Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Feb 21;65(Pt 3):o580. doi: 10.1107/S1600536809004772

4-Ethoxy­imino-N′-methoxy­pyrrolidin-1-ium-3-carboximidamidium dichloride

Qiang Guo a, Lanying Sun a, Huiyuan Guo a, Mingliang Liu a,*
PMCID: PMC2968450  PMID: 21582235

Abstract

The title compound, C8H18N4O2 2+·2Cl, contains two oxime groups. The methyl oxime group has a Z configuration, and the ethyl oxime group is disordered, with both Z and E configurations in occupancies of 0.840 (8) and 0.160 (8), respectively. In the crystal structure, there are a number of N—H⋯Cl hydrogen bonds.

Related literature

For properties of quinolone derivatives, see: Ball et al. (1998); Ray et al. (2005). For the synthesis of new quinolones, see: Anderson & Osheroff (2001); Choi et al. (2004); Wang, Guo et al. (2008). For some crystal structures of quinolones, see: Wang, Liu et al. (2008). graphic file with name e-65-0o580-scheme1.jpg

Experimental

Crystal data

  • C8H18N4O2 2+·2Cl

  • M r = 273.16

  • Orthorhombic, Inline graphic

  • a = 12.7355 (14) Å

  • b = 8.8506 (12) Å

  • c = 26.334 (2) Å

  • V = 2968.3 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 298 K

  • 0.23 × 0.20 × 0.19 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.907, T max = 0.922

  • 14370 measured reflections

  • 2597 independent reflections

  • 1986 reflections with I > 2σ(I)

  • R int = 0.062

Refinement

  • R[F 2 > 2σ(F 2)] = 0.077

  • wR(F 2) = 0.210

  • S = 1.08

  • 2597 reflections

  • 170 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT and SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809004772/pk2146sup1.cif

e-65-0o580-sup1.cif (19.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809004772/pk2146Isup2.hkl

e-65-0o580-Isup2.hkl (127.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3B⋯Cl1 0.86 2.29 3.144 (4) 173
N3—H3A⋯Cl1i 0.86 2.41 3.213 (4) 156
N2—H2⋯Cl2ii 0.86 2.21 3.029 (4) 160
N1—H1B⋯Cl2 0.90 2.18 3.035 (4) 159
N1—H1A⋯Cl1iii 0.90 2.20 3.076 (4) 165

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported by the IMB Research Foundation.

supplementary crystallographic information

Comment

Since the discovery of norfloxacin, fluoroquinolone antibacterial agents have emerged as one of the dominant classes of chemotherapeutic drugs for the treatment of various bacterial infections (Ball et al., 1998; Ray et al., 2005). The most intensive structural variations have been carried out on the basic group at the C-7 position. In general, 5- and 6-membered nitrogen heterocycles including piperazinyl, pyrrolidinyl and piperidinyl type side chains have been proven to be the optimal substituents, as evidenced by the compounds currently on the market (Anderson & Osheroff, 2001; Choi et al., 2004). Recently, as part of an ongoing program to find potent new fluoroquinolones displaying strong Gram-positive activity, we have focused our attention on introducing new functional groups to the pyrrolidine ring. We report here the crystal structure of the title compound, which is intended for use as a novel substituent at the C-7 position of fluoroquinolones.

There are two oximes in the molecule of the title compound (Fig. 1). The methyloxime has the Z configuration, and the ethyloxime is disordered, with both Z and E configurations at occupancy factors of 0.840 (8) and 0.160 (8), respectively. In the molecule the N3—C5(1.296 (6) Å) bond length is significantly shorter than the normal C—N single bond (1.47 Å), indicating some delocalization over the N3-C5-N2 group. The five-membered pyrrolidine ring adopts an envelope conformation. In the crystal structure, there are a number of N–H···Cl hydrogen bonds. (Table 1)

Experimental

To a stirring solution of N'-methoxy-(1-N-tert-butoxycarbonyl-4- ethoxyimino) pyrrolidine-3-carboximidamide (15.0 g, 50.0 mmol) in methanol (80 ml) was pumped into dry hydrogen chloride for 2 h at room temperature. After the removal of the methanol under reduced pressure, the residue was treated with ethyl acetate (80 ml), and filtered. The filter cake was washed with ethyl acetate and ether, respectively, dried in vacuo to give the title compound as a white solid (11.5 g, 84.2%; mp: 375–376 K). Single crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol/ ethyl acetate (1:1 v/v). 1H NMR(DMSO-d6, δ):1.14–1.17(3H, m, CH3), 3.44–3.58(m, 1H, pyrrolidine), 3.53(2H, br, NH2+), 3.66(3H, s, OCH3), 3.68–3.79(2H, m, OCH2), 4.03–4.11(4H, m, pyrrolidine), 9.88–9.93(3H, br, NH2, NH+). MS(ESI, m/z): 201(M+H)+.

Refinement

All H atoms were placed at calculated positions, with C—H = 0.96–0.97 Å, N—H= 0.86–0.90 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure showing 40% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2.

Fig. 2.

Crystal packing of the title compound viewed down the b axis.

Crystal data

C8H18N4O22+·2Cl F(000) = 1152
Mr = 273.16 Dx = 1.223 Mg m3
Orthorhombic, Pbcn Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2n 2ab Cell parameters from 3944 reflections
a = 12.7355 (14) Å θ = 2.2–24.1°
b = 8.8506 (12) Å µ = 0.43 mm1
c = 26.334 (2) Å T = 298 K
V = 2968.3 (6) Å3 Block, colorless
Z = 8 0.23 × 0.20 × 0.19 mm

Data collection

Bruker SMART CCD area-detector diffractometer 2597 independent reflections
Radiation source: fine-focus sealed tube 1986 reflections with I > 2σ(I)
graphite Rint = 0.062
φ and ω scans θmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −15→14
Tmin = 0.907, Tmax = 0.922 k = −10→10
14370 measured reflections l = −29→31

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.077 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.210 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0819P)2 + 7.7771P] where P = (Fo2 + 2Fc2)/3
2597 reflections (Δ/σ)max = 0.001
170 parameters Δρmax = 0.44 e Å3
0 restraints Δρmin = −0.33 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cl1 0.67028 (9) 0.08761 (14) 0.52171 (5) 0.0516 (4)
Cl2 0.18814 (10) 0.22720 (17) 0.63480 (6) 0.0636 (5)
N1 0.3711 (3) 0.1103 (5) 0.57222 (17) 0.0528 (11)
H1A 0.3640 0.0382 0.5484 0.063*
H1B 0.3090 0.1220 0.5881 0.063*
N2 0.5131 (3) 0.5960 (4) 0.59228 (17) 0.0543 (11)
H2 0.4590 0.6173 0.6105 0.065*
N3 0.6142 (3) 0.4217 (5) 0.55190 (18) 0.0573 (12)
H3A 0.6593 0.4897 0.5437 0.069*
H3B 0.6239 0.3293 0.5429 0.069*
N4 0.559 (2) 0.2442 (19) 0.6611 (11) 0.065 (4) 0.840 (8)
N4' 0.570 (12) 0.212 (14) 0.657 (6) 0.065 (4) 0.160 (8)
O1 0.5835 (3) 0.7083 (4) 0.57752 (15) 0.0579 (10)
O2 0.5905 (4) 0.1079 (6) 0.6834 (2) 0.0762 (17) 0.840 (8)
O2' 0.581 (2) 0.352 (3) 0.6806 (10) 0.071 (8) 0.160 (8)
C1 0.4045 (4) 0.2533 (6) 0.5489 (2) 0.0503 (12)
H1C 0.3451 0.3066 0.5343 0.060*
H1D 0.4564 0.2359 0.5226 0.060*
C2 0.4513 (4) 0.3417 (5) 0.59299 (19) 0.0446 (11)
H2A 0.3944 0.3920 0.6115 0.053*
C3 0.4953 (4) 0.2171 (5) 0.62580 (18) 0.0454 (11)
C4 0.4533 (4) 0.0679 (6) 0.6089 (2) 0.0545 (13)
H4A 0.5075 0.0076 0.5929 0.065*
H4B 0.4240 0.0119 0.6372 0.065*
C5 0.5316 (4) 0.4584 (5) 0.57781 (19) 0.0443 (11)
C6 0.6473 (6) 0.7496 (7) 0.6196 (3) 0.0761 (18)
H6A 0.6036 0.7852 0.6468 0.091*
H6B 0.6949 0.8283 0.6096 0.091*
H6C 0.6866 0.6633 0.6309 0.091*
C7 0.6511 (8) 0.1432 (11) 0.7286 (3) 0.089 (3) 0.840 (8)
H7A 0.6104 0.2054 0.7517 0.106* 0.840 (8)
H7B 0.7149 0.1970 0.7197 0.106* 0.840 (8)
C8 0.6770 (12) −0.0062 (15) 0.7528 (5) 0.142 (5) 0.840 (8)
H8A 0.6131 −0.0580 0.7613 0.171* 0.840 (8)
H8B 0.7174 0.0105 0.7830 0.171* 0.840 (8)
H8C 0.7169 −0.0665 0.7294 0.171* 0.840 (8)
C7' 0.648 (4) 0.337 (6) 0.7247 (18) 0.089 (3) 0.160 (8)
H7'1 0.6934 0.2488 0.7214 0.106* 0.160 (8)
H7'2 0.6072 0.3274 0.7555 0.106* 0.160 (8)
C8' 0.713 (6) 0.482 (7) 0.725 (2) 0.12 (2) 0.160 (8)
H8'1 0.7592 0.4822 0.7541 0.148* 0.160 (8)
H8'2 0.6673 0.5680 0.7270 0.148* 0.160 (8)
H8'3 0.7545 0.4884 0.6947 0.148* 0.160 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0413 (7) 0.0468 (7) 0.0667 (8) 0.0032 (5) −0.0018 (6) −0.0150 (6)
Cl2 0.0396 (7) 0.0652 (9) 0.0862 (10) −0.0009 (6) 0.0023 (6) −0.0207 (8)
N1 0.040 (2) 0.053 (3) 0.065 (3) −0.010 (2) 0.003 (2) −0.020 (2)
N2 0.049 (2) 0.039 (2) 0.074 (3) −0.002 (2) 0.011 (2) −0.006 (2)
N3 0.044 (2) 0.038 (2) 0.090 (3) −0.0026 (19) 0.018 (2) −0.007 (2)
N4 0.067 (7) 0.060 (11) 0.068 (6) −0.008 (7) −0.015 (5) 0.001 (8)
N4' 0.067 (7) 0.060 (11) 0.068 (6) −0.008 (7) −0.015 (5) 0.001 (8)
O1 0.058 (2) 0.0403 (19) 0.076 (3) −0.0096 (17) 0.011 (2) 0.0023 (18)
O2 0.086 (4) 0.065 (3) 0.077 (3) −0.009 (3) −0.027 (3) 0.008 (3)
O2' 0.078 (18) 0.065 (18) 0.072 (17) −0.006 (14) −0.016 (14) −0.016 (15)
C1 0.035 (2) 0.059 (3) 0.057 (3) 0.002 (2) −0.005 (2) −0.004 (2)
C2 0.036 (2) 0.040 (3) 0.058 (3) −0.001 (2) 0.005 (2) −0.002 (2)
C3 0.040 (3) 0.049 (3) 0.047 (3) −0.009 (2) −0.004 (2) 0.000 (2)
C4 0.049 (3) 0.046 (3) 0.068 (3) −0.004 (2) 0.000 (3) −0.002 (3)
C5 0.036 (2) 0.041 (3) 0.056 (3) 0.004 (2) −0.001 (2) −0.004 (2)
C6 0.070 (4) 0.065 (4) 0.093 (5) −0.016 (3) 0.007 (4) −0.014 (3)
C7 0.094 (6) 0.090 (6) 0.082 (5) 0.004 (5) −0.034 (5) 0.001 (5)
C8 0.177 (14) 0.139 (10) 0.110 (9) 0.045 (9) −0.059 (9) 0.010 (8)
C7' 0.094 (6) 0.090 (6) 0.082 (5) 0.004 (5) −0.034 (5) 0.001 (5)
C8' 0.14 (5) 0.13 (5) 0.10 (4) 0.01 (4) −0.02 (4) −0.03 (4)

Geometric parameters (Å, °)

N1—C1 1.470 (7) C2—C3 1.509 (7)
N1—C4 1.473 (7) C2—H2A 0.9800
N1—H1A 0.9000 C3—C4 1.493 (7)
N1—H1B 0.9000 C4—H4A 0.9700
N2—C5 1.297 (6) C4—H4B 0.9700
N2—O1 1.393 (5) C6—H6A 0.9600
N2—H2 0.8600 C6—H6B 0.9600
N3—C5 1.296 (6) C6—H6C 0.9600
N3—H3A 0.8600 C7—C8 1.504 (14)
N3—H3B 0.8600 C7—H7A 0.9700
N4—C3 1.26 (3) C7—H7B 0.9700
N4—O2 1.40 (2) C8—H8A 0.9600
N4'—C3 1.26 (16) C8—H8B 0.9600
N4'—O2' 1.39 (12) C8—H8C 0.9600
O1—C6 1.423 (8) C7'—C8' 1.53 (8)
O2—C7 1.454 (9) C7'—H7'1 0.9700
O2'—C7' 1.45 (5) C7'—H7'2 0.9700
C1—C2 1.521 (7) C8'—H8'1 0.9600
C1—H1C 0.9700 C8'—H8'2 0.9600
C1—H1D 0.9700 C8'—H8'3 0.9600
C2—C5 1.507 (7)
C1—N1—C4 106.7 (4) N1—C4—H4B 111.2
C1—N1—H1A 110.4 C3—C4—H4B 111.2
C4—N1—H1A 110.4 H4A—C4—H4B 109.1
C1—N1—H1B 110.4 N3—C5—N2 122.5 (5)
C4—N1—H1B 110.4 N3—C5—C2 121.2 (4)
H1A—N1—H1B 108.6 N2—C5—C2 116.3 (4)
C5—N2—O1 118.1 (4) O1—C6—H6A 109.5
C5—N2—H2 120.9 O1—C6—H6B 109.5
O1—N2—H2 120.9 H6A—C6—H6B 109.5
C5—N3—H3A 120.0 O1—C6—H6C 109.5
C5—N3—H3B 120.0 H6A—C6—H6C 109.5
H3A—N3—H3B 120.0 H6B—C6—H6C 109.5
C3—N4—O2 109.2 (14) O2—C7—C8 105.9 (8)
C3—N4'—O2' 109 (9) O2—C7—H7A 110.6
N2—O1—C6 109.5 (4) C8—C7—H7A 110.6
N4—O2—C7 108.0 (11) O2—C7—H7B 110.6
N4'—O2'—C7' 109 (7) C8—C7—H7B 110.6
N1—C1—C2 103.8 (4) H7A—C7—H7B 108.7
N1—C1—H1C 111.0 C7—C8—H8A 109.5
C2—C1—H1C 111.0 C7—C8—H8B 109.5
N1—C1—H1D 111.0 H8A—C8—H8B 109.5
C2—C1—H1D 111.0 C7—C8—H8C 109.5
H1C—C1—H1D 109.0 H8A—C8—H8C 109.5
C5—C2—C3 113.7 (4) H8B—C8—H8C 109.5
C5—C2—C1 114.6 (4) O2'—C7'—C8' 104 (4)
C3—C2—C1 101.9 (4) O2'—C7'—H7'1 110.9
C5—C2—H2A 108.8 C8'—C7'—H7'1 110.9
C3—C2—H2A 108.8 O2'—C7'—H7'2 110.9
C1—C2—H2A 108.8 C8'—C7'—H7'2 110.9
N4—C3—C4 128.4 (10) H7'1—C7'—H7'2 108.9
N4'—C3—C4 116 (6) C7'—C8'—H8'1 109.5
N4—C3—C2 121.6 (10) C7'—C8'—H8'2 109.5
N4'—C3—C2 133 (7) H8'1—C8'—H8'2 109.5
C4—C3—C2 110.0 (4) C7'—C8'—H8'3 109.5
N1—C4—C3 103.0 (4) H8'1—C8'—H8'3 109.5
N1—C4—H4A 111.2 H8'2—C8'—H8'3 109.5
C3—C4—H4A 111.2
C5—N2—O1—C6 −104.6 (6) C5—C2—C3—C4 −137.4 (4)
C3—N4—O2—C7 −171.4 (14) C1—C2—C3—C4 −13.5 (5)
C3—N4'—O2'—C7' 167 (9) C1—N1—C4—C3 30.2 (5)
C4—N1—C1—C2 −39.6 (5) N4—C3—C4—N1 171.6 (16)
N1—C1—C2—C5 154.7 (4) N4'—C3—C4—N1 −179 (8)
N1—C1—C2—C3 31.5 (5) C2—C3—C4—N1 −9.5 (5)
O2—N4—C3—C4 1(3) O1—N2—C5—N3 2.4 (8)
O2—N4—C3—C2 −177.3 (9) O1—N2—C5—C2 −177.8 (4)
O2'—N4'—C3—N4 −13 (25) C3—C2—C5—N3 60.0 (6)
O2'—N4'—C3—C4 −163 (7) C1—C2—C5—N3 −56.7 (6)
O2'—N4'—C3—C2 31 (17) C3—C2—C5—N2 −119.7 (5)
C5—C2—C3—N4 41.6 (15) C1—C2—C5—N2 123.6 (5)
C1—C2—C3—N4 165.4 (14) N4—O2—C7—C8 176.7 (14)
C5—C2—C3—N4' 29 (9) N4'—O2'—C7'—C8' 143 (8)
C1—C2—C3—N4' 153 (9)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H3B···Cl1 0.86 2.29 3.144 (4) 173
N3—H3A···Cl1i 0.86 2.41 3.213 (4) 156
N2—H2···Cl2ii 0.86 2.21 3.029 (4) 160
N1—H1B···Cl2 0.90 2.18 3.035 (4) 159
N1—H1A···Cl1iii 0.90 2.20 3.076 (4) 165

Symmetry codes: (i) −x+3/2, y+1/2, z; (ii) −x+1/2, y+1/2, z; (iii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2146).

References

  1. Anderson, V. E. & Osheroff, N. (2001). Curr. Pharm. Des.7, 337–353. [DOI] [PubMed]
  2. Ball, P., Tilloston, G. & Fernald, A. (1998). Expert Opin. Investig. Drugs, 7, 761–783. [DOI] [PubMed]
  3. Bruker (1998). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (1999). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Choi, D. R., Shin, J. H. & Yang, J. (2004). Bioorg. Med. Chem. Lett.14, 1273–1277. [DOI] [PubMed]
  6. Ray, S., Pathak, S. R. & Chaturvedi, D. (2005). Drugs Future, 30, 161–180.
  7. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Wang, X. Y., Guo, Q. & Wang, Y. C. (2008). Acta Pharmacol. Sin.43, 819–827.
  10. Wang, J., Liu, M., Cao, J. & Wang, Y. (2008). Acta Cryst. E64, o2294. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809004772/pk2146sup1.cif

e-65-0o580-sup1.cif (19.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809004772/pk2146Isup2.hkl

e-65-0o580-Isup2.hkl (127.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES