Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Feb 28;65(Pt 3):o649. doi: 10.1107/S1600536809001524

4-Tosyl-1-oxa-4-aza­spiro­[4.5]deca-6,9-dien-8-one

Ping Yin a, Wen-Wen Zhang a, Hai-Bin Yin b, Ling He a, Wen-Cai Huang c,*
PMCID: PMC2968445  PMID: 21582297

Abstract

In the mol­ecule of the title compound, C15H15NO4S, the two six-membered rings are almost parallel to each other [dihedral angle = 1.87 (9)°] and perpendicular to the mean plane through the five-membered ring [dihedral angles of 89.98 (10) and 89.04 (10)°]. The crystal structure is stabilized by inter­molecular C—H⋯O hydrogen-bonding inter­actions.

Related literature

For general background to the catalytic oxidation of phenol derivatives using transition metal complexes, see: Bernini et al. (2006); Cheung et al. (2005). For puckering parameters, see: Cremer & Pople (1975).graphic file with name e-65-0o649-scheme1.jpg

Experimental

Crystal data

  • C15H15NO4S

  • M r = 305.34

  • Monoclinic, Inline graphic

  • a = 11.882 (3) Å

  • b = 14.973 (6) Å

  • c = 8.369 (5) Å

  • β = 107.00 (3)°

  • V = 1423.9 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 294 K

  • 0.30 × 0.25 × 0.20 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 2996 measured reflections

  • 2625 independent reflections

  • 1526 reflections with I > 2σ(I)

  • R int = 0.008

  • 3 standard reflections every 300 reflections intensity decay: 1.6%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.119

  • S = 1.02

  • 2625 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: DIFRAC (Gabe & White, 1993); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809001524/rz2288sup1.cif

e-65-0o649-sup1.cif (16.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809001524/rz2288Isup2.hkl

e-65-0o649-Isup2.hkl (131.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O4i 0.93 2.48 3.211 (4) 134
C15—H15B⋯O2ii 0.96 2.57 3.520 (5) 171

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was financially supported by the Industry–Academia–Research Combination Project of the Ministry of Education of China and Guangdong Province (No.2007B090400016)

supplementary crystallographic information

Comment

In the course of our studies aimed to prepare a substituted quinone from the corresponding aromatic ether by catalytic oxidation using transition metal complexes (Cheung et al., 2005; Bernini et al.,2006), the title compound was unexpectedly obtained in about 70% yield. In the molecule of the title compound (Fig. 1) the C1–C6 and C9–C14 six-membered rings are almost parallel to each other(dihedral angle 1.87 (9)°) and perpendicular to the mean plane through the O1/N1/C1/C7/C8 ring, forming dihedral angles of 89.98 (10) and 89.04 (10)°, respectively. The five-membered ring adopts an envelope conformation, with puckering parameters Q2 = 0.269 (3) Å and φ2 =104.4 (6)° ((Cremer & Pople, 1975). The crystal structure (Fig. 2) is enforced by intermolecular C—H···O hydrogen bonds (Table 1).

Experimental

A solution of 2-phenoxyethyl-p-toluenesulfon amide (1 mmol) and indobenzene diacetate (1.5 mmol) in dichloromethane was charged in a reaction flask and 4 A molecular sieves was added. Then, the mixture was stirred at 303 K under a nitrogen atmosphere for 4 h. After cooling to room temperature, the resulting mixture was filtered and the solvent was removed under vacuo. The residue was purified by flash column chromatography on silica gel with petroleum ether/ethyl acetate (5:1 v/v) as the eluent. Colorless crystals suitable for X-ray analysis were obtained by slow evaporation in a cyclohexane/ether solution (5:1 v/v) at room temperature.

Refinement

H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and refined using a riding model, with Uiso(H) = 1.2–1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Crystal packing of the title compound approximately viewed along the b axis.

Crystal data

C15H15NO4S F(000) = 640
Mr = 305.34 Dx = 1.424 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 11.882 (3) Å Cell parameters from 22 reflections
b = 14.973 (6) Å θ = 4.5–7.7°
c = 8.369 (5) Å µ = 0.24 mm1
β = 107.00 (3)° T = 294 K
V = 1423.9 (11) Å3 Block, colourless
Z = 4 0.30 × 0.25 × 0.20 mm

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.008
Radiation source: fine-focus sealed tube θmax = 25.5°, θmin = 1.8°
graphite h = −14→3
ω/2–θ scans k = −18→0
2996 measured reflections l = −9→10
2625 independent reflections 3 standard reflections every 300 reflections
1526 reflections with I > 2σ(I) intensity decay: 1.6%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0523P)2 + 0.2087P] where P = (Fo2 + 2Fc2)/3
2625 reflections (Δ/σ)max < 0.001
192 parameters Δρmax = 0.30 e Å3
0 restraints Δρmin = −0.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.28106 (6) 0.58803 (5) 0.06825 (9) 0.0407 (2)
O1 0.09259 (19) 0.57997 (15) −0.3866 (3) 0.0638 (7)
O2 −0.1639 (2) 0.7616 (2) −0.1273 (4) 0.1088 (11)
O3 0.20120 (17) 0.62375 (14) 0.1501 (3) 0.0500 (5)
O4 0.35194 (17) 0.51210 (13) 0.1369 (3) 0.0531 (6)
N1 0.20196 (18) 0.55681 (15) −0.1165 (3) 0.0408 (6)
C1 0.0935 (2) 0.60359 (18) −0.2213 (4) 0.0420 (7)
C2 0.0995 (3) 0.70272 (19) −0.2139 (4) 0.0448 (7)
H2 0.1650 0.7308 −0.2304 0.054*
C3 0.0165 (3) 0.7524 (2) −0.1852 (4) 0.0532 (8)
H3 0.0239 0.8142 −0.1869 0.064*
C4 −0.0868 (3) 0.7143 (3) −0.1509 (5) 0.0648 (10)
C5 −0.0943 (3) 0.6167 (2) −0.1518 (4) 0.0612 (9)
H5 −0.1587 0.5897 −0.1301 0.073*
C6 −0.0124 (3) 0.5663 (2) −0.1826 (4) 0.0523 (8)
H6 −0.0207 0.5046 −0.1802 0.063*
C7 0.1620 (3) 0.5036 (2) −0.3849 (4) 0.0662 (10)
H7A 0.1950 0.5048 −0.4780 0.079*
H7B 0.1151 0.4498 −0.3926 0.079*
C8 0.2563 (3) 0.5062 (2) −0.2247 (4) 0.0613 (9)
H8A 0.2779 0.4465 −0.1815 0.074*
H8B 0.3257 0.5364 −0.2365 0.074*
C9 0.3779 (2) 0.67304 (18) 0.0454 (3) 0.0383 (7)
C10 0.3497 (3) 0.7621 (2) 0.0559 (4) 0.0493 (8)
H10 0.2795 0.7780 0.0765 0.059*
C11 0.4264 (3) 0.8267 (2) 0.0357 (4) 0.0536 (9)
H11 0.4072 0.8865 0.0431 0.064*
C12 0.5312 (3) 0.8055 (2) 0.0047 (4) 0.0472 (8)
C13 0.5568 (3) 0.7168 (2) −0.0071 (4) 0.0535 (8)
H13 0.6266 0.7012 −0.0288 0.064*
C14 0.4821 (2) 0.6503 (2) 0.0123 (4) 0.0487 (8)
H14 0.5012 0.5907 0.0034 0.058*
C15 0.6133 (3) 0.8785 (2) −0.0157 (4) 0.0669 (10)
H15A 0.5717 0.9187 −0.1021 0.100*
H15B 0.6783 0.8526 −0.0456 0.100*
H15C 0.6421 0.9105 0.0875 0.100*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0436 (4) 0.0356 (4) 0.0419 (4) −0.0024 (4) 0.0108 (3) 0.0011 (4)
O1 0.0715 (15) 0.0670 (15) 0.0453 (13) 0.0231 (13) 0.0053 (11) −0.0080 (12)
O2 0.0677 (17) 0.102 (2) 0.170 (3) 0.0206 (17) 0.0560 (19) −0.020 (2)
O3 0.0541 (12) 0.0512 (12) 0.0523 (13) −0.0066 (10) 0.0274 (11) −0.0068 (10)
O4 0.0538 (13) 0.0428 (12) 0.0567 (13) 0.0034 (10) 0.0068 (10) 0.0121 (10)
N1 0.0385 (13) 0.0350 (13) 0.0467 (14) 0.0030 (10) 0.0090 (11) −0.0056 (11)
C1 0.0415 (16) 0.0367 (17) 0.0463 (17) 0.0037 (13) 0.0106 (13) −0.0020 (13)
C2 0.0433 (17) 0.0389 (17) 0.055 (2) −0.0021 (14) 0.0191 (15) 0.0070 (15)
C3 0.0524 (19) 0.0370 (17) 0.069 (2) 0.0035 (15) 0.0153 (17) −0.0028 (16)
C4 0.046 (2) 0.073 (3) 0.077 (3) 0.0122 (19) 0.0189 (18) −0.006 (2)
C5 0.0384 (18) 0.068 (2) 0.076 (2) −0.0077 (17) 0.0154 (17) 0.014 (2)
C6 0.0427 (17) 0.0369 (17) 0.070 (2) −0.0053 (15) 0.0056 (16) 0.0093 (16)
C7 0.056 (2) 0.074 (3) 0.062 (2) 0.0135 (19) 0.0072 (18) −0.0205 (19)
C8 0.0557 (19) 0.063 (2) 0.062 (2) 0.0097 (18) 0.0110 (17) −0.0179 (18)
C9 0.0354 (16) 0.0394 (16) 0.0388 (16) −0.0060 (13) 0.0088 (13) 0.0004 (13)
C10 0.0471 (18) 0.0431 (18) 0.065 (2) −0.0050 (14) 0.0273 (16) −0.0088 (16)
C11 0.064 (2) 0.0366 (17) 0.067 (2) −0.0055 (16) 0.0306 (18) −0.0081 (16)
C12 0.0453 (18) 0.050 (2) 0.0463 (19) −0.0113 (15) 0.0135 (15) −0.0031 (15)
C13 0.0389 (17) 0.060 (2) 0.064 (2) −0.0015 (16) 0.0178 (16) −0.0038 (18)
C14 0.0379 (16) 0.0429 (18) 0.063 (2) 0.0027 (14) 0.0107 (15) −0.0012 (15)
C15 0.062 (2) 0.070 (2) 0.073 (2) −0.0234 (19) 0.0262 (19) −0.007 (2)

Geometric parameters (Å, °)

S1—O3 1.427 (2) C7—C8 1.478 (4)
S1—O4 1.431 (2) C7—H7A 0.9700
S1—N1 1.626 (2) C7—H7B 0.9700
S1—C9 1.763 (3) C8—H8A 0.9700
O1—C7 1.409 (4) C8—H8B 0.9700
O1—C1 1.424 (4) C9—C10 1.384 (4)
O2—C4 1.218 (4) C9—C14 1.388 (4)
N1—C8 1.469 (4) C10—C11 1.372 (4)
N1—C1 1.503 (3) C10—H10 0.9300
C1—C2 1.487 (4) C11—C12 1.381 (4)
C1—C6 1.496 (4) C11—H11 0.9300
C2—C3 1.313 (4) C12—C13 1.373 (4)
C2—H2 0.9300 C12—C15 1.508 (4)
C3—C4 1.455 (4) C13—C14 1.374 (4)
C3—H3 0.9300 C13—H13 0.9300
C4—C5 1.463 (5) C14—H14 0.9300
C5—C6 1.314 (4) C15—H15A 0.9600
C5—H5 0.9300 C15—H15B 0.9600
C6—H6 0.9300 C15—H15C 0.9600
O3—S1—O4 120.05 (13) O1—C7—H7B 110.5
O3—S1—N1 106.48 (12) C8—C7—H7B 110.5
O4—S1—N1 105.19 (12) H7A—C7—H7B 108.7
O3—S1—C9 109.16 (13) N1—C8—C7 102.7 (2)
O4—S1—C9 106.92 (13) N1—C8—H8A 111.2
N1—S1—C9 108.57 (13) C7—C8—H8A 111.2
C7—O1—C1 110.7 (2) N1—C8—H8B 111.2
C8—N1—C1 109.7 (2) C7—C8—H8B 111.2
C8—N1—S1 119.94 (18) H8A—C8—H8B 109.1
C1—N1—S1 125.44 (18) C10—C9—C14 119.7 (3)
O1—C1—C2 106.0 (2) C10—C9—S1 120.7 (2)
O1—C1—C6 110.4 (2) C14—C9—S1 119.5 (2)
C2—C1—C6 113.4 (2) C11—C10—C9 119.3 (3)
O1—C1—N1 102.3 (2) C11—C10—H10 120.4
C2—C1—N1 114.7 (2) C9—C10—H10 120.4
C6—C1—N1 109.3 (2) C10—C11—C12 121.9 (3)
C3—C2—C1 123.0 (3) C10—C11—H11 119.0
C3—C2—H2 118.5 C12—C11—H11 119.0
C1—C2—H2 118.5 C13—C12—C11 117.8 (3)
C2—C3—C4 122.4 (3) C13—C12—C15 121.9 (3)
C2—C3—H3 118.8 C11—C12—C15 120.2 (3)
C4—C3—H3 118.8 C12—C13—C14 121.9 (3)
O2—C4—C3 121.4 (4) C12—C13—H13 119.1
O2—C4—C5 122.2 (3) C14—C13—H13 119.1
C3—C4—C5 116.3 (3) C13—C14—C9 119.4 (3)
C6—C5—C4 121.8 (3) C13—C14—H14 120.3
C6—C5—H5 119.1 C9—C14—H14 120.3
C4—C5—H5 119.1 C12—C15—H15A 109.5
C5—C6—C1 123.0 (3) C12—C15—H15B 109.5
C5—C6—H6 118.5 H15A—C15—H15B 109.5
C1—C6—H6 118.5 C12—C15—H15C 109.5
O1—C7—C8 105.9 (3) H15A—C15—H15C 109.5
O1—C7—H7A 110.5 H15B—C15—H15C 109.5
C8—C7—H7A 110.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C2—H2···O4i 0.93 2.48 3.211 (4) 134
C15—H15B···O2ii 0.96 2.57 3.520 (5) 171

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2288).

References

  1. Bernini, R., Mincione, E., Barontini, M., Fabrizi, G., Pasqualetti, M. & Tempesta, S. (2006). Tetrahedron, 62, 7733–7737.)
  2. Cheung, W.-H., Yip, W.-P., Yu, W.-Y. & Che, C.-M. (2005). Can. J. Chem.83, 521–526.
  3. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst.22, 384–387.
  6. Gabe, E. J. & White, P. S. (1993). DIFRAC American Crystallographic Association Meeting, Pittsburgh, Abstract PA 104.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809001524/rz2288sup1.cif

e-65-0o649-sup1.cif (16.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809001524/rz2288Isup2.hkl

e-65-0o649-Isup2.hkl (131.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES