Abstract
In the crystal structure of the title compound, [Cu(C7H3NO4)(C5H8N2)2], the CuII cation assumes a distorted trigonal–bipyramidal coordination geometry formed by a pyridine-2,6-dicarboxylate dianion and two 3,5-dimethyl-1H-pyrazole molecules. N—H⋯O hydrogen bonding is present in the crystal structure.
Related literature
For general background, see: Haanstra et al. (1990 ▶); Mukherjee (2000 ▶).
Experimental
Crystal data
[Cu(C7H3NO4)(C5H8N2)2]
M r = 420.91
Triclinic,
a = 8.4572 (12) Å
b = 8.5083 (12) Å
c = 13.942 (2) Å
α = 72.986 (2)°
β = 85.500 (2)°
γ = 66.760 (2)°
V = 880.7 (2) Å3
Z = 2
Mo Kα radiation
μ = 1.28 mm−1
T = 295 K
0.23 × 0.15 × 0.13 mm
Data collection
Bruker APEX CCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996 ▶) T min = 0.775, T max = 0.845
4570 measured reflections
3036 independent reflections
2497 reflections with I > 2σ(I)
R int = 0.020
Refinement
R[F 2 > 2σ(F 2)] = 0.044
wR(F 2) = 0.106
S = 1.05
3036 reflections
248 parameters
H-atom parameters constrained
Δρmax = 0.67 e Å−3
Δρmin = −0.55 e Å−3
Data collection: SMART (Bruker, 2004 ▶); cell refinement: SAINT (Bruker, 2004 ▶); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 ▶); software used to prepare material for publication: WinGX (Farrugia, 1999 ▶).
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809004577/xu2458sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809004577/xu2458Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Selected bond lengths (Å).
| Cu—N11 | 1.917 (3) |
| Cu—N21 | 2.172 (3) |
| Cu—N31 | 1.994 (3) |
| Cu—O11 | 2.025 (2) |
| Cu—O13 | 2.006 (2) |
Table 2. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N22—H22A⋯O14i | 0.86 | 2.10 | 2.888 (4) | 151 |
| N32—H32A⋯O12ii | 0.86 | 2.06 | 2.860 (4) | 155 |
Symmetry codes: (i)
; (ii)
.
Acknowledgments
This project was supported by the Educational Development Foundation of Shanghai Educational Committee, China (grant No. AB0448).
supplementary crystallographic information
Comment
Complexes with pyrazole-based ligands are a frequent subject of chemical investigations giving an opportunity for a better understanding the relationship between the structure and the activity of the active site of metalloproteins (Haanstra et al., 1990). Nowadays, attention is paid to the design of various pyrazole ligands with special structural properties to fulfill the specific stereochemical requirements of a particular metal-binding site (Mukherjee, 2000). In our systematic studies on transition metal complexes with the pyrazole derivatives, the title compound was prepared and its X-ray structure is presented here.
The molecular structure of the title compound is shown in Fig. 1. The compound assumes a distorted triangular bipyramid coordination geometry (Table 1), formed by a pyridine-2,6-dicarboxylate dianion and two 3,5-dimethyl-1-H-pyrazole molecules. Tridentate ligand pyridine-2,6-dicarboxylate dianion chelates to the Cu atom by a N atom of pyridine ring and two O atoms of carboxyl groups with a meridional configuration. Monodentate ligand 3,5-dimethyl-1-H-pyrazole coordinated to the Cu atom by N atoms of pyrazole rings with the 1.917 (3) Å and 1.994 (3) Å of Cu—N bound distance. The adjacent molecules are linked together via N—H···O hydrogen bonding (Table 2) between carboxy groups of pyridine-2,6-dicarboxylate dianion and uncoordinated N atom of 3,5-dimethyl-1-H-pyrazoleto, forming the supra-molecular structure (Fig. 2).
Experimental
An ethanol–water solution (1:1, 20 ml) containing 1-carboxamide-3,5-dimethylpyrazole (0.14 g, 1 mmol) and CuCl2.2H2O (0.17 g, 1 mmol) was mixed with an aqueous solution (10 ml) of pyridine-2,3-dicarboxylic acid (0.17 g, 1 mmol) and NaOH (0.08 g, 2 mmol). The mixture was refluxed for 6 h. After cooling to room temperature the solution was filtered. Single crystals were obtained from the filtrate after 3 d.
Refinement
Methyl H were placed in calculated positions with C—H = 0.96 Å and torsion angles were refined to fit the electron density, Uiso(H) = 1.5Ueq(C). Other H atoms were placed in calculated positions with C—H = 0.93 Å and N—H = 0.86 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C,N).
Figures
Fig. 1.
The molecular structure of (I) with 30% probability displacement ellipsoids.
Fig. 2.
The unit cell packing diagram showing hydrogen bonding (dashed lines).
Crystal data
| [Cu(C7H3NO4)(C5H8N2)2] | Z = 2 |
| Mr = 420.91 | F(000) = 434 |
| Triclinic, P1 | Dx = 1.587 Mg m−3 |
| Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
| a = 8.4572 (12) Å | Cell parameters from 2980 reflections |
| b = 8.5083 (12) Å | θ = 2.0–25.0° |
| c = 13.942 (2) Å | µ = 1.27 mm−1 |
| α = 72.986 (2)° | T = 295 K |
| β = 85.500 (2)° | Prism, blue |
| γ = 66.760 (2)° | 0.23 × 0.15 × 0.13 mm |
| V = 880.7 (2) Å3 |
Data collection
| Bruker APEX CCD diffractometer | 3036 independent reflections |
| Radiation source: fine-focus sealed tube | 2497 reflections with I > 2σ(I) |
| graphite | Rint = 0.020 |
| φ and ω scans | θmax = 25.0°, θmin = 2.6° |
| Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −7→10 |
| Tmin = 0.775, Tmax = 0.845 | k = −8→10 |
| 4570 measured reflections | l = −16→14 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.106 | H-atom parameters constrained |
| S = 1.05 | w = 1/[σ2(Fo2) + (0.044P)2 + 0.8468P] where P = (Fo2 + 2Fc2)/3 |
| 3036 reflections | (Δ/σ)max < 0.001 |
| 248 parameters | Δρmax = 0.67 e Å−3 |
| 0 restraints | Δρmin = −0.55 e Å−3 |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Cu | 0.48595 (5) | 0.08560 (6) | 0.27695 (4) | 0.03571 (17) | |
| O11 | 0.6674 (3) | 0.1852 (3) | 0.2773 (2) | 0.0441 (7) | |
| O12 | 0.9462 (3) | 0.1267 (4) | 0.2534 (2) | 0.0532 (8) | |
| O13 | 0.3807 (3) | −0.0884 (3) | 0.2770 (2) | 0.0422 (6) | |
| O14 | 0.4427 (4) | −0.3530 (4) | 0.2516 (2) | 0.0509 (7) | |
| N11 | 0.6858 (3) | −0.1038 (4) | 0.2513 (2) | 0.0293 (6) | |
| N21 | 0.3623 (4) | 0.2984 (4) | 0.1424 (2) | 0.0337 (7) | |
| N22 | 0.3694 (4) | 0.4602 (4) | 0.1294 (2) | 0.0350 (7) | |
| H22A | 0.4223 | 0.4823 | 0.1709 | 0.042* | |
| N31 | 0.3204 (3) | 0.1863 (4) | 0.3744 (2) | 0.0314 (7) | |
| N32 | 0.1637 (3) | 0.1746 (4) | 0.3799 (2) | 0.0331 (7) | |
| H32A | 0.1283 | 0.1307 | 0.3419 | 0.040* | |
| C11 | 0.8379 (4) | −0.0898 (5) | 0.2490 (3) | 0.0347 (8) | |
| C12 | 0.9861 (5) | −0.2312 (5) | 0.2403 (3) | 0.0443 (10) | |
| H12 | 1.0932 | −0.2237 | 0.2375 | 0.053* | |
| C13 | 0.9699 (5) | −0.3839 (5) | 0.2359 (3) | 0.0512 (11) | |
| H13 | 1.0683 | −0.4808 | 0.2303 | 0.061* | |
| C14 | 0.8112 (5) | −0.3972 (5) | 0.2396 (3) | 0.0437 (10) | |
| H14 | 0.8016 | −0.5008 | 0.2365 | 0.052* | |
| C15 | 0.6684 (4) | −0.2511 (4) | 0.2481 (2) | 0.0328 (8) | |
| C16 | 0.8196 (4) | 0.0886 (5) | 0.2600 (3) | 0.0363 (8) | |
| C17 | 0.4818 (5) | −0.2331 (5) | 0.2587 (3) | 0.0350 (8) | |
| C21 | 0.2857 (5) | 0.5808 (5) | 0.0456 (3) | 0.0375 (8) | |
| C22 | 0.2196 (5) | 0.4948 (5) | 0.0004 (3) | 0.0424 (9) | |
| H22 | 0.1546 | 0.5431 | −0.0597 | 0.051* | |
| C23 | 0.2699 (5) | 0.3211 (5) | 0.0628 (3) | 0.0377 (9) | |
| C24 | 0.2736 (6) | 0.7685 (5) | 0.0153 (3) | 0.0524 (11) | |
| H24A | 0.2520 | 0.8126 | 0.0731 | 0.079* | |
| H24B | 0.1810 | 0.8414 | −0.0340 | 0.079* | |
| H24C | 0.3798 | 0.7723 | −0.0126 | 0.079* | |
| C25 | 0.2362 (6) | 0.1690 (6) | 0.0483 (3) | 0.0555 (11) | |
| H25A | 0.1908 | 0.1150 | 0.1082 | 0.083* | |
| H25B | 0.3418 | 0.0819 | 0.0341 | 0.083* | |
| H25C | 0.1543 | 0.2128 | −0.0069 | 0.083* | |
| C31 | 0.0715 (4) | 0.2404 (5) | 0.4523 (3) | 0.0344 (8) | |
| C32 | 0.1727 (4) | 0.2944 (5) | 0.4958 (3) | 0.0361 (8) | |
| H32 | 0.1444 | 0.3447 | 0.5489 | 0.043* | |
| C33 | 0.3257 (4) | 0.2602 (4) | 0.4457 (2) | 0.0300 (8) | |
| C34 | −0.1051 (4) | 0.2448 (6) | 0.4742 (3) | 0.0463 (10) | |
| H34A | −0.1235 | 0.1620 | 0.4466 | 0.069* | |
| H34B | −0.1884 | 0.3630 | 0.4445 | 0.069* | |
| H34C | −0.1174 | 0.2121 | 0.5455 | 0.069* | |
| C35 | 0.4794 (5) | 0.2936 (6) | 0.4643 (3) | 0.0458 (10) | |
| H35A | 0.5760 | 0.1819 | 0.4864 | 0.069* | |
| H35B | 0.4554 | 0.3548 | 0.5150 | 0.069* | |
| H35C | 0.5057 | 0.3658 | 0.4033 | 0.069* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Cu | 0.0240 (2) | 0.0284 (3) | 0.0603 (3) | −0.01015 (18) | 0.00311 (19) | −0.0211 (2) |
| O11 | 0.0298 (13) | 0.0415 (15) | 0.0719 (19) | −0.0164 (12) | 0.0073 (13) | −0.0298 (14) |
| O12 | 0.0338 (15) | 0.074 (2) | 0.070 (2) | −0.0317 (14) | 0.0095 (13) | −0.0341 (16) |
| O13 | 0.0317 (13) | 0.0328 (14) | 0.0679 (18) | −0.0128 (11) | −0.0016 (12) | −0.0216 (13) |
| O14 | 0.0624 (18) | 0.0405 (16) | 0.0659 (19) | −0.0304 (14) | 0.0011 (14) | −0.0235 (14) |
| N11 | 0.0264 (14) | 0.0292 (15) | 0.0309 (15) | −0.0084 (12) | 0.0004 (12) | −0.0099 (12) |
| N21 | 0.0346 (16) | 0.0286 (16) | 0.0452 (18) | −0.0157 (13) | 0.0031 (14) | −0.0168 (13) |
| N22 | 0.0402 (17) | 0.0316 (16) | 0.0422 (18) | −0.0195 (14) | 0.0032 (14) | −0.0159 (14) |
| N31 | 0.0228 (14) | 0.0334 (16) | 0.0435 (17) | −0.0137 (12) | 0.0031 (12) | −0.0154 (13) |
| N32 | 0.0275 (15) | 0.0378 (17) | 0.0418 (18) | −0.0177 (13) | 0.0037 (13) | −0.0163 (14) |
| C11 | 0.0294 (18) | 0.041 (2) | 0.0299 (19) | −0.0110 (16) | 0.0026 (15) | −0.0092 (16) |
| C12 | 0.0291 (19) | 0.052 (3) | 0.044 (2) | −0.0086 (18) | 0.0083 (17) | −0.0135 (19) |
| C13 | 0.046 (2) | 0.040 (2) | 0.049 (2) | 0.0004 (19) | 0.0159 (19) | −0.0142 (19) |
| C14 | 0.054 (2) | 0.030 (2) | 0.042 (2) | −0.0102 (18) | 0.0095 (19) | −0.0140 (17) |
| C15 | 0.042 (2) | 0.0288 (19) | 0.0280 (18) | −0.0117 (16) | 0.0020 (15) | −0.0115 (15) |
| C16 | 0.0307 (19) | 0.045 (2) | 0.038 (2) | −0.0175 (17) | −0.0014 (16) | −0.0151 (17) |
| C17 | 0.044 (2) | 0.0299 (19) | 0.033 (2) | −0.0163 (17) | −0.0036 (16) | −0.0080 (15) |
| C21 | 0.042 (2) | 0.033 (2) | 0.040 (2) | −0.0161 (17) | 0.0095 (17) | −0.0135 (17) |
| C22 | 0.051 (2) | 0.041 (2) | 0.040 (2) | −0.0217 (19) | −0.0025 (18) | −0.0133 (18) |
| C23 | 0.042 (2) | 0.034 (2) | 0.042 (2) | −0.0176 (17) | 0.0028 (17) | −0.0149 (17) |
| C24 | 0.072 (3) | 0.034 (2) | 0.054 (3) | −0.026 (2) | 0.004 (2) | −0.0104 (19) |
| C25 | 0.072 (3) | 0.047 (3) | 0.063 (3) | −0.032 (2) | −0.010 (2) | −0.022 (2) |
| C31 | 0.0277 (18) | 0.034 (2) | 0.041 (2) | −0.0130 (16) | 0.0045 (15) | −0.0096 (16) |
| C32 | 0.039 (2) | 0.044 (2) | 0.033 (2) | −0.0211 (18) | 0.0062 (16) | −0.0168 (16) |
| C33 | 0.0290 (18) | 0.0294 (18) | 0.0334 (19) | −0.0135 (15) | −0.0015 (15) | −0.0077 (15) |
| C34 | 0.032 (2) | 0.054 (3) | 0.061 (3) | −0.0224 (19) | 0.0146 (18) | −0.022 (2) |
| C35 | 0.038 (2) | 0.060 (3) | 0.053 (2) | −0.028 (2) | 0.0018 (18) | −0.025 (2) |
Geometric parameters (Å, °)
| Cu—N11 | 1.917 (3) | C14—C15 | 1.377 (5) |
| Cu—N21 | 2.172 (3) | C14—H14 | 0.9300 |
| Cu—N31 | 1.994 (3) | C15—C17 | 1.523 (5) |
| Cu—O11 | 2.025 (2) | C21—C22 | 1.376 (5) |
| Cu—O13 | 2.006 (2) | C21—C24 | 1.491 (5) |
| O11—C16 | 1.274 (4) | C22—C23 | 1.390 (5) |
| O12—C16 | 1.225 (4) | C22—H22 | 0.9300 |
| O13—C17 | 1.277 (4) | C23—C25 | 1.500 (5) |
| O14—C17 | 1.221 (4) | C24—H24A | 0.9600 |
| N11—C15 | 1.332 (4) | C24—H24B | 0.9600 |
| N11—C11 | 1.334 (4) | C24—H24C | 0.9600 |
| N21—C23 | 1.331 (4) | C25—H25A | 0.9600 |
| N21—N22 | 1.360 (4) | C25—H25B | 0.9600 |
| N22—C21 | 1.332 (5) | C25—H25C | 0.9600 |
| N22—H22A | 0.8600 | C31—C32 | 1.366 (5) |
| N31—C33 | 1.335 (4) | C31—C34 | 1.489 (5) |
| N31—N32 | 1.362 (3) | C32—C33 | 1.388 (5) |
| N32—C31 | 1.343 (4) | C32—H32 | 0.9300 |
| N32—H32A | 0.8600 | C33—C35 | 1.492 (4) |
| C11—C12 | 1.380 (5) | C34—H34A | 0.9600 |
| C11—C16 | 1.516 (5) | C34—H34B | 0.9600 |
| C12—C13 | 1.378 (6) | C34—H34C | 0.9600 |
| C12—H12 | 0.9300 | C35—H35A | 0.9600 |
| C13—C14 | 1.387 (6) | C35—H35B | 0.9600 |
| C13—H13 | 0.9300 | C35—H35C | 0.9600 |
| N11—Cu—N31 | 149.17 (12) | O14—C17—O13 | 126.4 (4) |
| N11—Cu—O13 | 80.43 (11) | O14—C17—C15 | 119.8 (3) |
| N31—Cu—O13 | 92.70 (11) | O13—C17—C15 | 113.7 (3) |
| N11—Cu—O11 | 79.88 (11) | N22—C21—C22 | 106.1 (3) |
| N31—Cu—O11 | 102.35 (10) | N22—C21—C24 | 122.8 (3) |
| O13—Cu—O11 | 159.96 (10) | C22—C21—C24 | 131.1 (4) |
| N11—Cu—N21 | 113.60 (11) | C21—C22—C23 | 105.9 (3) |
| N31—Cu—N21 | 97.19 (11) | C21—C22—H22 | 127.0 |
| O13—Cu—N21 | 101.01 (10) | C23—C22—H22 | 127.0 |
| O11—Cu—N21 | 90.27 (11) | N21—C23—C22 | 110.8 (3) |
| C16—O11—Cu | 115.7 (2) | N21—C23—C25 | 120.8 (3) |
| C17—O13—Cu | 116.0 (2) | C22—C23—C25 | 128.4 (3) |
| C15—N11—C11 | 123.2 (3) | C21—C24—H24A | 109.5 |
| C15—N11—Cu | 117.9 (2) | C21—C24—H24B | 109.5 |
| C11—N11—Cu | 118.4 (2) | H24A—C24—H24B | 109.5 |
| C23—N21—N22 | 104.5 (3) | C21—C24—H24C | 109.5 |
| C23—N21—Cu | 137.2 (2) | H24A—C24—H24C | 109.5 |
| N22—N21—Cu | 118.3 (2) | H24B—C24—H24C | 109.5 |
| C21—N22—N21 | 112.7 (3) | C23—C25—H25A | 109.5 |
| C21—N22—H22A | 123.6 | C23—C25—H25B | 109.5 |
| N21—N22—H22A | 123.6 | H25A—C25—H25B | 109.5 |
| C33—N31—N32 | 105.7 (3) | C23—C25—H25C | 109.5 |
| C33—N31—Cu | 135.3 (2) | H25A—C25—H25C | 109.5 |
| N32—N31—Cu | 118.9 (2) | H25B—C25—H25C | 109.5 |
| C31—N32—N31 | 111.4 (3) | N32—C31—C32 | 106.3 (3) |
| C31—N32—H32A | 124.3 | N32—C31—C34 | 122.6 (3) |
| N31—N32—H32A | 124.3 | C32—C31—C34 | 131.1 (3) |
| N11—C11—C12 | 119.7 (3) | C31—C32—C33 | 107.0 (3) |
| N11—C11—C16 | 111.7 (3) | C31—C32—H32 | 126.5 |
| C12—C11—C16 | 128.6 (3) | C33—C32—H32 | 126.5 |
| C13—C12—C11 | 117.7 (4) | N31—C33—C32 | 109.5 (3) |
| C13—C12—H12 | 121.1 | N31—C33—C35 | 121.9 (3) |
| C11—C12—H12 | 121.1 | C32—C33—C35 | 128.5 (3) |
| C12—C13—C14 | 121.9 (3) | C31—C34—H34A | 109.5 |
| C12—C13—H13 | 119.0 | C31—C34—H34B | 109.5 |
| C14—C13—H13 | 119.0 | H34A—C34—H34B | 109.5 |
| C15—C14—C13 | 117.4 (4) | C31—C34—H34C | 109.5 |
| C15—C14—H14 | 121.3 | H34A—C34—H34C | 109.5 |
| C13—C14—H14 | 121.3 | H34B—C34—H34C | 109.5 |
| N11—C15—C14 | 120.0 (3) | C33—C35—H35A | 109.5 |
| N11—C15—C17 | 111.8 (3) | C33—C35—H35B | 109.5 |
| C14—C15—C17 | 128.2 (3) | H35A—C35—H35B | 109.5 |
| O12—C16—O11 | 126.2 (3) | C33—C35—H35C | 109.5 |
| O12—C16—C11 | 119.7 (3) | H35A—C35—H35C | 109.5 |
| O11—C16—C11 | 114.1 (3) | H35B—C35—H35C | 109.5 |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N22—H22A···O14i | 0.86 | 2.10 | 2.888 (4) | 151 |
| N32—H32A···O12ii | 0.86 | 2.06 | 2.860 (4) | 155 |
Symmetry codes: (i) x, y+1, z; (ii) x−1, y, z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2458).
References
- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
- Bruker (2004). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
- Haanstra, W. G., Van der Donk, W. A. J. W., Driessen, W. L., Reedijk, J., Wood, J. S. & Drew, M. G. B. (1990). J. Chem. Soc. Dalton Trans. pp. 3123–3128.
- Mukherjee, R. (2000). Coord. Chem. Rev.203, 151–218.
- Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809004577/xu2458sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809004577/xu2458Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


