Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Feb 18;65(Pt 3):m279. doi: 10.1107/S1600536809004577

Bis(3,5-dimethyl-1H-pyrazole-κN 2)(pyridine-2,6-dicarboxyl­ato-κ3 O 2,N,O 6)copper(II)

Yuan-Yuan Lin a, Yan-Ping Yu a, Bing-Xin Liu a,*, Liang-Jun Zhang b
PMCID: PMC2968447  PMID: 21582065

Abstract

In the crystal structure of the title compound, [Cu(C7H3NO4)(C5H8N2)2], the CuII cation assumes a distorted trigonal–bipyramidal coordination geometry formed by a pyridine-2,6-dicarboxyl­ate dianion and two 3,5-dimethyl-1H-pyrazole mol­ecules. N—H⋯O hydrogen bonding is present in the crystal structure.

Related literature

For general background, see: Haanstra et al. (1990); Mukherjee (2000).graphic file with name e-65-0m279-scheme1.jpg

Experimental

Crystal data

  • [Cu(C7H3NO4)(C5H8N2)2]

  • M r = 420.91

  • Triclinic, Inline graphic

  • a = 8.4572 (12) Å

  • b = 8.5083 (12) Å

  • c = 13.942 (2) Å

  • α = 72.986 (2)°

  • β = 85.500 (2)°

  • γ = 66.760 (2)°

  • V = 880.7 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.28 mm−1

  • T = 295 K

  • 0.23 × 0.15 × 0.13 mm

Data collection

  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.775, T max = 0.845

  • 4570 measured reflections

  • 3036 independent reflections

  • 2497 reflections with I > 2σ(I)

  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.106

  • S = 1.05

  • 3036 reflections

  • 248 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.55 e Å−3

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809004577/xu2458sup1.cif

e-65-0m279-sup1.cif (18.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809004577/xu2458Isup2.hkl

e-65-0m279-Isup2.hkl (145.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Cu—N11 1.917 (3)
Cu—N21 2.172 (3)
Cu—N31 1.994 (3)
Cu—O11 2.025 (2)
Cu—O13 2.006 (2)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N22—H22A⋯O14i 0.86 2.10 2.888 (4) 151
N32—H32A⋯O12ii 0.86 2.06 2.860 (4) 155

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This project was supported by the Educational Development Foundation of Shanghai Educational Committee, China (grant No. AB0448).

supplementary crystallographic information

Comment

Complexes with pyrazole-based ligands are a frequent subject of chemical investigations giving an opportunity for a better understanding the relationship between the structure and the activity of the active site of metalloproteins (Haanstra et al., 1990). Nowadays, attention is paid to the design of various pyrazole ligands with special structural properties to fulfill the specific stereochemical requirements of a particular metal-binding site (Mukherjee, 2000). In our systematic studies on transition metal complexes with the pyrazole derivatives, the title compound was prepared and its X-ray structure is presented here.

The molecular structure of the title compound is shown in Fig. 1. The compound assumes a distorted triangular bipyramid coordination geometry (Table 1), formed by a pyridine-2,6-dicarboxylate dianion and two 3,5-dimethyl-1-H-pyrazole molecules. Tridentate ligand pyridine-2,6-dicarboxylate dianion chelates to the Cu atom by a N atom of pyridine ring and two O atoms of carboxyl groups with a meridional configuration. Monodentate ligand 3,5-dimethyl-1-H-pyrazole coordinated to the Cu atom by N atoms of pyrazole rings with the 1.917 (3) Å and 1.994 (3) Å of Cu—N bound distance. The adjacent molecules are linked together via N—H···O hydrogen bonding (Table 2) between carboxy groups of pyridine-2,6-dicarboxylate dianion and uncoordinated N atom of 3,5-dimethyl-1-H-pyrazoleto, forming the supra-molecular structure (Fig. 2).

Experimental

An ethanol–water solution (1:1, 20 ml) containing 1-carboxamide-3,5-dimethylpyrazole (0.14 g, 1 mmol) and CuCl2.2H2O (0.17 g, 1 mmol) was mixed with an aqueous solution (10 ml) of pyridine-2,3-dicarboxylic acid (0.17 g, 1 mmol) and NaOH (0.08 g, 2 mmol). The mixture was refluxed for 6 h. After cooling to room temperature the solution was filtered. Single crystals were obtained from the filtrate after 3 d.

Refinement

Methyl H were placed in calculated positions with C—H = 0.96 Å and torsion angles were refined to fit the electron density, Uiso(H) = 1.5Ueq(C). Other H atoms were placed in calculated positions with C—H = 0.93 Å and N—H = 0.86 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The unit cell packing diagram showing hydrogen bonding (dashed lines).

Crystal data

[Cu(C7H3NO4)(C5H8N2)2] Z = 2
Mr = 420.91 F(000) = 434
Triclinic, P1 Dx = 1.587 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.4572 (12) Å Cell parameters from 2980 reflections
b = 8.5083 (12) Å θ = 2.0–25.0°
c = 13.942 (2) Å µ = 1.27 mm1
α = 72.986 (2)° T = 295 K
β = 85.500 (2)° Prism, blue
γ = 66.760 (2)° 0.23 × 0.15 × 0.13 mm
V = 880.7 (2) Å3

Data collection

Bruker APEX CCD diffractometer 3036 independent reflections
Radiation source: fine-focus sealed tube 2497 reflections with I > 2σ(I)
graphite Rint = 0.020
φ and ω scans θmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −7→10
Tmin = 0.775, Tmax = 0.845 k = −8→10
4570 measured reflections l = −16→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.044P)2 + 0.8468P] where P = (Fo2 + 2Fc2)/3
3036 reflections (Δ/σ)max < 0.001
248 parameters Δρmax = 0.67 e Å3
0 restraints Δρmin = −0.55 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu 0.48595 (5) 0.08560 (6) 0.27695 (4) 0.03571 (17)
O11 0.6674 (3) 0.1852 (3) 0.2773 (2) 0.0441 (7)
O12 0.9462 (3) 0.1267 (4) 0.2534 (2) 0.0532 (8)
O13 0.3807 (3) −0.0884 (3) 0.2770 (2) 0.0422 (6)
O14 0.4427 (4) −0.3530 (4) 0.2516 (2) 0.0509 (7)
N11 0.6858 (3) −0.1038 (4) 0.2513 (2) 0.0293 (6)
N21 0.3623 (4) 0.2984 (4) 0.1424 (2) 0.0337 (7)
N22 0.3694 (4) 0.4602 (4) 0.1294 (2) 0.0350 (7)
H22A 0.4223 0.4823 0.1709 0.042*
N31 0.3204 (3) 0.1863 (4) 0.3744 (2) 0.0314 (7)
N32 0.1637 (3) 0.1746 (4) 0.3799 (2) 0.0331 (7)
H32A 0.1283 0.1307 0.3419 0.040*
C11 0.8379 (4) −0.0898 (5) 0.2490 (3) 0.0347 (8)
C12 0.9861 (5) −0.2312 (5) 0.2403 (3) 0.0443 (10)
H12 1.0932 −0.2237 0.2375 0.053*
C13 0.9699 (5) −0.3839 (5) 0.2359 (3) 0.0512 (11)
H13 1.0683 −0.4808 0.2303 0.061*
C14 0.8112 (5) −0.3972 (5) 0.2396 (3) 0.0437 (10)
H14 0.8016 −0.5008 0.2365 0.052*
C15 0.6684 (4) −0.2511 (4) 0.2481 (2) 0.0328 (8)
C16 0.8196 (4) 0.0886 (5) 0.2600 (3) 0.0363 (8)
C17 0.4818 (5) −0.2331 (5) 0.2587 (3) 0.0350 (8)
C21 0.2857 (5) 0.5808 (5) 0.0456 (3) 0.0375 (8)
C22 0.2196 (5) 0.4948 (5) 0.0004 (3) 0.0424 (9)
H22 0.1546 0.5431 −0.0597 0.051*
C23 0.2699 (5) 0.3211 (5) 0.0628 (3) 0.0377 (9)
C24 0.2736 (6) 0.7685 (5) 0.0153 (3) 0.0524 (11)
H24A 0.2520 0.8126 0.0731 0.079*
H24B 0.1810 0.8414 −0.0340 0.079*
H24C 0.3798 0.7723 −0.0126 0.079*
C25 0.2362 (6) 0.1690 (6) 0.0483 (3) 0.0555 (11)
H25A 0.1908 0.1150 0.1082 0.083*
H25B 0.3418 0.0819 0.0341 0.083*
H25C 0.1543 0.2128 −0.0069 0.083*
C31 0.0715 (4) 0.2404 (5) 0.4523 (3) 0.0344 (8)
C32 0.1727 (4) 0.2944 (5) 0.4958 (3) 0.0361 (8)
H32 0.1444 0.3447 0.5489 0.043*
C33 0.3257 (4) 0.2602 (4) 0.4457 (2) 0.0300 (8)
C34 −0.1051 (4) 0.2448 (6) 0.4742 (3) 0.0463 (10)
H34A −0.1235 0.1620 0.4466 0.069*
H34B −0.1884 0.3630 0.4445 0.069*
H34C −0.1174 0.2121 0.5455 0.069*
C35 0.4794 (5) 0.2936 (6) 0.4643 (3) 0.0458 (10)
H35A 0.5760 0.1819 0.4864 0.069*
H35B 0.4554 0.3548 0.5150 0.069*
H35C 0.5057 0.3658 0.4033 0.069*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu 0.0240 (2) 0.0284 (3) 0.0603 (3) −0.01015 (18) 0.00311 (19) −0.0211 (2)
O11 0.0298 (13) 0.0415 (15) 0.0719 (19) −0.0164 (12) 0.0073 (13) −0.0298 (14)
O12 0.0338 (15) 0.074 (2) 0.070 (2) −0.0317 (14) 0.0095 (13) −0.0341 (16)
O13 0.0317 (13) 0.0328 (14) 0.0679 (18) −0.0128 (11) −0.0016 (12) −0.0216 (13)
O14 0.0624 (18) 0.0405 (16) 0.0659 (19) −0.0304 (14) 0.0011 (14) −0.0235 (14)
N11 0.0264 (14) 0.0292 (15) 0.0309 (15) −0.0084 (12) 0.0004 (12) −0.0099 (12)
N21 0.0346 (16) 0.0286 (16) 0.0452 (18) −0.0157 (13) 0.0031 (14) −0.0168 (13)
N22 0.0402 (17) 0.0316 (16) 0.0422 (18) −0.0195 (14) 0.0032 (14) −0.0159 (14)
N31 0.0228 (14) 0.0334 (16) 0.0435 (17) −0.0137 (12) 0.0031 (12) −0.0154 (13)
N32 0.0275 (15) 0.0378 (17) 0.0418 (18) −0.0177 (13) 0.0037 (13) −0.0163 (14)
C11 0.0294 (18) 0.041 (2) 0.0299 (19) −0.0110 (16) 0.0026 (15) −0.0092 (16)
C12 0.0291 (19) 0.052 (3) 0.044 (2) −0.0086 (18) 0.0083 (17) −0.0135 (19)
C13 0.046 (2) 0.040 (2) 0.049 (2) 0.0004 (19) 0.0159 (19) −0.0142 (19)
C14 0.054 (2) 0.030 (2) 0.042 (2) −0.0102 (18) 0.0095 (19) −0.0140 (17)
C15 0.042 (2) 0.0288 (19) 0.0280 (18) −0.0117 (16) 0.0020 (15) −0.0115 (15)
C16 0.0307 (19) 0.045 (2) 0.038 (2) −0.0175 (17) −0.0014 (16) −0.0151 (17)
C17 0.044 (2) 0.0299 (19) 0.033 (2) −0.0163 (17) −0.0036 (16) −0.0080 (15)
C21 0.042 (2) 0.033 (2) 0.040 (2) −0.0161 (17) 0.0095 (17) −0.0135 (17)
C22 0.051 (2) 0.041 (2) 0.040 (2) −0.0217 (19) −0.0025 (18) −0.0133 (18)
C23 0.042 (2) 0.034 (2) 0.042 (2) −0.0176 (17) 0.0028 (17) −0.0149 (17)
C24 0.072 (3) 0.034 (2) 0.054 (3) −0.026 (2) 0.004 (2) −0.0104 (19)
C25 0.072 (3) 0.047 (3) 0.063 (3) −0.032 (2) −0.010 (2) −0.022 (2)
C31 0.0277 (18) 0.034 (2) 0.041 (2) −0.0130 (16) 0.0045 (15) −0.0096 (16)
C32 0.039 (2) 0.044 (2) 0.033 (2) −0.0211 (18) 0.0062 (16) −0.0168 (16)
C33 0.0290 (18) 0.0294 (18) 0.0334 (19) −0.0135 (15) −0.0015 (15) −0.0077 (15)
C34 0.032 (2) 0.054 (3) 0.061 (3) −0.0224 (19) 0.0146 (18) −0.022 (2)
C35 0.038 (2) 0.060 (3) 0.053 (2) −0.028 (2) 0.0018 (18) −0.025 (2)

Geometric parameters (Å, °)

Cu—N11 1.917 (3) C14—C15 1.377 (5)
Cu—N21 2.172 (3) C14—H14 0.9300
Cu—N31 1.994 (3) C15—C17 1.523 (5)
Cu—O11 2.025 (2) C21—C22 1.376 (5)
Cu—O13 2.006 (2) C21—C24 1.491 (5)
O11—C16 1.274 (4) C22—C23 1.390 (5)
O12—C16 1.225 (4) C22—H22 0.9300
O13—C17 1.277 (4) C23—C25 1.500 (5)
O14—C17 1.221 (4) C24—H24A 0.9600
N11—C15 1.332 (4) C24—H24B 0.9600
N11—C11 1.334 (4) C24—H24C 0.9600
N21—C23 1.331 (4) C25—H25A 0.9600
N21—N22 1.360 (4) C25—H25B 0.9600
N22—C21 1.332 (5) C25—H25C 0.9600
N22—H22A 0.8600 C31—C32 1.366 (5)
N31—C33 1.335 (4) C31—C34 1.489 (5)
N31—N32 1.362 (3) C32—C33 1.388 (5)
N32—C31 1.343 (4) C32—H32 0.9300
N32—H32A 0.8600 C33—C35 1.492 (4)
C11—C12 1.380 (5) C34—H34A 0.9600
C11—C16 1.516 (5) C34—H34B 0.9600
C12—C13 1.378 (6) C34—H34C 0.9600
C12—H12 0.9300 C35—H35A 0.9600
C13—C14 1.387 (6) C35—H35B 0.9600
C13—H13 0.9300 C35—H35C 0.9600
N11—Cu—N31 149.17 (12) O14—C17—O13 126.4 (4)
N11—Cu—O13 80.43 (11) O14—C17—C15 119.8 (3)
N31—Cu—O13 92.70 (11) O13—C17—C15 113.7 (3)
N11—Cu—O11 79.88 (11) N22—C21—C22 106.1 (3)
N31—Cu—O11 102.35 (10) N22—C21—C24 122.8 (3)
O13—Cu—O11 159.96 (10) C22—C21—C24 131.1 (4)
N11—Cu—N21 113.60 (11) C21—C22—C23 105.9 (3)
N31—Cu—N21 97.19 (11) C21—C22—H22 127.0
O13—Cu—N21 101.01 (10) C23—C22—H22 127.0
O11—Cu—N21 90.27 (11) N21—C23—C22 110.8 (3)
C16—O11—Cu 115.7 (2) N21—C23—C25 120.8 (3)
C17—O13—Cu 116.0 (2) C22—C23—C25 128.4 (3)
C15—N11—C11 123.2 (3) C21—C24—H24A 109.5
C15—N11—Cu 117.9 (2) C21—C24—H24B 109.5
C11—N11—Cu 118.4 (2) H24A—C24—H24B 109.5
C23—N21—N22 104.5 (3) C21—C24—H24C 109.5
C23—N21—Cu 137.2 (2) H24A—C24—H24C 109.5
N22—N21—Cu 118.3 (2) H24B—C24—H24C 109.5
C21—N22—N21 112.7 (3) C23—C25—H25A 109.5
C21—N22—H22A 123.6 C23—C25—H25B 109.5
N21—N22—H22A 123.6 H25A—C25—H25B 109.5
C33—N31—N32 105.7 (3) C23—C25—H25C 109.5
C33—N31—Cu 135.3 (2) H25A—C25—H25C 109.5
N32—N31—Cu 118.9 (2) H25B—C25—H25C 109.5
C31—N32—N31 111.4 (3) N32—C31—C32 106.3 (3)
C31—N32—H32A 124.3 N32—C31—C34 122.6 (3)
N31—N32—H32A 124.3 C32—C31—C34 131.1 (3)
N11—C11—C12 119.7 (3) C31—C32—C33 107.0 (3)
N11—C11—C16 111.7 (3) C31—C32—H32 126.5
C12—C11—C16 128.6 (3) C33—C32—H32 126.5
C13—C12—C11 117.7 (4) N31—C33—C32 109.5 (3)
C13—C12—H12 121.1 N31—C33—C35 121.9 (3)
C11—C12—H12 121.1 C32—C33—C35 128.5 (3)
C12—C13—C14 121.9 (3) C31—C34—H34A 109.5
C12—C13—H13 119.0 C31—C34—H34B 109.5
C14—C13—H13 119.0 H34A—C34—H34B 109.5
C15—C14—C13 117.4 (4) C31—C34—H34C 109.5
C15—C14—H14 121.3 H34A—C34—H34C 109.5
C13—C14—H14 121.3 H34B—C34—H34C 109.5
N11—C15—C14 120.0 (3) C33—C35—H35A 109.5
N11—C15—C17 111.8 (3) C33—C35—H35B 109.5
C14—C15—C17 128.2 (3) H35A—C35—H35B 109.5
O12—C16—O11 126.2 (3) C33—C35—H35C 109.5
O12—C16—C11 119.7 (3) H35A—C35—H35C 109.5
O11—C16—C11 114.1 (3) H35B—C35—H35C 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N22—H22A···O14i 0.86 2.10 2.888 (4) 151
N32—H32A···O12ii 0.86 2.06 2.860 (4) 155

Symmetry codes: (i) x, y+1, z; (ii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2458).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
  2. Bruker (2004). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  5. Haanstra, W. G., Van der Donk, W. A. J. W., Driessen, W. L., Reedijk, J., Wood, J. S. & Drew, M. G. B. (1990). J. Chem. Soc. Dalton Trans. pp. 3123–3128.
  6. Mukherjee, R. (2000). Coord. Chem. Rev.203, 151–218.
  7. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809004577/xu2458sup1.cif

e-65-0m279-sup1.cif (18.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809004577/xu2458Isup2.hkl

e-65-0m279-Isup2.hkl (145.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES