Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Feb 6;65(Pt 3):m252. doi: 10.1107/S1600536809003936

[N,N-Bis(diphenyl­phosphino)isopropyl­amine]dibromidonickel(II)

Marko Hapke a,*, Anina Wöhl b, Stephan Peitz a, Bernd H Müller a, Anke Spannenberg a, Uwe Rosenthal a
PMCID: PMC2968448  PMID: 21582045

Abstract

The title compound, [NiBr2(C27H27NP2)], was synthesized by the reaction of NiBr2(dme) (dme is 1,2-dimethoxy­ethane) with N,N-bis­(diphenyl­phosphino)isopropyl­amine in methanol/tetra­hydro­furan. The nickel(II) center is coordinated by two P atoms of the chelating PNP ligand, Ph2PN(iPr)PPh2, and two bromide ions in a distorted square-planar geometry.

Related literature

For derivatives of the title compound and their structural details, see: Cooley et al. (2001); Sushev et al. (2005); Sun et al. (2006). For structural features of a nickel complex with an arene-briged bis-PNP ligand, see: Majoumo-Mbe et al. (2005). For catalytic features of the PNP ligand, see: Wöhl et al. (2009).graphic file with name e-65-0m252-scheme1.jpg

Experimental

Crystal data

  • [NiBr2(C27H27NP2)]

  • M r = 645.97

  • Orthorhombic, Inline graphic

  • a = 16.6720 (3) Å

  • b = 15.1689 (4) Å

  • c = 20.3777 (4) Å

  • V = 5153.44 (19) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 4.00 mm−1

  • T = 200 (2) K

  • 0.17 × 0.14 × 0.04 mm

Data collection

  • Stoe IPDS-II diffractometer

  • Absorption correction: numerical (X-SHAPE; Stoe & Cie, 2005) T min = 0.484, T max = 0.884

  • 73587 measured reflections

  • 6956 independent reflections

  • 4725 reflections with I > 2σ(I)

  • R int = 0.080

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.064

  • S = 0.89

  • 6956 reflections

  • 300 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.43 e Å−3

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809003936/ci2764sup1.cif

e-65-0m252-sup1.cif (26.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809003936/ci2764Isup2.hkl

e-65-0m252-Isup2.hkl (340.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Leibniz-Institut für Katalyse e. V. an der Universität Rostock.

supplementary crystallographic information

Comment

Ligands containing the "PNP" moiety as the structural motif of the coordination unit have been used for different purposes in coordination chemistry. During the recent period, they were used with different metals including nickel for investigations into oligomerizations, polymerizations (Cooley et al., 2001) or copolymerizations (Majoumo-Mbe et al., 2005) with ethene or other alkenes (Sun et al., 2006). The Ni(PNP) core was also used for investigations into the reactivity behaviour of the nickel-coordinated HN(PPH2)2 ligand (Sushev et al., 2005). During these studies allylation of the N—H yielded a comparable nickel complex to the one that is described here. Dinuclear Ni(PNP)-complexes with arene-bridged PNP units have been prepared that have two independent and structurally identical Ni(PNP) moities (Majoumo-Mbe et al., 2005).

We became interested in nickel complexes during our studies on the selective oligomerization of ethene via transition metal-catalyzed tri- or tetramerization, yielding 1-hexene or 1-octene (Wöhl et al., 2009). Our initial experimental work was focusing on a chromium-based catalyst system (CrCl3(THF)3/Ph2PN(iPr)PPh2/MAO) and we recently became interested in the kinetic behaviour of this catalyst system, to gain a better understanding of the underlying catalytic mechanism in dependence from different metal/ligand ratios. However, for reasons of comparison we wanted to examine the corresponding nickel complex containing the same simple isopropyl-substituted PNP ligand. We deployed a simple preparation procedure, that is described here, to obtain the complex in high yields for our screening experiments.

The molecular structure of the title compound shows that the NiII center is coordinated by two P atoms of the chelating Ph2PN(iPr)PPh2 ligand and two bromide ions (Fig. 1). Its coordination geometry can be best described as distorted square-planar (P2—Ni1—P1 73.22 (3)°, P1—Ni1—Br1 94.39 (2)°, P2—Ni1—Br2 94.74 (2)°, Br1—Ni1—Br2 98.213 (16)°). Furthermore, the chelating ligand and the metal form a four-membered Ni(PNP) ring which is nearly planar (mean deviation from the best plane defined by Ni1, P1, N1 and P2 atoms is 0.0481 Å).

Experimental

NiBr2(1,2-dimethoxyethane) (334 mg, 1.08 mmol) was dissolved in dry methanol and heated to 333 K. N,N-bis(diphenylphosphino)isopropylamine (462 mg, 1.08 mmol) was dissolved in dry THF and the solution was cannulated into the nickel complex solution under argon. The red solution obtained was stirred for an hour at 333 K and after cooling, the red solid obtained was collected on a glas frit and washed twice with methanol and three times with water and finally with ether. The red solid was dried in high vacuo to yield 645 mg of pure red complex. The identity of the product was proven by 1H, 13C and 31P NMR (solvent: CD2Cl2). Single crystals suitable for X-ray analysis were grown from a chloroform-diethyl ether solution (2:1).

Refinement

All H atoms were placed in idealized positions with d(C—H) = 0.98 (CH3) and 0.95–1.00 Å (CH) and refined using a riding model with Uiso(H) fixed at 1.5 Ueq(C) for CH3 and 1.2 Ueq(C) for CH.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

[NiBr2(C27H27NP2)] F(000) = 2592
Mr = 645.97 Dx = 1.665 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 33195 reflections
a = 16.6720 (3) Å θ = 2.1–29.5°
b = 15.1689 (4) Å µ = 4.00 mm1
c = 20.3777 (4) Å T = 200 K
V = 5153.44 (19) Å3 Prism, red–brown
Z = 8 0.17 × 0.14 × 0.04 mm

Data collection

Stoe IPDS-II diffractometer 6956 independent reflections
Radiation source: fine-focus sealed tube 4725 reflections with I > 2σ(I)
graphite Rint = 0.080
rotation method scans θmax = 29.3°, θmin = 2.0°
Absorption correction: numerical (X-SHAPE; Stoe & Cie, 2005) h = −22→22
Tmin = 0.484, Tmax = 0.884 k = −20→20
73587 measured reflections l = −27→27

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064 H-atom parameters constrained
S = 0.89 w = 1/[σ2(Fo2) + (0.0281P)2] where P = (Fo2 + 2Fc2)/3
6956 reflections (Δ/σ)max = 0.001
300 parameters Δρmax = 0.57 e Å3
0 restraints Δρmin = −0.43 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.90625 (17) 0.87979 (17) 0.23217 (13) 0.0230 (5)
C2 0.88616 (18) 0.96307 (18) 0.20951 (14) 0.0274 (6)
H2 0.8694 0.9707 0.1653 0.033*
C3 0.89045 (19) 1.03524 (19) 0.25112 (16) 0.0337 (7)
H3 0.8760 1.0921 0.2357 0.040*
C4 0.91578 (19) 1.0242 (2) 0.31503 (15) 0.0354 (7)
H4 0.9175 1.0733 0.3439 0.043*
C5 0.9386 (2) 0.9421 (2) 0.33713 (15) 0.0334 (7)
H5 0.9575 0.9353 0.3808 0.040*
C6 0.93436 (18) 0.86966 (19) 0.29619 (14) 0.0292 (6)
H6 0.9505 0.8133 0.3116 0.035*
C7 0.87114 (17) 0.69391 (17) 0.22892 (13) 0.0227 (5)
C8 0.81317 (17) 0.70629 (18) 0.27757 (13) 0.0266 (6)
H8 0.7957 0.7640 0.2886 0.032*
C9 0.78135 (19) 0.6339 (2) 0.30950 (14) 0.0322 (7)
H9 0.7416 0.6418 0.3424 0.039*
C10 0.8074 (2) 0.5497 (2) 0.29349 (15) 0.0366 (7)
H10 0.7850 0.5001 0.3153 0.044*
C11 0.8656 (2) 0.53756 (19) 0.24623 (16) 0.0342 (7)
H11 0.8838 0.4798 0.2359 0.041*
C12 0.89720 (18) 0.60961 (17) 0.21390 (14) 0.0264 (6)
H12 0.9371 0.6013 0.1812 0.032*
C13 0.92171 (17) 0.85623 (17) −0.00596 (13) 0.0231 (5)
C14 0.96284 (19) 0.8386 (2) −0.06458 (13) 0.0301 (6)
H14 0.9826 0.7811 −0.0734 0.036*
C15 0.9743 (2) 0.9060 (2) −0.10958 (14) 0.0377 (7)
H15 1.0014 0.8945 −0.1497 0.045*
C16 0.9466 (2) 0.9895 (2) −0.09623 (15) 0.0383 (8)
H16 0.9554 1.0354 −0.1272 0.046*
C17 0.90638 (19) 1.00777 (19) −0.03885 (15) 0.0347 (7)
H17 0.8876 1.0657 −0.0302 0.042*
C18 0.89349 (18) 0.94077 (18) 0.00636 (15) 0.0274 (6)
H18 0.8653 0.9528 0.0459 0.033*
C19 0.88235 (17) 0.67305 (17) 0.01232 (13) 0.0239 (6)
C20 0.82043 (18) 0.67961 (19) −0.03337 (14) 0.0297 (6)
H20 0.8025 0.7359 −0.0477 0.036*
C21 0.7852 (2) 0.6040 (2) −0.05781 (16) 0.0362 (7)
H21 0.7427 0.6081 −0.0887 0.043*
C22 0.8119 (2) 0.5222 (2) −0.03737 (16) 0.0409 (8)
H22 0.7867 0.4705 −0.0535 0.049*
C23 0.8747 (2) 0.51497 (19) 0.00613 (15) 0.0368 (8)
H23 0.8935 0.4584 0.0189 0.044*
C24 0.9107 (2) 0.59054 (17) 0.03148 (14) 0.0295 (6)
H24 0.9542 0.5859 0.0615 0.035*
C25 0.75815 (16) 0.79720 (19) 0.10263 (13) 0.0269 (6)
H25 0.7481 0.8093 0.0551 0.032*
C26 0.71793 (19) 0.8703 (2) 0.14099 (16) 0.0382 (7)
H26A 0.7308 0.8640 0.1877 0.057*
H26B 0.6597 0.8668 0.1349 0.057*
H26C 0.7373 0.9275 0.1252 0.057*
C27 0.72121 (18) 0.7077 (2) 0.11777 (15) 0.0355 (7)
H27A 0.7526 0.6613 0.0963 0.053*
H27B 0.6659 0.7061 0.1015 0.053*
H27C 0.7213 0.6980 0.1653 0.053*
N1 0.84753 (13) 0.79808 (13) 0.11239 (10) 0.0206 (4)
P1 0.90770 (4) 0.78459 (4) 0.17912 (3) 0.01915 (13)
P2 0.91702 (4) 0.77028 (5) 0.05515 (3) 0.01925 (12)
Ni1 1.013681 (19) 0.761785 (18) 0.122690 (17) 0.01868 (7)
Br1 1.100033 (18) 0.77856 (2) 0.211279 (14) 0.03435 (8)
Br2 1.108991 (17) 0.72404 (2) 0.043377 (14) 0.03133 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0219 (14) 0.0241 (12) 0.0231 (12) −0.0011 (11) 0.0044 (11) −0.0029 (10)
C2 0.0303 (16) 0.0250 (13) 0.0270 (14) −0.0001 (11) 0.0045 (12) −0.0021 (11)
C3 0.0303 (16) 0.0259 (13) 0.0449 (17) −0.0008 (12) 0.0109 (14) −0.0037 (12)
C4 0.0292 (17) 0.0357 (16) 0.0414 (17) −0.0099 (13) 0.0115 (14) −0.0182 (13)
C5 0.0347 (18) 0.0394 (17) 0.0262 (14) −0.0058 (13) 0.0022 (12) −0.0094 (12)
C6 0.0306 (16) 0.0311 (15) 0.0258 (14) −0.0013 (12) 0.0012 (12) −0.0011 (11)
C7 0.0241 (14) 0.0227 (12) 0.0213 (12) −0.0011 (10) −0.0034 (10) 0.0042 (10)
C8 0.0259 (14) 0.0289 (14) 0.0250 (13) 0.0011 (11) 0.0007 (11) 0.0023 (10)
C9 0.0250 (16) 0.0439 (17) 0.0277 (15) −0.0039 (13) 0.0029 (12) 0.0095 (12)
C10 0.0344 (18) 0.0400 (17) 0.0354 (16) −0.0123 (14) −0.0077 (14) 0.0151 (13)
C11 0.0381 (18) 0.0251 (13) 0.0394 (17) −0.0028 (13) −0.0101 (15) 0.0030 (13)
C12 0.0302 (16) 0.0229 (12) 0.0262 (13) −0.0005 (11) −0.0015 (13) 0.0016 (10)
C13 0.0204 (14) 0.0257 (13) 0.0231 (12) −0.0043 (10) −0.0036 (11) 0.0051 (10)
C14 0.0333 (17) 0.0350 (15) 0.0219 (13) −0.0046 (12) 0.0019 (12) 0.0024 (11)
C15 0.0383 (19) 0.0511 (18) 0.0238 (15) −0.0095 (14) −0.0015 (13) 0.0090 (12)
C16 0.0344 (18) 0.0447 (18) 0.0357 (16) −0.0137 (14) −0.0132 (14) 0.0201 (14)
C17 0.0291 (16) 0.0302 (14) 0.0450 (18) −0.0040 (12) −0.0141 (15) 0.0112 (13)
C18 0.0218 (15) 0.0293 (14) 0.0313 (15) 0.0000 (11) −0.0055 (12) 0.0017 (11)
C19 0.0256 (15) 0.0248 (13) 0.0214 (12) −0.0031 (10) 0.0052 (11) −0.0032 (10)
C20 0.0270 (15) 0.0336 (14) 0.0285 (14) −0.0015 (12) 0.0010 (12) −0.0080 (11)
C21 0.0280 (17) 0.0457 (18) 0.0349 (16) −0.0097 (13) 0.0010 (13) −0.0152 (14)
C22 0.042 (2) 0.0386 (17) 0.0425 (18) −0.0196 (15) 0.0107 (16) −0.0170 (14)
C23 0.051 (2) 0.0252 (15) 0.0342 (16) −0.0063 (13) 0.0137 (15) −0.0042 (12)
C24 0.0395 (18) 0.0235 (13) 0.0256 (13) 0.0011 (12) 0.0028 (13) −0.0013 (11)
C25 0.0169 (13) 0.0370 (15) 0.0269 (13) 0.0022 (11) −0.0018 (10) 0.0029 (11)
C26 0.0249 (16) 0.0482 (18) 0.0414 (18) 0.0097 (13) 0.0035 (13) −0.0029 (14)
C27 0.0255 (15) 0.0466 (17) 0.0345 (15) −0.0115 (12) −0.0005 (13) 0.0015 (14)
N1 0.0174 (11) 0.0243 (10) 0.0200 (11) 0.0023 (8) −0.0007 (8) 0.0002 (8)
P1 0.0200 (3) 0.0191 (3) 0.0183 (3) 0.0005 (3) 0.0009 (2) −0.0003 (2)
P2 0.0198 (3) 0.0197 (3) 0.0183 (3) −0.0001 (3) −0.0003 (2) −0.0003 (2)
Ni1 0.01720 (14) 0.01814 (14) 0.02069 (13) 0.00026 (11) 0.00008 (15) 0.00020 (13)
Br1 0.03006 (16) 0.03626 (16) 0.03674 (15) 0.00651 (14) −0.01348 (13) −0.00788 (13)
Br2 0.02687 (15) 0.03284 (14) 0.03429 (14) 0.00272 (13) 0.00987 (12) −0.00076 (12)

Geometric parameters (Å, °)

C1—C2 1.386 (4) C17—C18 1.389 (4)
C1—C6 1.395 (4) C17—H17 0.95
C1—P1 1.804 (3) C18—H18 0.95
C2—C3 1.387 (4) C19—C20 1.394 (4)
C2—H2 0.95 C19—C24 1.394 (4)
C3—C4 1.379 (5) C19—P2 1.809 (3)
C3—H3 0.95 C20—C21 1.382 (4)
C4—C5 1.378 (5) C20—H20 0.95
C4—H4 0.95 C21—C22 1.381 (5)
C5—C6 1.381 (4) C21—H21 0.95
C5—H5 0.95 C22—C23 1.376 (5)
C6—H6 0.95 C22—H22 0.95
C7—C12 1.385 (4) C23—C24 1.393 (4)
C7—C8 1.397 (4) C23—H23 0.95
C7—P1 1.815 (3) C24—H24 0.95
C8—C9 1.382 (4) C25—N1 1.504 (3)
C8—H8 0.95 C25—C26 1.514 (4)
C9—C10 1.388 (5) C25—C27 1.522 (4)
C9—H9 0.95 C25—H25 1.00
C10—C11 1.379 (5) C26—H26A 0.98
C10—H10 0.95 C26—H26B 0.98
C11—C12 1.381 (4) C26—H26C 0.98
C11—H11 0.95 C27—H27A 0.98
C12—H12 0.95 C27—H27B 0.98
C13—C18 1.389 (4) C27—H27C 0.98
C13—C14 1.403 (4) N1—P2 1.697 (2)
C13—P2 1.805 (3) N1—P1 1.702 (2)
C14—C15 1.387 (4) P1—Ni1 2.1364 (7)
C14—H14 0.95 P1—P2 2.5402 (9)
C15—C16 1.376 (5) P2—Ni1 2.1231 (7)
C15—H15 0.95 Ni1—Br1 2.3230 (4)
C16—C17 1.376 (5) Ni1—Br2 2.3377 (4)
C16—H16 0.95
C2—C1—C6 119.6 (3) C19—C20—H20 120.1
C2—C1—P1 122.2 (2) C22—C21—C20 120.0 (3)
C6—C1—P1 117.9 (2) C22—C21—H21 120.0
C1—C2—C3 120.2 (3) C20—C21—H21 120.0
C1—C2—H2 119.9 C23—C22—C21 120.7 (3)
C3—C2—H2 119.9 C23—C22—H22 119.6
C4—C3—C2 119.8 (3) C21—C22—H22 119.6
C4—C3—H3 120.1 C22—C23—C24 120.1 (3)
C2—C3—H3 120.1 C22—C23—H23 120.0
C5—C4—C3 120.2 (3) C24—C23—H23 120.0
C5—C4—H4 119.9 C23—C24—C19 119.2 (3)
C3—C4—H4 119.9 C23—C24—H24 120.4
C4—C5—C6 120.5 (3) C19—C24—H24 120.4
C4—C5—H5 119.8 N1—C25—C26 111.4 (2)
C6—C5—H5 119.8 N1—C25—C27 112.5 (2)
C5—C6—C1 119.6 (3) C26—C25—C27 111.7 (3)
C5—C6—H6 120.2 N1—C25—H25 107.0
C1—C6—H6 120.2 C26—C25—H25 107.0
C12—C7—C8 119.9 (2) C27—C25—H25 107.0
C12—C7—P1 118.1 (2) C25—C26—H26A 109.5
C8—C7—P1 121.8 (2) C25—C26—H26B 109.5
C9—C8—C7 119.5 (3) H26A—C26—H26B 109.5
C9—C8—H8 120.2 C25—C26—H26C 109.5
C7—C8—H8 120.2 H26A—C26—H26C 109.5
C8—C9—C10 120.0 (3) H26B—C26—H26C 109.5
C8—C9—H9 120.0 C25—C27—H27A 109.5
C10—C9—H9 120.0 C25—C27—H27B 109.5
C11—C10—C9 120.5 (3) H27A—C27—H27B 109.5
C11—C10—H10 119.7 C25—C27—H27C 109.5
C9—C10—H10 119.7 H27A—C27—H27C 109.5
C10—C11—C12 119.7 (3) H27B—C27—H27C 109.5
C10—C11—H11 120.1 C25—N1—P2 125.69 (17)
C12—C11—H11 120.1 C25—N1—P1 133.53 (17)
C11—C12—C7 120.4 (3) P2—N1—P1 96.71 (11)
C11—C12—H12 119.8 N1—P1—C1 112.00 (12)
C7—C12—H12 119.8 N1—P1—C7 109.87 (12)
C18—C13—C14 119.7 (3) C1—P1—C7 105.49 (12)
C18—C13—P2 121.8 (2) N1—P1—Ni1 94.41 (8)
C14—C13—P2 118.1 (2) C1—P1—Ni1 117.60 (9)
C15—C14—C13 119.3 (3) C7—P1—Ni1 117.13 (9)
C15—C14—H14 120.3 C1—P1—P2 131.69 (9)
C13—C14—H14 120.3 C7—P1—P2 120.79 (9)
C16—C15—C14 120.1 (3) Ni1—P1—P2 53.15 (2)
C16—C15—H15 119.9 N1—P2—C13 108.92 (12)
C14—C15—H15 119.9 N1—P2—C19 108.43 (12)
C15—C16—C17 121.1 (3) C13—P2—C19 105.66 (13)
C15—C16—H16 119.4 N1—P2—Ni1 95.03 (8)
C17—C16—H16 119.4 C13—P2—Ni1 117.27 (9)
C16—C17—C18 119.5 (3) C19—P2—Ni1 120.40 (10)
C16—C17—H17 120.3 C13—P2—P1 128.84 (9)
C18—C17—H17 120.3 C19—P2—P1 122.01 (9)
C17—C18—C13 120.2 (3) Ni1—P2—P1 53.63 (2)
C17—C18—H18 119.9 P2—Ni1—P1 73.22 (3)
C13—C18—H18 119.9 P2—Ni1—Br1 165.35 (2)
C20—C19—C24 120.2 (3) P1—Ni1—Br1 94.39 (2)
C20—C19—P2 120.1 (2) P2—Ni1—Br2 94.74 (2)
C24—C19—P2 119.2 (2) P1—Ni1—Br2 166.90 (3)
C21—C20—C19 119.7 (3) Br1—Ni1—Br2 98.213 (16)
C21—C20—H20 120.1
C6—C1—C2—C3 −3.0 (4) C25—N1—P2—C13 72.5 (2)
P1—C1—C2—C3 −176.2 (2) P1—N1—P2—C13 −127.71 (12)
C1—C2—C3—C4 0.8 (4) C25—N1—P2—C19 −42.0 (2)
C2—C3—C4—C5 1.6 (5) P1—N1—P2—C19 117.77 (12)
C3—C4—C5—C6 −1.8 (5) C25—N1—P2—Ni1 −166.4 (2)
C4—C5—C6—C1 −0.4 (5) P1—N1—P2—Ni1 −6.62 (9)
C2—C1—C6—C5 2.7 (4) C25—N1—P2—P1 −159.8 (3)
P1—C1—C6—C5 176.2 (2) C18—C13—P2—N1 19.8 (3)
C12—C7—C8—C9 −1.1 (4) C14—C13—P2—N1 −167.1 (2)
P1—C7—C8—C9 173.4 (2) C18—C13—P2—C19 136.1 (2)
C7—C8—C9—C10 0.4 (4) C14—C13—P2—C19 −50.8 (3)
C8—C9—C10—C11 0.6 (5) C18—C13—P2—Ni1 −86.5 (2)
C9—C10—C11—C12 −1.0 (5) C14—C13—P2—Ni1 86.6 (2)
C10—C11—C12—C7 0.3 (5) C18—C13—P2—P1 −22.7 (3)
C8—C7—C12—C11 0.7 (4) C14—C13—P2—P1 150.41 (18)
P1—C7—C12—C11 −174.0 (2) C20—C19—P2—N1 74.3 (2)
C18—C13—C14—C15 −0.3 (4) C24—C19—P2—N1 −97.5 (2)
P2—C13—C14—C15 −173.6 (2) C20—C19—P2—C13 −42.4 (3)
C13—C14—C15—C16 0.9 (5) C24—C19—P2—C13 145.9 (2)
C14—C15—C16—C17 −0.8 (5) C20—C19—P2—Ni1 −178.12 (19)
C15—C16—C17—C18 0.0 (5) C24—C19—P2—Ni1 10.1 (3)
C16—C17—C18—C13 0.7 (4) C20—C19—P2—P1 118.2 (2)
C14—C13—C18—C17 −0.5 (4) C24—C19—P2—P1 −53.5 (3)
P2—C13—C18—C17 172.5 (2) C1—P1—P2—N1 −75.63 (17)
C24—C19—C20—C21 2.4 (4) C7—P1—P2—N1 85.67 (15)
P2—C19—C20—C21 −169.3 (2) Ni1—P1—P2—N1 −171.81 (11)
C19—C20—C21—C22 −0.6 (5) N1—P1—P2—C13 73.89 (16)
C20—C21—C22—C23 −1.5 (5) C1—P1—P2—C13 −1.73 (18)
C21—C22—C23—C24 1.8 (5) C7—P1—P2—C13 159.56 (16)
C22—C23—C24—C19 0.1 (5) Ni1—P1—P2—C13 −97.92 (12)
C20—C19—C24—C23 −2.2 (4) N1—P1—P2—C19 −81.89 (16)
P2—C19—C24—C23 169.6 (2) C1—P1—P2—C19 −157.52 (17)
C26—C25—N1—P2 −146.0 (2) C7—P1—P2—C19 3.78 (16)
C27—C25—N1—P2 87.8 (3) Ni1—P1—P2—C19 106.30 (12)
C26—C25—N1—P1 62.3 (3) N1—P1—P2—Ni1 171.81 (11)
C27—C25—N1—P1 −64.0 (3) C1—P1—P2—Ni1 96.18 (13)
C25—N1—P1—C1 −74.0 (3) C7—P1—P2—Ni1 −102.52 (11)
P2—N1—P1—C1 128.73 (12) N1—P2—Ni1—P1 5.46 (7)
C25—N1—P1—C7 42.9 (3) C13—P2—Ni1—P1 119.77 (11)
P2—N1—P1—C7 −114.38 (12) C19—P2—Ni1—P1 −109.35 (10)
C25—N1—P1—Ni1 163.8 (2) N1—P2—Ni1—Br1 −27.65 (13)
P2—N1—P1—Ni1 6.57 (9) C13—P2—Ni1—Br1 86.66 (14)
C25—N1—P1—P2 157.2 (3) C19—P2—Ni1—Br1 −142.46 (12)
C2—C1—P1—N1 −23.8 (3) P1—P2—Ni1—Br1 −33.12 (10)
C6—C1—P1—N1 162.9 (2) N1—P2—Ni1—Br2 −179.80 (7)
C2—C1—P1—C7 −143.3 (2) C13—P2—Ni1—Br2 −65.49 (11)
C6—C1—P1—C7 43.4 (3) C19—P2—Ni1—Br2 65.39 (10)
C2—C1—P1—Ni1 84.0 (3) P1—P2—Ni1—Br2 174.74 (2)
C6—C1—P1—Ni1 −89.3 (2) N1—P1—Ni1—P2 −5.44 (7)
C2—C1—P1—P2 20.1 (3) C1—P1—Ni1—P2 −123.10 (10)
C6—C1—P1—P2 −153.19 (18) C7—P1—Ni1—P2 109.55 (10)
C12—C7—P1—N1 87.2 (2) N1—P1—Ni1—Br1 166.59 (7)
C8—C7—P1—N1 −87.4 (2) C1—P1—Ni1—Br1 48.93 (10)
C12—C7—P1—C1 −151.9 (2) C7—P1—Ni1—Br1 −78.41 (10)
C8—C7—P1—C1 33.5 (3) P2—P1—Ni1—Br1 172.04 (2)
C12—C7—P1—Ni1 −18.9 (3) N1—P1—Ni1—Br2 −29.24 (14)
C8—C7—P1—Ni1 166.51 (19) C1—P1—Ni1—Br2 −146.90 (13)
C12—C7—P1—P2 42.5 (3) C7—P1—Ni1—Br2 85.76 (14)
C8—C7—P1—P2 −132.1 (2) P2—P1—Ni1—Br2 −23.79 (11)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2764).

References

  1. Cooley, N. A., Green, S. M. & Wass, D. F. (2001). Organometallics, 20, 4769–4771.
  2. Majoumo-Mbe, F., Lönnecke, P., Novikova, E. V., Belov, G. P. & Hey-Hawkins, E. (2005). Dalton Trans. pp. 3326–3330. [DOI] [PubMed]
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Stoe & Cie (2005). X-SHAPE, X-RED and X-AREA Stoe & Cie, Darmstadt, Germany.
  5. Sun, Z., Zhu, F., Wu, Q. & Lin, S. (2006). Appl. Organomet. Chem.20, 175–180.
  6. Sushev, V. V., Kornev, A. N., Kurskii, Y. A., Kuznetsova, O. V., Fukin, G. K., Budnikova, Y. H. & Abakumov, G. A. (2005). J. Organomet. Chem.690, 1814–1821.
  7. Wöhl, A., Müller, W., Peulecke, N., Müller, B. H., Peitz, S., Heller, D. & Rosenthal, U. (2009). J. Mol. Catal. A Chem.297, 1–8.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809003936/ci2764sup1.cif

e-65-0m252-sup1.cif (26.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809003936/ci2764Isup2.hkl

e-65-0m252-Isup2.hkl (340.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES