlu a, Tuncer Hökelek d,*
PMCID: PMC2968440  PMID: 21582097

Abstract

The title compound, [Mn(C8H5O3)2(C10H14N2O)2(H2O)2], contains one MnII atom lying on an inversion centre, two 4-formyl­benzoate and two diethyl­nicotinamide ligands and two coordinated water mol­ecules. All ligands are monodentate. The four O atoms around the Mn atom form a slightly distorted equatorial plane, while the distorted octa­hedral coordination is completed by the two N atoms in the axial positions. An intra­molecular O—H⋯O hydrogen bond occurs in the complex. In the crystal structure, O—H⋯O hydrogen bonds link the mol­ecules through an R 2 2(16) ring motif, forming a one-dimensional chain along the a axis. The π–π contact between the pyridyl rings [centroid–centroid distance = 3.629 (2) Å] may further stabilize the structure.

Related literature

For general background, see: Antolini et al. (1982); Nadzhafov et al. (1981); Shnulin et al. (1981). For related structures, see: Hökelek et al. (1995, 1997, 2007, 2008); Hökelek & Necefoğlu (1996, 1997, 2007). For hydrogen-bonding motifs, see: Bernstein et al. (1995).graphic file with name e-65-0m324-scheme1.jpg

Experimental

Crystal data

  • [Mn(C8H5O3)2(C10H14N2O)2(H2O)2]

  • M r = 745.68

  • Triclinic, Inline graphic

  • a = 7.3266 (2) Å

  • b = 8.6618 (2) Å

  • c = 16.0687 (3) Å

  • α = 86.381 (8)°

  • β = 78.272 (7)°

  • γ = 68.618 (6)°

  • V = 929.67 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 294 K

  • 0.35 × 0.20 × 0.15 mm

Data collection

  • Rigaku R-AXIS RAPID-S diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.904, T max = 0.935

  • 18356 measured reflections

  • 3799 independent reflections

  • 3317 reflections with I > 2σ(I)

  • R int = 0.071

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058

  • wR(F 2) = 0.157

  • S = 1.02

  • 3799 reflections

  • 246 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.77 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809006047/hy2182sup1.cif

e-65-0m324-sup1.cif (20KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809006047/hy2182Isup2.hkl

e-65-0m324-Isup2.hkl (106.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Mn1—O1 2.1596 (18)
Mn1—O5 2.207 (2)
Mn1—N1 2.283 (2)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H51⋯O4i 0.92 (3) 1.87 (3) 2.775 (3) 165 (4)
O5—H52⋯O2 0.93 (3) 1.77 (4) 2.669 (3) 162 (4)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors are indebted to the Department of Chemistry, Atatürk University, Erzurum, Turkey, for the use of X-ray diffractometer purchased under grant No. 2003/219 of the University Research Fund.

supplementary crystallographic information

Comment

The structural functions and coordination relationships of the arylcarboxylates in transition metal complexes of benzoic acid derivatives change depending on the nature and position of the substituent groups on the benzene ring, the nature of the additional ligand molecules or solvents, and the medium of the synthesis (Nadzhafov et al., 1981; Shnulin et al., 1981). Transition metal complexes with biochemically active ligands frequently show interesting physical and/or chemical properties, and as a result, they may find applications in biological systems (Antolini et al., 1982). The structure determination of the title compound, (I), a manganese complex with two formylbenzoate (FOB) and two diethylnicotinamide (DENA) ligands and two water molecules, was undertaken in order to determine the properties of the ligands and also to compare the results obtained with those reported previously.

Compound (I) is a monomeric complex, with the MnII atom lying on a centre of symmetry. It contains two FOB and two DENA ligands and two water molecules (Fig. 1). All ligands are monodentate. The four O atoms [O1, O5, and the symmetry-related atoms, O1ii, O5ii; symmetry code: (ii) 1 - x, 1 - y, 1 - z] around the Mn atom form a slightly distorted equatorial plane, while the slightly distorted octahedral coordination is completed by the two N atoms of the DENA ligands (N1, N1ii) in the axial positions (Table 1 and Fig. 1). The intramolecular O—H···O hydrogen bond (Table 2) results in the formation of a six-membered ring (Mn1, O1, O2, O5, C1, H52), which adopts envelope conformation with C1 atom displaced by -0.235 (3) Å from the plane of the other five atoms.

The near equality of the C1—O1 [1.262 (3) Å] and C1—O2 [1.249 (3) Å] bonds in the carboxylate group indicates a delocalized bonding arrangement, rather than localized single and double bonds, and may be compared with the corresponding distances: 1.256 (6) and 1.245 (6) Å in [Mn(DENA)2(C7H4ClO2)2(H2O)2], (II), (Hökelek et al., 2008), 1.265 (6) and 1.275 (6) Å in [Mn(C9H10NO2)2(H2O)4].2H2O, (III), (Hökelek & Necefoğlu, 2007), 1.260 (4) and 1.252 (4) Å in [Zn(DENA)2(C7H4FO2)2(H2O)2], (IV), (Hökelek et al., 2007), 1.259 (9) and 1.273 (9) Å in [Cu2(DENA)2(C6H5COO)4], (V), (Hökelek et al., 1995), 1.279 (4) and 1.246 (4) Å in [Zn2(DENA)2(C7H5O3)4].2H2O, (VI), (Hökelek & Necefoğlu, 1996), 1.251 (6) and 1.254 (7) Å in [Co(DENA)2(C7H5O3)2(H2O)2], (VII), (Hökelek & Necefoğlu, 1997), 1.278 (3) and 1.246 (3) Å in [Cu(DENA)2(C7H4NO4)2(H2O)2], (VIII), (Hökelek et al., 1997). This may be due to the intramolecular O—H···O hydrogen bond involving the carboxylate O atom (Table 2). In (I), the average Mn—O bond length is 2.183 (2) Å and the Mn atom is displaced out of the least-squares plane of the carboxylate group (O1, C1, O2) by -0.859 (1) Å. They are reported as -0.890 (1) Å in (II) and 2.185 (4) and 1.365 (3) Å in (III). The dihedral angle between the planar carboxylate group and the benzene ring A (C2–C7) is 3.0 (2)°, while that between rings A and B (N1, C9–C13) is 80.0 (1)°.

In the crystal structure, intermolecular O—H···O hydrogen bonds (Table 2) link the molecules through a R22(16) ring motif (Bernstein et al., 1995) to form a one-dimensional chain along the a axis (Fig. 2). The π-π contact between the pyridyl rings of DENA ligands, Cg1···Cg1iii [symmetry code: (iii) -x, 2 - y, 1 - z; where Cg1 is the centroid of ring B] may further stabilize the structure, with centroid–centroid distance of 3.629 (2) Å.

Experimental

The title compound was prepared by the reaction of Mn(SO4).H2O (1.69 g, 10 mmol) in H2O (50 ml) and DENA (3.56 g, 20 mmol) in H2O (15 ml) with sodium 4-formylbenzoate (3.44 g, 20 mmol) in H2O (50 ml). The mixture was filtered and set aside to crystallize at ambient temperature for several days, giving colourless single crystals.

Refinement

H atoms of water molecule and formyl group were located on difference Fourier maps and refined isotropically, with restrains of O—H = 0.95 (2) and C—H = 0.96 (2) Å. The remaining H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic), 0.97 (methylene) and 0.96 (methyl) Å, and with Uiso(H) = xUeq(C), where x = 1.5 for methyl H atoms and 1.2 for the other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 40% probability level. Hydrogen bonds are shown as dashed lines. [Symmetry code: (ii) 1 - x, 1 - y, 1 - z.]

Fig. 2.

Fig. 2.

A partial packing diagram of the title compound, showing hydrogen bonds (dashed lines) linking the molecules through the R22(16) ring motif. H atoms not involved in hydrogen bonds are omitted for clarity.

Crystal data

[Mn(C8H5O3)2(C10H14N2O)2(H2O)2] Z = 1
Mr = 745.68 F(000) = 391
Triclinic, P1 Dx = 1.332 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.3266 (2) Å Cell parameters from 2942 reflections
b = 8.6618 (2) Å θ = 2.5–26.4°
c = 16.0687 (3) Å µ = 0.42 mm1
α = 86.381 (8)° T = 294 K
β = 78.272 (7)° Block, colourless
γ = 68.618 (6)° 0.35 × 0.20 × 0.15 mm
V = 929.67 (6) Å3

Data collection

Rigaku R-AXIS RAPID-S diffractometer 3799 independent reflections
Radiation source: fine-focus sealed tube 3317 reflections with I > 2σ(I)
graphite Rint = 0.071
ω scans θmax = 26.4°, θmin = 2.5°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −9→9
Tmin = 0.904, Tmax = 0.935 k = −10→10
18356 measured reflections l = −20→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0681P)2 + 0.7177P] where P = (Fo2 + 2Fc2)/3
3799 reflections (Δ/σ)max < 0.001
246 parameters Δρmax = 0.77 e Å3
3 restraints Δρmin = −0.32 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Mn1 0.5000 0.5000 0.5000 0.04035 (19)
O1 0.5226 (3) 0.6203 (2) 0.60914 (12) 0.0488 (5)
O2 0.2455 (3) 0.6315 (3) 0.70146 (14) 0.0583 (5)
O3 0.9452 (5) 0.6893 (5) 0.95632 (19) 0.1013 (11)
O4 −0.2292 (3) 0.8295 (3) 0.37375 (14) 0.0615 (6)
O5 0.2143 (3) 0.4822 (3) 0.56750 (14) 0.0548 (5)
H51 0.209 (7) 0.378 (3) 0.579 (3) 0.089 (13)*
H52 0.202 (7) 0.529 (5) 0.6197 (17) 0.095 (14)*
N1 0.3151 (3) 0.7460 (3) 0.44777 (14) 0.0440 (5)
N2 −0.1135 (5) 0.9208 (4) 0.24863 (17) 0.0644 (7)
C1 0.4205 (4) 0.6295 (3) 0.68336 (17) 0.0439 (6)
C2 0.5205 (4) 0.6365 (3) 0.75573 (17) 0.0428 (6)
C3 0.7119 (4) 0.6417 (4) 0.74021 (17) 0.0473 (6)
H3 0.7806 0.6384 0.6845 0.057*
C4 0.8014 (5) 0.6518 (4) 0.80646 (19) 0.0532 (7)
H4 0.9292 0.6560 0.7954 0.064*
C5 0.6993 (5) 0.6556 (4) 0.88983 (19) 0.0551 (7)
C6 0.5098 (5) 0.6475 (4) 0.90521 (19) 0.0579 (8)
H6 0.4424 0.6482 0.9609 0.069*
C7 0.4202 (4) 0.6384 (4) 0.83915 (18) 0.0519 (7)
H7 0.2927 0.6336 0.8503 0.062*
C8 0.7904 (7) 0.6678 (6) 0.9615 (2) 0.0760 (11)
H8 0.712 (5) 0.658 (4) 1.0166 (14) 0.062 (10)*
C9 0.3345 (4) 0.8906 (3) 0.45861 (18) 0.0470 (6)
H9 0.4275 0.8922 0.4899 0.056*
C10 0.2234 (5) 1.0371 (4) 0.4256 (2) 0.0525 (7)
H10 0.2408 1.1354 0.4348 0.063*
C11 0.0859 (4) 1.0359 (3) 0.37870 (19) 0.0498 (7)
H11 0.0102 1.1330 0.3550 0.060*
C12 0.0623 (4) 0.8875 (3) 0.36748 (17) 0.0430 (6)
C13 0.1776 (4) 0.7474 (3) 0.40382 (17) 0.0446 (6)
H13 0.1590 0.6484 0.3976 0.054*
C14 −0.1018 (4) 0.8756 (4) 0.32858 (19) 0.0495 (7)
C15 0.0357 (6) 0.9707 (5) 0.1895 (2) 0.0743 (10)
H15A −0.0323 1.0752 0.1641 0.089*
H15B 0.1251 0.9892 0.2214 0.089*
C16 0.1546 (9) 0.8495 (9) 0.1215 (4) 0.141 (3)
H16A 0.2588 0.8837 0.0896 0.212*
H16B 0.0702 0.8423 0.0845 0.212*
H16C 0.2126 0.7429 0.1459 0.212*
C17 −0.2907 (7) 0.9202 (5) 0.2173 (3) 0.0779 (11)
H17A −0.4094 0.9678 0.2607 0.093*
H17B −0.3065 0.9890 0.1673 0.093*
C18 −0.2717 (9) 0.7511 (6) 0.1959 (3) 0.1023 (16)
H18A −0.3799 0.7568 0.1692 0.153*
H18B −0.2757 0.6873 0.2468 0.153*
H18C −0.1470 0.6992 0.1576 0.153*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mn1 0.0401 (3) 0.0417 (3) 0.0406 (3) −0.0139 (2) −0.0145 (2) 0.0073 (2)
O1 0.0549 (12) 0.0520 (11) 0.0436 (10) −0.0219 (9) −0.0147 (9) 0.0043 (8)
O2 0.0448 (12) 0.0728 (15) 0.0577 (12) −0.0197 (10) −0.0128 (9) −0.0024 (10)
O3 0.101 (2) 0.160 (3) 0.0737 (18) −0.074 (2) −0.0370 (16) 0.0082 (18)
O4 0.0537 (13) 0.0754 (15) 0.0651 (13) −0.0343 (11) −0.0159 (10) 0.0127 (11)
O5 0.0515 (12) 0.0615 (14) 0.0575 (13) −0.0275 (10) −0.0119 (10) 0.0061 (10)
N1 0.0426 (12) 0.0416 (12) 0.0481 (12) −0.0131 (10) −0.0153 (10) 0.0056 (9)
N2 0.0708 (18) 0.0782 (19) 0.0571 (15) −0.0356 (15) −0.0286 (13) 0.0165 (13)
C1 0.0459 (15) 0.0347 (13) 0.0483 (15) −0.0089 (11) −0.0142 (12) 0.0024 (10)
C2 0.0464 (14) 0.0369 (13) 0.0441 (14) −0.0123 (11) −0.0119 (11) 0.0024 (10)
C3 0.0479 (15) 0.0526 (16) 0.0414 (14) −0.0197 (13) −0.0060 (11) 0.0019 (11)
C4 0.0507 (16) 0.0617 (18) 0.0523 (16) −0.0245 (14) −0.0142 (13) 0.0034 (13)
C5 0.0603 (18) 0.0636 (19) 0.0451 (15) −0.0244 (15) −0.0147 (13) 0.0027 (13)
C6 0.0629 (19) 0.070 (2) 0.0395 (14) −0.0251 (16) −0.0068 (13) 0.0039 (13)
C7 0.0466 (16) 0.0579 (17) 0.0485 (15) −0.0167 (13) −0.0080 (12) 0.0025 (13)
C8 0.083 (3) 0.106 (3) 0.0521 (19) −0.046 (2) −0.0225 (18) 0.0047 (19)
C9 0.0475 (15) 0.0481 (15) 0.0506 (15) −0.0200 (12) −0.0165 (12) 0.0040 (12)
C10 0.0562 (17) 0.0428 (15) 0.0634 (18) −0.0216 (13) −0.0175 (14) 0.0072 (13)
C11 0.0514 (16) 0.0393 (14) 0.0582 (17) −0.0141 (12) −0.0174 (13) 0.0122 (12)
C12 0.0379 (13) 0.0458 (15) 0.0438 (14) −0.0133 (11) −0.0099 (10) 0.0061 (11)
C13 0.0452 (14) 0.0398 (14) 0.0511 (15) −0.0149 (11) −0.0163 (12) 0.0048 (11)
C14 0.0471 (15) 0.0512 (16) 0.0522 (16) −0.0172 (13) −0.0178 (12) 0.0099 (12)
C15 0.087 (3) 0.083 (3) 0.058 (2) −0.035 (2) −0.0189 (18) 0.0101 (18)
C16 0.115 (5) 0.184 (7) 0.129 (5) −0.072 (5) 0.023 (4) −0.060 (5)
C17 0.090 (3) 0.075 (2) 0.082 (3) −0.033 (2) −0.046 (2) 0.0196 (19)
C18 0.138 (4) 0.085 (3) 0.097 (3) −0.039 (3) −0.054 (3) 0.004 (2)

Geometric parameters (Å, °)

Mn1—O1i 2.1596 (18) C6—H6 0.9300
Mn1—O1 2.1596 (18) C7—C6 1.377 (4)
Mn1—O5 2.207 (2) C7—H7 0.9300
Mn1—O5i 2.207 (2) C8—H8 0.971 (18)
Mn1—N1 2.283 (2) C9—C10 1.375 (4)
Mn1—N1i 2.283 (2) C9—H9 0.9300
O1—C1 1.262 (3) C10—H10 0.9300
O2—C1 1.249 (3) C11—C10 1.379 (4)
O3—C8 1.201 (5) C11—H11 0.9300
O4—C14 1.232 (4) C12—C11 1.385 (4)
O5—H51 0.924 (19) C12—C13 1.375 (4)
O5—H52 0.926 (19) C12—C14 1.500 (4)
N1—C9 1.337 (3) C13—H13 0.9300
N1—C13 1.339 (3) C15—C16 1.465 (7)
N2—C14 1.330 (4) C15—H15A 0.9700
N2—C15 1.468 (5) C15—H15B 0.9700
N2—C17 1.487 (4) C16—H16A 0.9600
C2—C1 1.510 (4) C16—H16B 0.9600
C2—C3 1.391 (4) C16—H16C 0.9600
C2—C7 1.389 (4) C17—C18 1.477 (6)
C3—C4 1.381 (4) C17—H17A 0.9700
C3—H3 0.9300 C17—H17B 0.9700
C4—H4 0.9300 C18—H18A 0.9600
C5—C4 1.391 (4) C18—H18B 0.9600
C5—C6 1.386 (5) C18—H18C 0.9600
C5—C8 1.470 (4)
O1i—Mn1—O1 180.000 (1) O3—C8—C5 126.0 (4)
O1i—Mn1—O5 89.23 (8) O3—C8—H8 121 (2)
O1—Mn1—O5 90.77 (8) C5—C8—H8 113 (2)
O1i—Mn1—O5i 90.77 (8) N1—C9—C10 123.1 (3)
O1—Mn1—O5i 89.23 (8) N1—C9—H9 118.4
O1i—Mn1—N1i 92.23 (8) C10—C9—H9 118.4
O1—Mn1—N1 92.23 (8) C9—C10—C11 118.9 (3)
O1—Mn1—N1i 87.77 (8) C9—C10—H10 120.6
O1i—Mn1—N1 87.77 (8) C11—C10—H10 120.6
O5—Mn1—O5i 180.000 (1) C10—C11—C12 118.8 (3)
O5—Mn1—N1i 92.95 (8) C10—C11—H11 120.6
O5i—Mn1—N1i 87.05 (8) C12—C11—H11 120.6
O5—Mn1—N1 87.05 (8) C11—C12—C14 123.3 (2)
O5i—Mn1—N1 92.95 (8) C13—C12—C11 118.3 (3)
N1i—Mn1—N1 180.00 (10) C13—C12—C14 117.8 (2)
Mn1—O5—H52 101 (3) N1—C13—C12 123.5 (3)
Mn1—O5—H51 118 (3) N1—C13—H13 118.3
H52—O5—H51 106 (4) C12—C13—H13 118.3
C1—O1—Mn1 126.76 (18) O4—C14—N2 121.2 (3)
C9—N1—C13 117.3 (2) O4—C14—C12 118.1 (3)
C9—N1—Mn1 124.02 (18) N2—C14—C12 120.6 (3)
C13—N1—Mn1 118.65 (17) N2—C15—H15A 108.7
C14—N2—C15 124.7 (3) N2—C15—H15B 108.7
C14—N2—C17 117.3 (3) C16—C15—N2 114.1 (4)
C15—N2—C17 118.0 (3) C16—C15—H15A 108.7
O1—C1—C2 116.8 (2) C16—C15—H15B 108.7
O2—C1—C2 117.8 (2) H15A—C15—H15B 107.6
O2—C1—O1 125.4 (3) C15—C16—H16A 109.5
C3—C2—C1 120.9 (2) C15—C16—H16B 109.5
C7—C2—C1 119.8 (3) C15—C16—H16C 109.5
C7—C2—C3 119.3 (3) H16A—C16—H16B 109.5
C2—C3—H3 119.6 H16A—C16—H16C 109.5
C4—C3—C2 120.9 (3) H16B—C16—H16C 109.5
C4—C3—H3 119.6 N2—C17—H17A 109.2
C3—C4—C5 119.6 (3) N2—C17—H17B 109.2
C3—C4—H4 120.2 C18—C17—N2 111.8 (4)
C5—C4—H4 120.2 C18—C17—H17A 109.2
C4—C5—C8 120.7 (3) C18—C17—H17B 109.2
C6—C5—C4 119.5 (3) H17A—C17—H17B 107.9
C6—C5—C8 119.9 (3) C17—C18—H18A 109.5
C5—C6—H6 119.5 C17—C18—H18B 109.5
C7—C6—C5 120.9 (3) C17—C18—H18C 109.5
C7—C6—H6 119.5 H18A—C18—H18B 109.5
C2—C7—H7 120.1 H18A—C18—H18C 109.5
C6—C7—C2 119.9 (3) H18B—C18—H18C 109.5
C6—C7—H7 120.1
O5—Mn1—O1—C1 13.3 (2) C3—C2—C1—O1 3.4 (4)
O5i—Mn1—O1—C1 −166.7 (2) C7—C2—C1—O1 −176.9 (2)
N1i—Mn1—O1—C1 −79.6 (2) C3—C2—C1—O2 −177.3 (3)
N1—Mn1—O1—C1 100.4 (2) C7—C2—C1—O2 2.5 (4)
O1i—Mn1—N1—C9 −148.3 (2) C1—C2—C3—C4 178.6 (3)
O1—Mn1—N1—C9 31.7 (2) C7—C2—C3—C4 −1.2 (4)
O1i—Mn1—N1—C13 32.1 (2) C1—C2—C7—C6 −178.9 (3)
O1—Mn1—N1—C13 −147.9 (2) C3—C2—C7—C6 0.8 (4)
O5—Mn1—N1—C9 122.4 (2) C2—C3—C4—C5 0.4 (5)
O5i—Mn1—N1—C9 −57.6 (2) C6—C5—C4—C3 0.7 (5)
O5—Mn1—N1—C13 −57.2 (2) C8—C5—C4—C3 −179.5 (3)
O5i—Mn1—N1—C13 122.8 (2) C4—C5—C6—C7 −1.1 (5)
Mn1—O1—C1—O2 −29.8 (4) C8—C5—C6—C7 179.1 (4)
Mn1—O1—C1—C2 149.49 (18) C4—C5—C8—O3 6.7 (7)
Mn1—N1—C9—C10 179.1 (2) C6—C5—C8—O3 −173.4 (4)
C13—N1—C9—C10 −1.2 (4) C2—C7—C6—C5 0.3 (5)
Mn1—N1—C13—C12 −178.0 (2) N1—C9—C10—C11 −0.3 (5)
C9—N1—C13—C12 2.3 (4) C12—C11—C10—C9 0.9 (5)
C15—N2—C14—O4 −177.4 (3) C13—C12—C11—C10 0.0 (4)
C17—N2—C14—O4 2.5 (5) C14—C12—C11—C10 171.0 (3)
C15—N2—C14—C12 5.6 (5) C11—C12—C13—N1 −1.7 (4)
C17—N2—C14—C12 −174.4 (3) C14—C12—C13—N1 −173.2 (3)
C14—N2—C15—C16 108.8 (5) C11—C12—C14—O4 −114.4 (3)
C17—N2—C15—C16 −71.1 (5) C11—C12—C14—N2 62.7 (4)
C14—N2—C17—C18 −78.2 (5) C13—C12—C14—O4 56.7 (4)
C15—N2—C17—C18 101.7 (4) C13—C12—C14—N2 −126.3 (3)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O5—H51···O4ii 0.92 (3) 1.87 (3) 2.775 (3) 165 (4)
O5—H52···O2 0.93 (3) 1.77 (4) 2.669 (3) 162 (4)

Symmetry codes: (ii) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2182).

References

  1. Antolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem.21, 1391–1395.
  2. Bernstein, J., Davies, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  5. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  6. Hökelek, T., Budak, K. & Necefouglu, H. (1997). Acta Cryst. C53, 1049–1051.
  7. Hökelek, T., Çaylak, N. & Necefoğlu, H. (2007). Acta Cryst. E63, m2561–m2562.
  8. Hökelek, T., Çaylak, N. & Necefoğlu, H. (2008). Acta Cryst. E64, m505–m506. [DOI] [PMC free article] [PubMed]
  9. Hökelek, T. & Necefouglu, H. (1996). Acta Cryst. C52, 1128–1131.
  10. Hökelek, T. & Necefouglu, H. (1997). Acta Cryst. C53, 187–189.
  11. Hökelek, T. & Necefoğlu, H. (2007). Acta Cryst. E63, m821–m823.
  12. Hökelek, T., Necefouglu, H. & Balcı, M. (1995). Acta Cryst. C51, 2020–2023.
  13. Nadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim.22, 124–128.
  14. Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Shnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim.7, 1409–1416.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809006047/hy2182sup1.cif

e-65-0m324-sup1.cif (20KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809006047/hy2182Isup2.hkl

e-65-0m324-Isup2.hkl (106.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES