Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Feb 21;65(Pt 3):m298–m299. doi: 10.1107/S1600536809005522

Ferrocenylbutadiyne

Victor N Nemykin a,*, Jason D Dorweiler a, Roman I Subbotin a
PMCID: PMC2968460  PMID: 21582079

Abstract

The title compound, [Fe(C5H5)(C9H5)], crystallizes in a form of a π–π-stacked assembly formed as a result of strong inter­molecular π–π inter­actions between (a) the triple bonds of two neighboring butadiyne substituents overlapping in a ‘head-to-tail’ fashion [characterized by C⋯C short contacts of 3.622 (5), 3.567 (6) and 3.556 (6) Å] and (b) the triple bonds of the butadiyne substituent and substituted cyclo­pendadiene ring of neighboring mol­ecules [C⋯C = 3.474 (5) and 3.492 (6) Å]. The linear butadiyne substituent has alternating C—C triple and single bonds, while the unsubstituted cyclo­penta­diene ring is slightly positionally disordered (although the structure reported here was solved as non-disordered) and retains a close to eclipsed conformation.

Related literature

For the general synthesis and applications of substituted ferrocenes and related macrocycles, see: Fouda et al. (2007); Nemykin et al. (2001, 2007a ,b , 2008); Stepnika (2008); Osakada et al. (2006). For the synthesis of the title compound, see: Yuan et al. (1993); Nemykin et al. (2007c ). For examples of the use of the title compound, see Bruce et al. (2004).graphic file with name e-65-0m298-scheme1.jpg

Experimental

Crystal data

  • [Fe(C5H5)(C9H5)]

  • M r = 234.08

  • Monoclinic, Inline graphic

  • a = 7.9438 (16) Å

  • b = 10.332 (2) Å

  • c = 12.835 (3) Å

  • β = 97.01 (3)°

  • V = 1045.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.40 mm−1

  • T = 298 K

  • 0.45 × 0.30 × 0.25 mm

Data collection

  • Rigaku AFC-7R diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.58, T max = 0.70

  • 2549 measured reflections

  • 2411 independent reflections

  • 2248 reflections with I > 2σ(I)

  • R int = 0.052

  • 3 standard reflections every 150 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.136

  • S = 1.08

  • 2402 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.47 e Å−3

Data collection: AFC-7R Diffractometer Control Software (Rigaku/MSC, 1997); cell refinement: WinAFC (Rigaku/MSC, 2000); data reduction: TEXSAN (Rigaku/MSC, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809005522/hg2474sup1.cif

e-65-0m298-sup1.cif (15.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809005522/hg2474Isup2.hkl

e-65-0m298-Isup2.hkl (120.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Finantial support from the National Science Foundation (grant CHE-0809203) is greatly appreciated. The X-ray data were collected at the University of Minnesota Duluth X-ray crystallography facility.

supplementary crystallographic information

Comment

Ferrocene derivatives have been useful as antitumor agents (Fouda et al., 2007) and as electron transfer molecules. (Stepnika, 2008; Nemykin et al., 2001, 2007a, 2007b, 2007c, 2008; Osakada et al., 2006) The title compound represents a precursor for the preparation of butadiyne like dinuclear ferrocene molecules. (Bruce et al., 2004, Yuan et al., 1993).

There are a number of known structures of substituted ferrocenes (Stepnika, 2008, Nemykin et al., 2007a, 2007c) but this is the first reported crystal structure of a butadiyne substituted ferrocene.

The molecule crystallizes as a π-π stacked assembly in the centrosymmetric monoclinic space group P21/c . π-π stacked assembly formed as a result of strong intermolecular π-π interactions between (a) the triple bonds of two butadiyne substituents in molecules 'B' and 'C' (Figure 2) overlapping in 'head-to-tail' fashion and (b) the triple bonds of butadiyne substituents of a substituted cyclopendadiene ring along crystallographic b axis (Figure 2). Intermolecular π-π interactions between between the triple bonds of two butadiyne substituents (overlapping in 'head-to-tail' fashion) consists of three short contacts between C12 and C14 (3.622 (5) Å, -x, 1 - y, 1 - z), C13 and C14 (3.567 (6) Å, -x, 1 - y, 1 - z), and C13 and C13 (3.556 (6) Å, -x, 1 - y, 1 - z) carbon atoms of neighboring molecules. Intermolecular π-π interactions between between the triple bonds of butadiyne substituents and substituted cyclopentadiene ring of neighboring molecule can be characterized by two short contacts between C2 and C11 (3.474 (5) Å, -x, -y, 1 - z) and C3 and C12 (3.492 (6) Å, -x, -y, 1 - z) pairs of carbon atoms. The terminal H15 atom of the butadiyne substituent of one molecule is in close proximity to the H6 atom on the unsubstituted cyclopentadienyl ring of the other molecule. Although the unsubstituted cyclopentadiyne ring is, probably, disordered over two crystallographical positions (with disordered structure solution available from the authors on request), the unsubstituted cyclopentadiene ring retains close to eclipsed conformation of ferrocene subunit. In addition, the butadiyne substituent has alternating C—C triple and single bonds.

Experimental

The title compound was obtained as by-product of the iodination reaction of ferrocenylacetylene (Nemykin et al., 2007c). Melting point (81 oC, dec.). 1H NMR (CDCl3, tms, p.p.m.): 4.29, 5H, Cp; 4.63, 2H, α-Cp; 4.39, 2H, β-Cp; 2.39, 1H, butadiyne C—H. 13C (CDCl3, tms, p.p.m.): 71.0, Cp; 60.1, α-Cp; 70.6, β-Cp; 73.5, i-Cp; 66.9, ≡C—H; 70.4, C≡C—H; 71.2, Cp—C≡C-; 81.6, Cp-C≡C–). NMR spectra are similar to those reported earlier (Yuan et al.,1993).

Refinement

All cyclopentadienyl H atoms positioned geometrically, while the terminal butadiyne H atom was located on a Fourier map. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C(Ferrocene) - H 0.93; ≡C—H 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom) using default procedure available in Crystals for Windows software (Betteridge et al., 2003). After this the positions were refined with riding constraints.

The difference between the number of independent reflections (2411) and those included in the refinement (2402) is originate from the filter used by Crystals for Windows software. The filter uses (sin theta/lambda)2 at least 0.0100 cutoff in order to eliminate reflections that may be poorly measured in the vicinity of the beam stop.

Figures

Fig. 1.

Fig. 1.

The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.

Fig. 2.

Fig. 2.

Intermolecular π-π interactions in the title compound. displacement ellipsoids drawn at the 50% probability level. Molecules located at: 1 - x, 3/2 + y, 3/2 - z (molecule A); 1 + x, 3/2 - y, 1/2 + z (molecule B); 1 - x, 1/2 + y, 3/2 - z (molecule C); and 1 + x, 1/2 - y, 1/2 + z (molecule D).

Crystal data

[Fe(C5H5)(C9H5)] F(000) = 480
Mr = 234.08 Dx = 1.487 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 25 reflections
a = 7.9438 (16) Å θ = 15–18°
b = 10.332 (2) Å µ = 1.40 mm1
c = 12.835 (3) Å T = 298 K
β = 97.01 (3)° Block, brown
V = 1045.5 (4) Å3 0.45 × 0.30 × 0.25 mm
Z = 4

Data collection

Rigaku AFC-7R diffractometer Rint = 0.052
graphite θmax = 27.5°, θmin = 2.5°
ω/2θ scans h = −10→10
Absorption correction: ψ scan (North et al., 1968) k = −13→0
Tmin = 0.58, Tmax = 0.70 l = 0→16
2549 measured reflections 3 standard reflections every 150 reflections
2411 independent reflections intensity decay: 0.00%
2248 reflections with I > 2σ(I)

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048 H-atom parameters constrained
wR(F2) = 0.136 Method = Modified Sheldrick w = 1/[σ2(F2) + (0.07P)2 + 0.99P], where P = [max(Fo2,0) + 2Fc2]/3
S = 1.08 (Δ/σ)max = 0.0003
2402 reflections Δρmax = 0.52 e Å3
136 parameters Δρmin = −0.47 e Å3
0 restraints

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Fe1 0.29866 (5) 0.10003 (4) 0.31022 (3) 0.0488
C1 0.1074 (4) 0.0794 (3) 0.4007 (3) 0.0518
C2 0.2591 (4) 0.0175 (3) 0.4488 (3) 0.0575
C3 0.3047 (5) −0.0793 (3) 0.3799 (3) 0.0668
C4 0.1850 (6) −0.0782 (3) 0.2897 (3) 0.0710
C5 0.0628 (4) 0.0191 (4) 0.3004 (3) 0.0622
C6 0.3496 (7) 0.2904 (4) 0.2979 (5) 0.0866
C7 0.4938 (7) 0.2257 (5) 0.3366 (4) 0.0928
C8 0.5285 (7) 0.1368 (5) 0.2642 (8) 0.1210
C9 0.4034 (14) 0.1459 (8) 0.1794 (5) 0.1336
C10 0.2955 (7) 0.2426 (7) 0.2031 (5) 0.1036
C11 0.0220 (4) 0.1842 (3) 0.4417 (3) 0.0543
C12 −0.0531 (4) 0.2707 (4) 0.4767 (3) 0.0594
C13 −0.1411 (5) 0.3705 (4) 0.5177 (3) 0.0665
C14 −0.2128 (5) 0.4495 (4) 0.5504 (4) 0.0755
H2 0.3169 0.0377 0.5142 0.0693*
H3 0.3970 −0.1349 0.3926 0.0865*
H4 0.1871 −0.1323 0.2320 0.0850*
H5 −0.0298 0.0394 0.2515 0.0744*
H6 0.2992 0.3561 0.3327 0.1061*
H7 0.5582 0.2387 0.4013 0.1128*
H8 0.6195 0.0796 0.2682 0.1788*
H9 0.3901 0.0972 0.1180 0.1600*
H10 0.2000 0.2722 0.1607 0.1248*
H15 −0.2661 0.5084 0.5739 0.0916*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Fe1 0.0479 (3) 0.0438 (3) 0.0572 (3) −0.00690 (17) 0.01690 (19) −0.00211 (17)
C1 0.0481 (15) 0.0538 (16) 0.0560 (16) −0.0080 (13) 0.0158 (13) −0.0011 (13)
C2 0.0606 (18) 0.0546 (17) 0.0591 (17) −0.0015 (15) 0.0146 (14) 0.0087 (14)
C3 0.070 (2) 0.0454 (17) 0.090 (3) 0.0012 (15) 0.029 (2) 0.0067 (17)
C4 0.084 (3) 0.0535 (18) 0.083 (3) −0.0227 (18) 0.038 (2) −0.0177 (17)
C5 0.0541 (17) 0.069 (2) 0.0638 (18) −0.0216 (16) 0.0107 (14) −0.0091 (16)
C6 0.099 (3) 0.0441 (18) 0.128 (4) −0.008 (2) 0.060 (3) 0.005 (2)
C7 0.082 (3) 0.099 (4) 0.093 (3) −0.051 (3) −0.003 (2) 0.017 (3)
C8 0.085 (4) 0.068 (3) 0.229 (8) 0.006 (3) 0.096 (5) 0.031 (4)
C9 0.206 (8) 0.120 (5) 0.093 (4) −0.098 (5) 0.095 (5) −0.043 (4)
C10 0.079 (3) 0.125 (4) 0.103 (4) −0.035 (3) −0.005 (3) 0.061 (4)
C11 0.0476 (16) 0.0597 (18) 0.0577 (17) −0.0082 (14) 0.0149 (13) 0.0007 (14)
C12 0.0527 (17) 0.064 (2) 0.0631 (19) −0.0020 (15) 0.0138 (14) −0.0029 (15)
C13 0.058 (2) 0.073 (2) 0.070 (2) −0.0079 (18) 0.0147 (17) −0.0011 (18)
C14 0.073 (2) 0.066 (2) 0.091 (3) 0.0128 (19) 0.028 (2) −0.018 (2)

Geometric parameters (Å, °)

Fe1—C1 2.032 (3) C4—C5 1.416 (6)
Fe1—C2 2.031 (3) C4—H4 0.930
Fe1—C3 2.056 (3) C5—H5 0.930
Fe1—C4 2.054 (3) C6—C7 1.366 (7)
Fe1—C5 2.042 (3) C6—C10 1.335 (8)
Fe1—C6 2.018 (4) C6—H6 0.930
Fe1—C7 2.019 (4) C7—C8 1.359 (8)
Fe1—C8 2.023 (4) C7—H7 0.930
Fe1—C9 2.019 (4) C8—C9 1.384 (10)
Fe1—C10 2.013 (4) C8—H8 0.930
C1—C2 1.436 (5) C9—C10 1.375 (10)
C1—C5 1.435 (5) C9—H9 0.930
C1—C11 1.413 (5) C10—H10 0.930
C2—C3 1.412 (5) C11—C12 1.192 (5)
C2—H2 0.930 C12—C13 1.385 (5)
C3—C4 1.406 (6) C13—C14 1.107 (5)
C3—H3 0.930 C14—H15 0.820
C1—Fe1—C2 41.37 (14) Fe1—C2—H2 125.7
C1—Fe1—C3 68.68 (14) C3—C2—H2 126.0
C2—Fe1—C3 40.40 (15) C2—C3—Fe1 68.87 (19)
C1—Fe1—C4 68.39 (14) C2—C3—C4 108.1 (3)
C2—Fe1—C4 67.87 (16) Fe1—C3—C4 69.9 (2)
C3—Fe1—C4 40.00 (18) C2—C3—H3 125.8
C1—Fe1—C5 41.25 (13) Fe1—C3—H3 127.5
C2—Fe1—C5 69.11 (15) C4—C3—H3 126.1
C3—Fe1—C5 68.30 (16) C3—C4—Fe1 70.1 (2)
C4—Fe1—C5 40.45 (16) C3—C4—C5 109.2 (3)
C1—Fe1—C6 108.53 (16) Fe1—C4—C5 69.31 (19)
C2—Fe1—C6 122.10 (19) C3—C4—H4 125.2
C3—Fe1—C6 156.7 (2) Fe1—C4—H4 126.1
C4—Fe1—C6 162.4 (2) C5—C4—H4 125.6
C5—Fe1—C6 125.9 (2) C1—C5—C4 107.3 (3)
C1—Fe1—C7 125.7 (2) C1—C5—Fe1 69.02 (17)
C2—Fe1—C7 108.70 (18) C4—C5—Fe1 70.2 (2)
C3—Fe1—C7 122.0 (2) C1—C5—H5 126.5
C4—Fe1—C7 156.2 (2) C4—C5—H5 126.1
C5—Fe1—C7 162.5 (2) Fe1—C5—H5 126.4
C1—Fe1—C8 162.0 (3) Fe1—C6—C7 70.2 (2)
C2—Fe1—C8 125.2 (3) Fe1—C6—C10 70.4 (3)
C3—Fe1—C8 108.8 (2) C7—C6—C10 108.2 (5)
C4—Fe1—C8 122.0 (2) Fe1—C6—H6 124.8
C5—Fe1—C8 156.0 (3) C7—C6—H6 125.0
C1—Fe1—C9 155.8 (4) C10—C6—H6 126.7
C2—Fe1—C9 161.8 (4) C6—C7—Fe1 70.2 (2)
C3—Fe1—C9 125.7 (3) C6—C7—C8 108.3 (5)
C4—Fe1—C9 108.88 (19) Fe1—C7—C8 70.5 (3)
C5—Fe1—C9 120.9 (3) C6—C7—H7 126.8
C1—Fe1—C10 121.2 (2) Fe1—C7—H7 124.8
C2—Fe1—C10 156.2 (3) C8—C7—H7 124.9
C3—Fe1—C10 162.7 (3) Fe1—C8—C7 70.2 (3)
C4—Fe1—C10 126.9 (2) Fe1—C8—C9 69.8 (3)
C5—Fe1—C10 108.81 (18) C7—C8—C9 107.8 (5)
C6—Fe1—C7 39.6 (2) Fe1—C8—H8 126.0
C6—Fe1—C8 66.3 (2) C7—C8—H8 127.8
C7—Fe1—C8 39.3 (3) C9—C8—H8 124.4
C6—Fe1—C9 66.4 (2) C8—C9—Fe1 70.1 (3)
C7—Fe1—C9 66.6 (2) C8—C9—C10 106.5 (5)
C8—Fe1—C9 40.0 (3) Fe1—C9—C10 69.8 (3)
C6—Fe1—C10 38.7 (2) C8—C9—H9 128.7
C7—Fe1—C10 65.8 (2) Fe1—C9—H9 124.2
C8—Fe1—C10 66.4 (2) C10—C9—H9 124.8
C9—Fe1—C10 39.9 (3) C9—C10—Fe1 70.3 (3)
Fe1—C1—C2 69.28 (18) C9—C10—C6 109.3 (5)
Fe1—C1—C5 69.73 (18) Fe1—C10—C6 70.9 (3)
C2—C1—C5 107.2 (3) C9—C10—H10 126.6
Fe1—C1—C11 124.0 (2) Fe1—C10—H10 125.6
C2—C1—C11 126.6 (3) C6—C10—H10 124.1
C5—C1—C11 126.1 (3) C1—C11—C12 178.5 (3)
C1—C2—Fe1 69.34 (18) C11—C12—C13 179.5 (4)
C1—C2—C3 108.2 (3) C12—C13—C14 179.3 (5)
Fe1—C2—C3 70.7 (2) C13—C14—H15 179.3
C1—C2—H2 125.8

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2474).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  2. Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst.36, 1487.
  3. Bruce, M. I., De Montigny, F., Jevric, M., Lapinte, C., Skelton, B. W., Smith, M. E. & White, A. H. (2004). J. Organomet. Chem.689, 2860–2871.
  4. Fouda, M., Abd-Elzaher, M., Abdelsamaia, R. & Labib, A. (2007). Appl. Organomet. Chem.21, 613–625.
  5. Nemykin, V. N., Barrett, C. D., Hadt, R. G., Subbotin, R. I., Maximov, A. Y., Polshin, E. V. & Koposov, A. Y. (2007a). Dalton Trans. pp. 3378–3389. [DOI] [PubMed]
  6. Nemykin, V. N., Galloni, P., Floris, B., Barrett, C. D., Hadt, R. G., Subbotin, R. I., Marrani, A. G., Zanoni, R. & Loim, N. (2008). Dalton Trans. pp. 4233–4246. [DOI] [PubMed]
  7. Nemykin, V. N. & Kobayashi, N. (2001). Chem. Commun. pp. 165–166.
  8. Nemykin, V. N., Makarova, E. A., Grossland, J. O., Hadt, R. G. & Koposov, A. Y. (2007b). Inorg. Chem.46, 9591–9601. [DOI] [PubMed]
  9. Nemykin, V. N., Maximov, A. Y. & Koposov, A. Y. (2007c). Organometallics, 26, 3138–3148.
  10. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  11. Osakada, K., Sakano, T., Horie, M. & Suzaki, Y. (2006). Coord. Chem. Rev.250, 1012–1022.
  12. Rigaku/MSC (1997). AFC-7R Diffractometer Control Software. Rigaku/MSC Inc., The Woodlands, Texas, USA.
  13. Rigaku/MSC (2000). WinAFC. Rigaku/MSC Inc., The Woodlands, Texas, USA.
  14. Rigaku/MSC (2004). TEXSAN. Rigaku/MSC Inc., The Woodlands, Texas, USA.
  15. Stepnika, P. (2008). Ferrocenes: Ligands, Materials and Biomolecules Chichester, England: John Wiley & Sons Ltd.
  16. Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON Chemical Crystallography Laboratory, Oxford, England.
  17. Yuan, Z., Stringer, G., Jobe, I. R., Kreller, D., Scott, K., Koch, L., Taylor, N. J. & Marder, T. B. (1993). J. Organomet. Chem.452, 115–120.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809005522/hg2474sup1.cif

e-65-0m298-sup1.cif (15.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809005522/hg2474Isup2.hkl

e-65-0m298-Isup2.hkl (120.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES