Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Feb 6;65(Pt 3):o479. doi: 10.1107/S1600536809001330

(Cyclo­pentane-1,1-di­yl)dimethanol

Richard Betz a, Peter Klüfers a,*, Peter Mayer a
PMCID: PMC2968446  PMID: 21582148

Abstract

In the title compound, C7H14O2, co-operative eight-membered homodromic rings of O—H⋯O hydrogen bonds connect the mol­ecules into strands along [100]. According to graph-set analysis, the descriptor of these cycles is R 4 4(8). The cyclo­pentane-ring adopts an envelope conformation (C4 E).

Related literature

The compound was synthesized according to a published procedure (Domin et al., 2005). For the influence of chelation to (semi-)metals on the geometry of bifunctional alcohols, see: Klüfers & Vogler (2007). For the structure of a related compound, see Wender et al. (1999). For details on graph-set analysis of hydrogen bonds, see Etter et al. (1990); Bernstein et al. (1995). For details of puckering analysis, see Cremer & Pople (1975).graphic file with name e-65-0o479-scheme1.jpg

Experimental

Crystal data

  • C7H14O2

  • M r = 130.18

  • Monoclinic, Inline graphic

  • a = 5.8614 (16) Å

  • b = 10.631 (3) Å

  • c = 11.917 (3) Å

  • β = 98.33 (2)°

  • V = 734.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 200 (2) K

  • 0.20 × 0.17 × 0.06 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: none

  • 4224 measured reflections

  • 1692 independent reflections

  • 924 reflections with I > 2σ(I)

  • R int = 0.067

Refinement

  • R[F 2 > 2σ(F 2)] = 0.061

  • wR(F 2) = 0.149

  • S = 1.01

  • 1692 reflections

  • 85 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2005); cell refinement: CrysAlis RED (Oxford Diffraction, 2005); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809001330/zl2170sup1.cif

e-65-0o479-sup1.cif (13.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809001330/zl2170Isup2.hkl

e-65-0o479-Isup2.hkl (83.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.84 1.91 2.720 (2) 163
O2—H2⋯O1ii 0.84 1.88 2.691 (2) 161

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank Professor Klapötke for generous allocation of diffractometer time and Sandra Albrecht for professional support.

supplementary crystallographic information

Comment

In a program focused on the influence of chelation to (semi-)metals on the geometry of bifunctional alcohols (Klüfers & Vogler, 2007), the structure of 1,1-bis(hydroxymethyl)cyclopentane was elucidated.

Neglecting the hydrogen atoms of the hydroxy groups, the molecule would show non-crystallographic C2 symmetry (Fig. 1).

According to a conformational analysis (Cremer & Pople, 1975), the cyclopentane-moiety adopts an envelope conformation C4E (Q2 = 0.404 (3) Å), which is slightly distorted towards a twist conformation C4TC3 (φ2 = 280 (4)°).

In the crystals structure, hydrogen bonds furnish the formation of cooperative eight-membered homodromic rings (Fig. 2). These connect the molecules to strands along [1 0 0]. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for this pattern is R44(8).

The molecular packing of the compound is shown in Figure 3.

Experimental

The compound was prepared upon reacting 1,4-dibromobutane with malonic acid diethylester under basic conditions according to a published procedure (Domin et al., 2005). Crystals suitable for X-ray analysis were obtained upon recrystallization of the crude reaction product from a boiling mixture of ethyl acetate - light petrol ether (1:1).

Refinement

All H-atoms were placed in calculated positions (C—H 0.99 Å and O—H 0.84 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C) for methylene groups and U(H) set to 1.5Ueq(O). Hydroxyl H atoms were allowed to rotate with a fixed angle around the C-O bond to best fit the experimental electron density (HFIX 147 in the SHELX program suite (Sheldrick, 2008)).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level) for non-H atoms.

Fig. 2.

Fig. 2.

Hydrogen bonds in the crystal structure of the title compound, viewed along [0 1 0]. Symmetry operators: ix - 1, y, z; ii -x + 1, -y + 1, -z; iiix + 1, y, z.

Fig. 3.

Fig. 3.

The packing of the title compound, viewed along [-1 0 0].

Crystal data

C7H14O2 Z = 4
Mr = 130.18 F(000) = 288
Monoclinic, P21/n Dx = 1.177 Mg m3
Hall symbol: -P 2yn Mo Kα radiation, λ = 0.71073 Å
a = 5.8614 (16) Å θ = 4.6–27.5°
b = 10.631 (3) Å µ = 0.08 mm1
c = 11.917 (3) Å T = 200 K
β = 98.33 (2)° Platelet, colourless
V = 734.7 (3) Å3 0.20 × 0.17 × 0.06 mm

Data collection

Oxford Diffraction Xcalibur diffractometer 924 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.067
graphite θmax = 27.5°, θmin = 4.6°
ω scans h = −7→4
4224 measured reflections k = −13→13
1692 independent reflections l = −14→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0527P)2] where P = (Fo2 + 2Fc2)/3
1692 reflections (Δ/σ)max < 0.001
85 parameters Δρmax = 0.19 e Å3
0 restraints Δρmin = −0.17 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.2142 (2) 0.49721 (17) 0.14033 (13) 0.0473 (5)
H1 0.2522 0.5090 0.0758 0.071*
O2 0.7532 (3) 0.48406 (16) 0.08445 (12) 0.0431 (5)
H2 0.8893 0.4984 0.1146 0.065*
C1 0.5747 (4) 0.41846 (19) 0.24878 (17) 0.0299 (5)
C2 0.7724 (4) 0.4594 (2) 0.34277 (18) 0.0381 (6)
H21 0.9204 0.4638 0.3122 0.046*
H22 0.7393 0.5432 0.3729 0.046*
C3 0.7843 (5) 0.3602 (2) 0.4357 (2) 0.0562 (8)
H31 0.8906 0.2912 0.4223 0.067*
H32 0.8361 0.3975 0.5112 0.067*
C4 0.5393 (6) 0.3131 (3) 0.4270 (2) 0.0586 (8)
H41 0.4413 0.3733 0.4619 0.070*
H42 0.5330 0.2302 0.4641 0.070*
C5 0.4640 (4) 0.3034 (2) 0.2995 (2) 0.0475 (7)
H51 0.2939 0.3064 0.2812 0.057*
H52 0.5198 0.2240 0.2696 0.057*
C6 0.4039 (4) 0.5258 (2) 0.22489 (19) 0.0363 (6)
H61 0.3447 0.5481 0.2960 0.044*
H62 0.4853 0.6002 0.2004 0.044*
C7 0.6631 (4) 0.3799 (2) 0.14014 (19) 0.0388 (6)
H71 0.7856 0.3158 0.1581 0.047*
H72 0.5356 0.3410 0.0880 0.047*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0243 (8) 0.0853 (13) 0.0320 (8) 0.0014 (8) 0.0036 (7) 0.0073 (9)
O2 0.0276 (8) 0.0721 (12) 0.0303 (8) −0.0023 (9) 0.0060 (7) 0.0062 (8)
C1 0.0290 (11) 0.0332 (11) 0.0274 (11) −0.0025 (10) 0.0043 (9) −0.0028 (9)
C2 0.0331 (12) 0.0496 (14) 0.0308 (11) −0.0007 (11) 0.0018 (10) −0.0010 (10)
C3 0.074 (2) 0.0586 (17) 0.0326 (13) 0.0067 (16) −0.0032 (14) 0.0047 (12)
C4 0.093 (2) 0.0465 (15) 0.0408 (14) −0.0035 (16) 0.0266 (15) 0.0052 (12)
C5 0.0526 (16) 0.0417 (14) 0.0500 (15) −0.0048 (13) 0.0139 (13) 0.0066 (12)
C6 0.0288 (11) 0.0470 (14) 0.0330 (11) 0.0021 (11) 0.0039 (10) 0.0001 (10)
C7 0.0348 (12) 0.0454 (13) 0.0370 (13) 0.0008 (11) 0.0074 (11) −0.0068 (11)

Geometric parameters (Å, °)

O1—C6 1.421 (3) C3—H31 0.9900
O1—H1 0.8400 C3—H32 0.9900
O2—C7 1.431 (3) C4—C5 1.523 (4)
O2—H2 0.8400 C4—H41 0.9900
C1—C6 1.517 (3) C4—H42 0.9900
C1—C7 1.519 (3) C5—H51 0.9900
C1—C5 1.548 (3) C5—H52 0.9900
C1—C2 1.553 (3) C6—H61 0.9900
C2—C3 1.524 (3) C6—H62 0.9900
C2—H21 0.9900 C7—H71 0.9900
C2—H22 0.9900 C7—H72 0.9900
C3—C4 1.510 (4)
C6—O1—H1 109.5 C5—C4—H41 111.2
C7—O2—H2 109.5 C3—C4—H42 111.2
C6—C1—C7 109.90 (18) C5—C4—H42 111.2
C6—C1—C5 111.40 (18) H41—C4—H42 109.1
C7—C1—C5 109.48 (18) C4—C5—C1 104.99 (19)
C6—C1—C2 109.13 (17) C4—C5—H51 110.7
C7—C1—C2 112.31 (17) C1—C5—H51 110.7
C5—C1—C2 104.54 (18) C4—C5—H52 110.7
C3—C2—C1 106.30 (19) C1—C5—H52 110.7
C3—C2—H21 110.5 H51—C5—H52 108.8
C1—C2—H21 110.5 O1—C6—C1 113.57 (18)
C3—C2—H22 110.5 O1—C6—H61 108.9
C1—C2—H22 110.5 C1—C6—H61 108.9
H21—C2—H22 108.7 O1—C6—H62 108.9
C4—C3—C2 103.7 (2) C1—C6—H62 108.9
C4—C3—H31 111.0 H61—C6—H62 107.7
C2—C3—H31 111.0 O2—C7—C1 112.37 (18)
C4—C3—H32 111.0 O2—C7—H71 109.1
C2—C3—H32 111.0 C1—C7—H71 109.1
H31—C3—H32 109.0 O2—C7—H72 109.1
C3—C4—C5 103.1 (2) C1—C7—H72 109.1
C3—C4—H41 111.2 H71—C7—H72 107.9
C6—C1—C2—C3 125.3 (2) C2—C1—C5—C4 19.5 (2)
C7—C1—C2—C3 −112.5 (2) C7—C1—C6—O1 57.0 (2)
C5—C1—C2—C3 6.1 (2) C5—C1—C6—O1 −64.6 (2)
C1—C2—C3—C4 −29.5 (2) C2—C1—C6—O1 −179.48 (17)
C2—C3—C4—C5 41.6 (3) C6—C1—C7—O2 53.2 (2)
C3—C4—C5—C1 −38.0 (3) C5—C1—C7—O2 175.88 (19)
C6—C1—C5—C4 −98.3 (2) C2—C1—C7—O2 −68.5 (2)
C7—C1—C5—C4 140.0 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···O2i 0.84 1.91 2.720 (2) 163
O2—H2···O1ii 0.84 1.88 2.691 (2) 161

Symmetry codes: (i) −x+1, −y+1, −z; (ii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2170).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  2. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  3. Domin, D., Benito-Garagorri, D., Mereiter, K., Froehlich, J. & Kirchner, K. (2005). Organometallics, 24, 3957–3965.
  4. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Klüfers, P. & Vogler, C. (2007). Z. Anorg. Allg. Chem.633, 908–912.
  7. Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Wender, P. A., Glorius, F., Husfeld, C. O., Langkopf, E. & Love, J. A. (1999). J. Am. Chem. Soc.121, 5348–5349.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809001330/zl2170sup1.cif

e-65-0o479-sup1.cif (13.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809001330/zl2170Isup2.hkl

e-65-0o479-Isup2.hkl (83.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES