Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Feb 6;65(Pt 3):o484–o485. doi: 10.1107/S1600536809003602

Methyl 7-meth­oxy-9-oxo-9H-xanthene-2-carboxyl­ate

Paweł Niedziałkowski a, Tadeusz Ossowski a, Artur Sikorski a,*
PMCID: PMC2968451  PMID: 21582153

Abstract

The crystal structure of the title compound, C16H12O5, is stabilized by C—H⋯O hydrogen bonds and C=O⋯π inter­actions; π–π inter­actions are also present. With respective average deviations from planarity of 0.003 (2) and 0.002 (1) Å, the xanthone and ester fragments are oriented at an angle of 2.8 (2)° with respect to each other. The mean planes of the xanthone skeleton lie either parallel to each other or are inclined at an angle of 85.5 (2)° in the crystal structure.

Related literature

For general background and uses of xanthones, see: Chen et al. (1993); Denisova-Dyatlova & Glyzin (1982); Fukai et al. (2005); Gopalakrishnan et al. (1997); Ignatushchenko et al. (2000); Ito et al. (2003); Librowski et al. (2005); Pfister et al. (1972, 1980). For related structures, see: Evans et al. (2004); Shi et al. (2004); Macias et al. (2001). For synthesis, see: Geertsema et al. (2006). For background to the various types of inter­molecular inter­actions, see: Bianchi et al. (2004); Steiner (1999) Santos-Contreras et al. (2007); Hunter & Sanders (1990). For analysis of inter­molecular inter­actions, see: Spek (2003). graphic file with name e-65-0o484-scheme1.jpg

Experimental

Crystal data

  • C16H12O5

  • M r = 284.26

  • Monoclinic, Inline graphic

  • a = 4.7709 (4) Å

  • b = 10.5375 (8) Å

  • c = 26.7854 (19) Å

  • β = 93.266 (7)°

  • V = 1344.40 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 295 (2) K

  • 0.20 × 0.04 × 0.04 mm

Data collection

  • Oxford Diffraction Ruby CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) T min = 0.994, T max = 0.997

  • 23842 measured reflections

  • 2366 independent reflections

  • 1051 reflections with I > 2σ(I)

  • R int = 0.086

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.092

  • S = 0.81

  • 2366 reflections

  • 193 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809003602/xu2476sup1.cif

e-65-0o484-sup1.cif (18.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809003602/xu2476Isup2.hkl

e-65-0o484-Isup2.hkl (116.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O16i 0.93 2.54 3.362 (3) 147
C20—H20A⋯O21ii 0.96 2.50 3.454 (3) 173

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Table 2. π–π interactions (Å,°).

CgI CgJ CgCg Dihedral angle Interplanar distance Offset
A Ciii 3.549 (1) 0.8 3.420 (1) 1.068 (1)
B Aiii 3.583 (1) 0.1 3.454 (1) 0.953 (1)
B Ciii 3.772 (1) 0.8 3.455 (1) 1.525 (1)

Symmetry code: (iii) Inline graphic. CgA, CgB and CgC are the centroids of the C9/O10/C11–C14, C1–C4/C12/C11 and C5–C8/C13/C14 rings, respectively. The dihedral angle is that between the planes of the rings CgI and CgJ. The interplanar distance is the perpendicular distance of CgI from ring J. The offset is the perpendicular distance of ring I from ring J.

Table 3. C—O⋯π interactions (Å,°).

X I J IJ XJ XIJ
C15 O16 CgBiii 3.564 (2) 3.689 (2) 86.4 (1)

Symmetry code: (iii) Inline graphic. CgB is the centroid of the C1–C4/C12/C11 ring.

Acknowledgments

This work was supported by Funds for Science in 2008 as a Research Project (No. BW-8000-5-0453-8).

supplementary crystallographic information

Comment

Xanthones represent a structurally diverse group of natural products with a broad range of biological activities. The unsubstituted xanthones have not been discovered in nature but its numerous derivatives have been isolated from representatives of higher plants, lichens, and lower fungi (Denisova-Dyatlova & Glyzin, 1982). Many naturally occurring xanthones as well as their synthetic derivatives described in numerous scientific publications exploit wide spectrum of biological activities: anti-allergic (Pfister et al., 1972), anti-inflammatory (Librowski et al., 2005), antitumor (Ito et al., 2003), antimicrobial (Fukai et al., 2005), cardiovascular (Chen et al., 1993), antimalarial (Gopalakrishnan et al., 1997) and antifungal activity (Ignatushchenko et al., 2000). The biological activity and the features responsible for the activity of xanthones largely depends on their structures. It is know that the 7-substituted xanthone-2-carboxylic acids and their esters show anti-allergic activity, which depends on the substituted groups (Pfister et al., 1980).

In the molecule of the title compound (Fig. 1) the bond lengths and angles characterizing the geometry of the xanthone skeleton are typical for this group compounds (Evans et al., 2004; Shi et al., 2004; Macias et al., 2001).

With respective average deviations from planarity of 0.003 (2) and 0.002 (1) Å, the xanthone and ester fragment are oriented at 2.8 (2)° to each other. The methoxy group lies nearly in the mean plane of the xanthone skeleton; the dihedral angles between the mean planes xanthone skeleton and delineated by atoms C7/O19/C20 are equal 0.7 (2)°. The mean planes of the xanthone skeleton lie either parallel or are inclined at an angle of 85.5 (2)° in the lattice.

In the crystal structure, weak intermolecular C—H···O hydrogen bonds (Table 1, Fig. 2) link the molecules, forming layers. The central ring A and the lateral rings B and C are involved in multidirectional π–π interactions and link layers between themselves (Table 2, Fig. 3). The O16(carboxyl) atom is involved in weak C—O···π interactions directed toward the lateral aromatic ring (ring B) (Table 3, Fig. 3).

All the interactions demonstrated were found by PLATON (Spek, 2003). The C—H···O (Bianchi et al., 2004; Steiner, 1999) interactions exhibit a hydrogen-bond-type nature. The C—O(carbonyl)···π interactions (Santos-Contreras et al., 2007), and also π–π interactions (Hunter & Sanders, 1990) should be of an attractive nature.

Experimental

7-Methoxy-9-oxo-9H-xanthene-2-carboxylatic acid methyl ester was synthesized by three steps. First, in a nucleophilic substitution of 4-methoxyphenol and 4-bromoisophthalic acid, to yield 4-(4-methoxyphenoxy)isophthalic acid, by refluxing 45 min in N,N-dimethylformamide with potassium carbonate, sodium iodide and activated Cu-bronze. In the next reaction, called intramolecular Friedel–Crafts acylation was synthesized 7-methoxy-9-oxo-9H-xanthene-2-carboxylatic acid (Geertsema et al., 2006). In last step 7-methoxy-9-oxo-9H-xanthene-2-carboxylatic acid was esterified with methanol by refluxing in thionyl chloride in 45 min and then treated with mixture of methanol and triethylamine in room temperature by 12 h with catalytic amount of 4-dimethylaminopyridine (DMAP). The crude product was dissolved in small amount of anhydrous methanol to obtain single crystals suitable for X-ray analysis by slow evaporation of methanol solution at 298 K.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic, and with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl groups.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 25% probability level and H atoms are shown as small spheres of arbitrary radius. CgA, CgB and CgC denote the ring centroids.

Fig. 2.

Fig. 2.

The arrangement of the molecules in the crystal structure viewed approximately along a axis. The C—H···O interactions are represented by dashed lines. H atoms not involved in the interactions have been omitted. [Symmetry codes: (i) 2 - x, 1 - y, 1 - z; (ii) -1 - x, -1/2 + y, 1/2 - z.]

Fig. 3.

Fig. 3.

The arrangement of the molecules in the crystal structure viewed approximately along a axis. The C—H···O and C—O···π interactions are represented by dashed lines and the π–π interactions are represented by dotted lines. H atoms not involved in the interactions have been omitted. [Symmetry codes: (iii) 1 + x, y, z.]

Crystal data

C16H12O5 F(000) = 592.0
Mr = 284.26 Dx = 1.404 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2126 reflections
a = 4.7709 (4) Å θ = 3.0–25.0°
b = 10.5375 (8) Å µ = 0.11 mm1
c = 26.7854 (19) Å T = 295 K
β = 93.266 (7)° Needle, white
V = 1344.40 (18) Å3 0.2 × 0.04 × 0.04 mm
Z = 4

Data collection

Oxford Diffraction Ruby CCD diffractometer 2366 independent reflections
Radiation source: Enhance (Mo) X-ray Source 1051 reflections with I > 2σ(I)
graphite Rint = 0.086
Detector resolution: 10.4002 pixels mm-1 θmax = 25.0°, θmin = 3.0°
ω scans h = −5→5
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) k = −12→12
Tmin = 0.994, Tmax = 0.997 l = −31→31
23842 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092 H-atom parameters constrained
S = 0.81 w = 1/[σ2(Fo2) + (0.0471P)2] where P = (Fo2 + 2Fc2)/3
2366 reflections (Δ/σ)max = 0.001
193 parameters Δρmax = 0.13 e Å3
0 restraints Δρmin = −0.13 e Å3

Special details

Experimental. CrysAlis RED, Version 1.171.32.15 (Oxford Diffraction Ltd., 2008) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.4869 (4) 0.3741 (2) 0.37390 (8) 0.0507 (6)
H1 0.4950 0.4005 0.3409 0.061*
C2 0.6568 (4) 0.4321 (2) 0.41017 (8) 0.0531 (6)
C3 0.6434 (5) 0.3912 (2) 0.45962 (9) 0.0678 (7)
H3 0.7584 0.4289 0.4846 0.081*
C4 0.4634 (5) 0.2964 (3) 0.47187 (9) 0.0735 (7)
H4 0.4548 0.2703 0.5049 0.088*
C5 −0.2272 (5) −0.0083 (2) 0.43087 (9) 0.0742 (7)
H5 −0.2221 −0.0287 0.4647 0.089*
C6 −0.4064 (5) −0.0705 (2) 0.39752 (9) 0.0723 (7)
H6 −0.5229 −0.1337 0.4089 0.087*
C7 −0.4169 (4) −0.0408 (2) 0.34712 (9) 0.0570 (6)
C8 −0.2448 (4) 0.0520 (2) 0.33022 (8) 0.0506 (6)
H8 −0.2514 0.0723 0.2964 0.061*
C9 0.1240 (4) 0.2157 (2) 0.34601 (8) 0.0485 (5)
O10 0.1221 (3) 0.14529 (15) 0.44927 (5) 0.0685 (5)
C11 0.3026 (4) 0.2770 (2) 0.38514 (7) 0.0469 (5)
C12 0.2945 (4) 0.2399 (2) 0.43445 (8) 0.0567 (6)
C13 −0.0592 (4) 0.1163 (2) 0.36375 (7) 0.0459 (5)
C14 −0.0538 (4) 0.0853 (2) 0.41369 (8) 0.0567 (6)
C15 0.8493 (5) 0.5368 (2) 0.39863 (10) 0.0616 (6)
O16 0.9949 (4) 0.59309 (17) 0.42912 (7) 0.0897 (6)
O17 0.8478 (3) 0.56064 (15) 0.34987 (6) 0.0748 (5)
C18 1.0307 (5) 0.6610 (2) 0.33454 (10) 0.0877 (8)
H18A 0.9931 0.6783 0.2996 0.132*
H18B 1.2228 0.6352 0.3403 0.132*
H18C 0.9978 0.7362 0.3536 0.132*
O19 −0.6050 (3) −0.10926 (15) 0.31785 (6) 0.0734 (5)
C20 −0.6235 (5) −0.0814 (3) 0.26581 (9) 0.0837 (8)
H20A −0.7623 −0.1351 0.2493 0.126*
H20B −0.4446 −0.0962 0.2522 0.126*
H20C −0.6760 0.0058 0.2609 0.126*
O21 0.1291 (3) 0.24526 (14) 0.30176 (5) 0.0657 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0541 (13) 0.0547 (16) 0.0427 (13) 0.0009 (12) −0.0024 (11) −0.0013 (11)
C2 0.0517 (13) 0.0553 (16) 0.0518 (15) −0.0049 (11) −0.0025 (11) −0.0058 (12)
C3 0.0741 (15) 0.0794 (19) 0.0481 (16) −0.0117 (14) −0.0139 (11) −0.0116 (14)
C4 0.0851 (17) 0.087 (2) 0.0471 (14) −0.0246 (16) −0.0071 (13) 0.0017 (14)
C5 0.0855 (16) 0.084 (2) 0.0519 (15) −0.0292 (15) −0.0047 (13) 0.0166 (14)
C6 0.0777 (16) 0.0703 (19) 0.0681 (19) −0.0229 (14) −0.0016 (14) 0.0133 (15)
C7 0.0565 (13) 0.0599 (16) 0.0535 (15) −0.0049 (13) −0.0053 (11) 0.0004 (13)
C8 0.0532 (12) 0.0517 (15) 0.0464 (13) −0.0031 (11) −0.0022 (11) −0.0001 (11)
C9 0.0491 (13) 0.0508 (15) 0.0449 (14) 0.0006 (11) −0.0036 (11) 0.0031 (12)
O10 0.0800 (10) 0.0808 (13) 0.0429 (9) −0.0254 (9) −0.0104 (8) 0.0102 (8)
C11 0.0475 (12) 0.0498 (15) 0.0427 (13) −0.0023 (11) −0.0027 (10) 0.0012 (11)
C12 0.0584 (13) 0.0629 (17) 0.0476 (14) −0.0139 (13) −0.0063 (11) 0.0007 (12)
C13 0.0470 (12) 0.0466 (14) 0.0436 (14) 0.0005 (11) −0.0022 (10) 0.0020 (11)
C14 0.0617 (14) 0.0596 (17) 0.0473 (15) −0.0124 (12) −0.0087 (11) 0.0037 (12)
C15 0.0620 (15) 0.0620 (18) 0.0598 (17) −0.0037 (13) −0.0044 (12) −0.0063 (15)
O16 0.1020 (13) 0.0906 (14) 0.0742 (12) −0.0367 (11) −0.0143 (10) −0.0106 (11)
O17 0.0865 (11) 0.0729 (13) 0.0641 (12) −0.0294 (10) −0.0039 (9) 0.0052 (9)
C18 0.0935 (18) 0.078 (2) 0.092 (2) −0.0274 (16) 0.0074 (15) 0.0129 (16)
O19 0.0772 (10) 0.0744 (12) 0.0671 (12) −0.0265 (9) −0.0081 (8) −0.0049 (9)
C20 0.0931 (18) 0.102 (2) 0.0549 (17) −0.0282 (16) −0.0058 (13) −0.0135 (15)
O21 0.0744 (10) 0.0781 (12) 0.0432 (9) −0.0200 (8) −0.0084 (7) 0.0105 (8)

Geometric parameters (Å, °)

C1—C2 1.373 (3) C9—O21 1.227 (2)
C1—C11 1.394 (3) C9—C13 1.461 (3)
C1—H1 0.9300 C9—C11 1.462 (3)
C2—C3 1.398 (3) O10—C12 1.366 (2)
C2—C15 1.480 (3) O10—C14 1.386 (2)
C3—C4 1.369 (3) C11—C12 1.380 (3)
C3—H3 0.9300 C13—C14 1.376 (3)
C4—C12 1.384 (3) C15—O16 1.199 (2)
C4—H4 0.9300 C15—O17 1.330 (3)
C5—C6 1.368 (3) O17—C18 1.446 (3)
C5—C14 1.383 (3) C18—H18A 0.9600
C5—H5 0.9300 C18—H18B 0.9600
C6—C7 1.384 (3) C18—H18C 0.9600
C6—H6 0.9300 O19—C20 1.422 (3)
C7—O19 1.364 (2) C20—H20A 0.9600
C7—C8 1.370 (3) C20—H20B 0.9600
C8—C13 1.400 (3) C20—H20C 0.9600
C8—H8 0.9300
C2—C1—C11 121.9 (2) C12—C11—C9 120.9 (2)
C2—C1—H1 119.1 C1—C11—C9 121.22 (19)
C11—C1—H1 119.1 O10—C12—C11 122.33 (19)
C1—C2—C3 118.4 (2) O10—C12—C4 116.0 (2)
C1—C2—C15 122.2 (2) C11—C12—C4 121.6 (2)
C3—C2—C15 119.4 (2) C14—C13—C8 119.0 (2)
C4—C3—C2 121.0 (2) C14—C13—C9 120.5 (2)
C4—C3—H3 119.5 C8—C13—C9 120.44 (19)
C2—C3—H3 119.5 C13—C14—C5 121.0 (2)
C3—C4—C12 119.2 (2) C13—C14—O10 122.5 (2)
C3—C4—H4 120.4 C5—C14—O10 116.5 (2)
C12—C4—H4 120.4 O16—C15—O17 123.1 (2)
C6—C5—C14 119.2 (2) O16—C15—C2 124.7 (2)
C6—C5—H5 120.4 O17—C15—C2 112.2 (2)
C14—C5—H5 120.4 C15—O17—C18 116.59 (19)
C5—C6—C7 121.0 (2) O17—C18—H18A 109.5
C5—C6—H6 119.5 O17—C18—H18B 109.5
C7—C6—H6 119.5 H18A—C18—H18B 109.5
O19—C7—C8 125.1 (2) O17—C18—H18C 109.5
O19—C7—C6 115.3 (2) H18A—C18—H18C 109.5
C8—C7—C6 119.6 (2) H18B—C18—H18C 109.5
C7—C8—C13 120.2 (2) C7—O19—C20 117.16 (17)
C7—C8—H8 119.9 O19—C20—H20A 109.5
C13—C8—H8 119.9 O19—C20—H20B 109.5
O21—C9—C13 122.78 (19) H20A—C20—H20B 109.5
O21—C9—C11 122.5 (2) O19—C20—H20C 109.5
C13—C9—C11 114.73 (19) H20A—C20—H20C 109.5
C12—O10—C14 118.97 (16) H20B—C20—H20C 109.5
C12—C11—C1 117.8 (2)
C11—C1—C2—C3 0.3 (3) C3—C4—C12—C11 −0.1 (4)
C11—C1—C2—C15 −178.91 (19) C7—C8—C13—C14 −0.3 (3)
C1—C2—C3—C4 −0.6 (3) C7—C8—C13—C9 −179.76 (19)
C15—C2—C3—C4 178.6 (2) O21—C9—C13—C14 178.94 (19)
C2—C3—C4—C12 0.6 (4) C11—C9—C13—C14 −0.7 (3)
C14—C5—C6—C7 −0.2 (4) O21—C9—C13—C8 −1.6 (3)
C5—C6—C7—O19 −179.7 (2) C11—C9—C13—C8 178.67 (18)
C5—C6—C7—C8 0.2 (4) C8—C13—C14—C5 0.3 (3)
O19—C7—C8—C13 −179.99 (19) C9—C13—C14—C5 179.7 (2)
C6—C7—C8—C13 0.1 (3) C8—C13—C14—O10 −179.42 (18)
C2—C1—C11—C12 0.1 (3) C9—C13—C14—O10 0.0 (3)
C2—C1—C11—C9 −179.66 (19) C6—C5—C14—C13 −0.1 (4)
O21—C9—C11—C12 −179.0 (2) C6—C5—C14—O10 179.7 (2)
C13—C9—C11—C12 0.7 (3) C12—O10—C14—C13 0.8 (3)
O21—C9—C11—C1 0.8 (3) C12—O10—C14—C5 −178.9 (2)
C13—C9—C11—C1 −179.53 (17) C1—C2—C15—O16 177.5 (2)
C14—O10—C12—C11 −0.8 (3) C3—C2—C15—O16 −1.7 (4)
C14—O10—C12—C4 179.6 (2) C1—C2—C15—O17 −3.8 (3)
C1—C11—C12—O10 −179.70 (17) C3—C2—C15—O17 177.05 (19)
C9—C11—C12—O10 0.1 (3) O16—C15—O17—C18 −0.8 (3)
C1—C11—C12—C4 −0.2 (3) C2—C15—O17—C18 −179.59 (18)
C9—C11—C12—C4 179.6 (2) C8—C7—O19—C20 −0.2 (3)
C3—C4—C12—O10 179.4 (2) C6—C7—O19—C20 179.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C3—H3···O16i 0.93 2.54 3.362 (3) 147
C20—H20A···O21ii 0.96 2.50 3.454 (3) 173

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x−1, y−1/2, −z+1/2.

Table 2 π–π interactions (Å,°).

CgI CgJ Cg···Cg Dihedral angle Interplanar distance Offset
A Ciii 3.549 (1) 0.8 3.420 (1) 1.068 (1)
B Aiii 3.583 (1) 0.1 3.454 (1) 0.953 (1)
B Ciii 3.772 (1) 0.8 3.455 (1) 1.525 (1)

Symmetry code: (iii) 1 + x, y, z. CgA, CgB and CgC are the centroids of the C9/O10/C11–C14, C1–C4/C12/C11 and C5–C8/C13/C14 rings, respectively. The dihedral angle is that between the planes of the rings CgI and CgJ. The interplanar distance is the perpendicular distance of CgI from ring J. The offset is the perpendicular distance of ring I from ring J.

Table 3 C—O···π interactions (Å,°)

X I J I···J X···J X-I···J
C15 O16 CgBiii 3.564 (2) 3.689 (2) 86.4 (1)

Symmetry codes: (iii) 1 + x, y, z.Notes: CgB is the centroid of the C1–C4/C12/C11 ring.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2476).

References

  1. Bianchi, R., Forni, A. & Pilati, T. (2004). Acta Cryst. B60, 559–568. [DOI] [PubMed]
  2. Chen, I. J., Liou, S. J., Liou, S. S. & Lin, C. N. (1993). Gen. Pharmacol.24, 1425–1433. [DOI] [PubMed]
  3. Denisova-Dyatlova, O. A. & Glyzin, V. I. (1982). Russ. Chem. Rev.51, 1753–1774.
  4. Evans, I. R., Howard, J. A. K., Šavikin-Fodulović, K. & Menković, N. (2004). Acta Cryst. E60, o1557–o1559.
  5. Fukai, T., Oku, Y., Hou, A. J., Yonekawa, Y. M. & Terada, S. (2005). Phytomedicine, 12, 510–513. [DOI] [PubMed]
  6. Geertsema, E. M., Hoen, R., Meetsma, A. & Feringa, B. L. (2006). Eur. J. Org. Chem.16, 3596–3605.
  7. Gopalakrishnan, G., Banumathi, B. & Suresh, G. (1997). J. Nat. Prod.60, 519–524. [DOI] [PubMed]
  8. Hunter, C. A. & Sanders, J. K. M. (1990). J. Am. Chem. Soc.112, 5525–5534.
  9. Ignatushchenko, M. V., Winter, R. W. & Riscoe, M. (2000). Am. J. Trop. Med. Hyg.62, 2000, 77–81. [DOI] [PubMed]
  10. Ito, C., Itoigawa, M., Takakura, T., Ruangrungsi, N., Enjo, F., Tokuda, H., Nishino, H. & Furukawa, H. (2003). J. Nat. Prod.66, 200–205. [DOI] [PubMed]
  11. Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  12. Librowski, T., Czarnecki, R., Czekaj, T. & Marona, H. (2005). Medicina (Kaunas), 41, 54–58. [PubMed]
  13. Macias, M., Gamboa, A., Ulloa, M., Toscano, R. A. & Mata, R. (2001). Phytochemistry, 58, 751–758. [DOI] [PubMed]
  14. Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  15. Pfister, J. R., Ferraresi, R. W., Harrison, I. T., Rooks, W. H., Roszkowski, A. P., Van Horn, A. & Fried, J. H. (1972). J. Med. Chem.15, 1032–1035. [DOI] [PubMed]
  16. Pfister, J. R., Weymann, W. E., Mahoney, J. M. & Waterbury, L. D. (1980). J. Med. Chem.23, 1264–1267. [DOI] [PubMed]
  17. Santos-Contreras, R. J., Martínez-Martínez, F. J., García-Báez, E. V., Padilla-Martínez, I. I., Peraza, A. L. & Höpfl, H. (2007). Acta Cryst. C63, o239–o242. [DOI] [PubMed]
  18. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  19. Shi, G.-F., Lu, R.-H., Yang, Y.-S., Li, C.-L., Yang, A.-M. & Cai, L.-X. (2004). Acta Cryst. E60, o878–o880.
  20. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  21. Steiner, T. (1999). Chem. Commun. pp. 313–314.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809003602/xu2476sup1.cif

e-65-0o484-sup1.cif (18.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809003602/xu2476Isup2.hkl

e-65-0o484-Isup2.hkl (116.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES