Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Feb 11;65(Pt 3):o504–o505. doi: 10.1107/S1600536809003948

5,7-Dimeth­oxy-2-phenyl-4H-chromen-4-one

Angannan Nallasivam a, Munirathinam Nethaji b, Nagarajan Vembu c,*, Venkatraman Ragunathan d, Nagarajan Sulochana a
PMCID: PMC2968465  PMID: 21582168

Abstract

The asymmetric unit of the title compound, C17H14O4, contains two independent mol­ecules which differ in the relative orientations of the phenyl rings with repect to the essentially planar [maximum deviations of 0.029 (2) and 0.050 (2) Å in the two mol­ecules] chromene fused-ring system, forming dihedral angles of 10.3 (5) and 30.86 (5)° in the two mol­ecules. The crystal structure is stabilized by weak C—H⋯O and C—-H⋯π inter­actions, and π–π stacking inter­actions.

Related literature

For the biological and pharmacological properties of benzopyrans and their derivatives, see Brooks (1998); Hatakeyama et al. (1988); Hyana & Saimoto (1987); Tang et al. (2007). For the importance of 4H-chromenes, see Liu et al. (2007); Wang, Fang et al. (2003); Wang, Zhang et al. (2003). For hydrogen bonding, see: Bernstein et al. (1995); Desiraju (1989); Desiraju & Steiner (1999); Etter (1990).graphic file with name e-65-0o504-scheme1.jpg

Experimental

Crystal data

  • C17H14O4

  • M r = 282.28

  • Triclinic, Inline graphic

  • a = 7.3938 (17) Å

  • b = 11.430 (3) Å

  • c = 16.547 (4) Å

  • α = 92.414 (4)°

  • β = 102.723 (4)°

  • γ = 91.916 (4)°

  • V = 1361.5 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 (2) K

  • 0.35 × 0.32 × 0.29 mm

Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.967, T max = 0.977

  • 15401 measured reflections

  • 6096 independent reflections

  • 3897 reflections with I > 2σ(I)

  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.126

  • S = 1.01

  • 6096 reflections

  • 386 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809003948/lh2766sup1.cif

e-65-0o504-sup1.cif (27.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809003948/lh2766Isup2.hkl

e-65-0o504-Isup2.hkl (298.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C17A—H17A⋯O1A 0.93 2.38 2.713 (2) 101
C13B—H13E⋯O11Ai 0.96 2.37 3.169 (2) 141
C19A—H19A⋯O11Bii 0.93 2.57 3.256 (2) 131
C19A—H19A⋯O12Bii 0.93 2.55 3.442 (2) 161
C15B—H15DCg5 0.96 2.85 3.786 166

Symmetry codes: (i) Inline graphic; (ii) Inline graphic. Cg5 is the centroids of the C16A–C21A ring.

Table 2. π–π Stacking interactions (Å, °).

Cgi Cgj CgiCgj α perp
Cg1 Cg2 3.972 (1) 10.9 3.575
Cg1 Cg4 3.646 (1) 8.1 3.578
Cg1 Cg4i 3.785 (1) 8.1 3.535
Cg2 Cg3i 3.792 (1) 9.9 3.599
Cg2 Cg3 3.883 (1) 9.9 3.743
Cg3 Cg4i 3.769 (1) 7.1 3.516

Symmetry code: (i) Inline graphic. Cg1, Cg2, Cg3, and Cg4 are the centroids of the O1A/C2A–C4A/C9A/C10A, O1B/C2B–C4B/C9B/C10B, C5A–C10A and C5B–C10B rings, respectively. α is the dihedral angle between ring planes and perp is the perpendicular distance between ring planes.

Acknowledgments

AN thanks Dr S. Kannan and Dr B. S. Krishnamurthy, School of Chemistry, Bharathidasan University, Tiruchirappalli, and Organica Aromatics Pvt Ltd Bangalore, India, for providing laboratory facilities.

supplementary crystallographic information

Comment

Chromenes (benzopyrans) and their derivatives have numerous biological and pharmacological properties (Tang et al., 2007) such as antisterility (Brooks, 1998) and anticancer activity (Hyana & Saimoto, 1987). In addition, polyfunctionalized chromene units are present in numerous natural products (Hatakeyama et al., 1988). 4H-chromenes are important synthons for some natural products (Liu et al., 2007). As a part of our structural investigations on 4H-chromene derivatives and compounds containing the benzopyran fragment, the single-crystal X-ray diffraction study on the title compound was carried out.

The two molecules (A and B) in the asymmetric unit are shown in Fig. 1. In each molecule, the chromene ring is essentially planar as found in the related chromene derivatives (Wang, Zhang et al., 2003; Wang, Fang et al., 2003). In the title compound, the maximun deviation for the chromene ring in each molecule is 0.029 (2) and 0.050 (2) Å, for atoms C4A and C4B, respectively. The dihedral angle between the chromene ring mean-plane and the phenyl ring is 10.3 (5)° in molecule A and 30.86 (5)° in molecule B. The methoxy substituent at C5 forms dihedral angles of 8.4 (1) and 2.1 (1)° in molecules A and B, respectively. The methoxy substituent at C7 forms dihedral angles of 1.75 (1) & 12.09 (8)° in molecules A and B, respectively.

In the crystal structure (see Fig.2), the intramolecular C17A–H17A···O1A interaction generates a S(5) ring motif (Bernstein et al., 1995; Etter, 1990) and the C19A–H19A···O11Bii and C19A—H19A···O12Bii interactions constitute two bifurcated weak hydrogen bonds bonds that generate a R21(6) ring motif. In addition, the crystal structure contains significant C—H···π interactions (Table 1) and π..π interactions (Table 2) whose distances agree with those described by Desiraju & Steiner (1999) and Desiraju (1989).

Experimental

In to the RBF, a suspension of chrysin (1 g, 3.93 mmol) and potassium carbonate (1.62 g, 11.81 mmol) in dimethyl formamide (10 ml) were added. The reaction mixture was heated to 383 K for 2–3 hrs. The reaction mixture was cooled to 313 K and methyl iodide (10 ml, 15.74 mmol) was slowly added with the help of dropping funnel. The reaction mixture was maintained for 8–9 hr at 313 K and monitored by HPLC. After completion of the reaction, the contents were quenched with water and stirred for 30–45 min at 303 K. The crude solid obtained was filtered and washed with plenty of water followed by methanol and dried under vacuum at 343 K. The compound was purified by column chromatography using ethyl acetate: n-hexane (30:70) as diluent. All the fractions were analyzed by HPLC. The highly pure column fractions were mixed and concentrated in a rotary evaporator. The resulting product was recrystallized from dichloromethane: n-hexane mixture (10 ml each). The obtained crystals were washed with n-hexane and dried under vacuum at 348 K. Yield: 70%

Refinement

All H atoms were observed in a difference Fourier map. However, they were placed in idealized positions with C–H = 0.93 and 0.96 Å for aryl and methyl H, respectively. Their isotropic displacement parameters were tied to common free variables which were refined in subsequent cycles (for the aryl H-atoms the free variable was set to 0.06 which refined to 0.0716 (16) Å2 and for the methyl H-atoms the free variable was set to 0.07 and refined to 0.0795 (19) Å2).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound with displacement ellipsoids shown at the 50% probability level for all non-H atoms. H-atoms are drawn as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Part of the crystal structure viewed along the a-axis. Dashed lines represent weak C–H···O interactions.

Crystal data

C17H14O4 Z = 4
Mr = 282.28 F(000) = 592
Triclinic, P1 Dx = 1.377 Mg m3
Hall symbol: -P 1 Melting point = 413–415 K
a = 7.3938 (17) Å Mo Kα radiation, λ = 0.71073 Å
b = 11.430 (3) Å Cell parameters from 547 reflections
c = 16.547 (4) Å θ = 2.7–27.0°
α = 92.414 (4)° µ = 0.10 mm1
β = 102.723 (4)° T = 293 K
γ = 91.916 (4)° Rectangular, colourless
V = 1361.5 (6) Å3 0.35 × 0.32 × 0.29 mm

Data collection

Bruker SMART APEX CCD diffractometer 6096 independent reflections
Radiation source: fine-focus sealed tube 3897 reflections with I > 2σ(I)
graphite Rint = 0.042
Detector resolution: 0.3 pixels mm-1 θmax = 28.0°, θmin = 2.1°
ω scans h = −9→9
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) k = −14→14
Tmin = 0.967, Tmax = 0.977 l = −21→21
15401 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050 H-atom parameters constrained
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0509P)2 + 0.201P] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max < 0.001
6096 reflections Δρmax = 0.17 e Å3
386 parameters Δρmin = −0.17 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.051 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1A 0.84670 (17) 0.61660 (10) 0.25891 (7) 0.0474 (3)
C2A 0.7660 (2) 0.57055 (15) 0.18112 (10) 0.0424 (4)
C3A 0.7470 (3) 0.63612 (16) 0.11527 (11) 0.0511 (5)
H3A 0.6915 0.6014 0.0635 0.0716 (16)*
C4A 0.8077 (3) 0.75819 (17) 0.11977 (12) 0.0534 (5)
C5A 0.9527 (3) 0.92519 (15) 0.22512 (12) 0.0482 (4)
C6A 1.0295 (3) 0.96129 (16) 0.30639 (12) 0.0506 (5)
H6A 1.0710 1.0390 0.3193 0.0716 (16)*
C7A 1.0455 (3) 0.88267 (16) 0.36930 (11) 0.0471 (4)
C8A 0.9833 (2) 0.76767 (15) 0.35194 (11) 0.0459 (4)
H8A 0.9931 0.7148 0.3937 0.0716 (16)*
C9A 0.9053 (2) 0.73324 (14) 0.26986 (11) 0.0416 (4)
C10A 0.8873 (2) 0.80697 (15) 0.20411 (11) 0.0437 (4)
O11A 0.7924 (3) 0.81279 (13) 0.05644 (9) 0.0885 (6)
O12A 0.9347 (2) 0.99695 (11) 0.16087 (8) 0.0626 (4)
C13A 1.0217 (3) 1.11127 (17) 0.17698 (14) 0.0670 (6)
H13A 0.9654 1.1550 0.2150 0.0795 (19)*
H13B 1.0068 1.1507 0.1260 0.0795 (19)*
H13C 1.1515 1.1051 0.2008 0.0795 (19)*
O14A 1.1259 (2) 0.92860 (11) 0.44691 (8) 0.0607 (4)
C15A 1.1399 (3) 0.85301 (18) 0.51405 (12) 0.0651 (6)
H15A 1.0180 0.8247 0.5172 0.0795 (19)*
H15B 1.1978 0.8955 0.5650 0.0795 (19)*
H15C 1.2131 0.7879 0.5052 0.0795 (19)*
C16A 0.7055 (2) 0.44676 (15) 0.18240 (10) 0.0419 (4)
C17A 0.7040 (3) 0.39431 (16) 0.25611 (11) 0.0525 (5)
H17A 0.7461 0.4370 0.3062 0.0716 (16)*
C18A 0.6406 (3) 0.27909 (17) 0.25620 (13) 0.0596 (5)
H18A 0.6410 0.2451 0.3063 0.0716 (16)*
C19A 0.5772 (3) 0.21453 (17) 0.18291 (13) 0.0583 (5)
H19A 0.5341 0.1372 0.1832 0.0716 (16)*
C20A 0.5780 (3) 0.26564 (17) 0.10883 (13) 0.0591 (5)
H20A 0.5342 0.2227 0.0589 0.0716 (16)*
C21A 0.6430 (3) 0.37968 (16) 0.10844 (11) 0.0521 (5)
H21A 0.6455 0.4125 0.0582 0.0716 (16)*
O1B 0.47575 (17) 0.66672 (10) 0.35030 (7) 0.0481 (3)
C2B 0.5506 (2) 0.75030 (15) 0.41057 (10) 0.0430 (4)
C3B 0.5514 (3) 0.86351 (16) 0.39514 (11) 0.0482 (4)
H3B 0.5994 0.9175 0.4389 0.0716 (16)*
C4B 0.4812 (2) 0.90719 (15) 0.31364 (11) 0.0458 (4)
C5B 0.3403 (2) 0.83268 (15) 0.16260 (11) 0.0432 (4)
C6B 0.2695 (3) 0.73982 (16) 0.10767 (11) 0.0474 (4)
H6B 0.2246 0.7531 0.0519 0.0716 (16)*
C7B 0.2645 (2) 0.62654 (15) 0.13467 (10) 0.0439 (4)
C8B 0.3323 (2) 0.60447 (15) 0.21647 (10) 0.0425 (4)
H8B 0.3293 0.5289 0.2350 0.0716 (16)*
C9B 0.4054 (2) 0.69884 (15) 0.27057 (10) 0.0397 (4)
C10B 0.4104 (2) 0.81474 (14) 0.24840 (10) 0.0407 (4)
O11B 0.4835 (2) 1.01305 (11) 0.30281 (8) 0.0661 (4)
O12B 0.34727 (19) 0.94462 (10) 0.13977 (8) 0.0578 (4)
C13B 0.2722 (4) 0.96692 (18) 0.05480 (12) 0.0726 (7)
H13D 0.3437 0.9288 0.0204 0.0795 (19)*
H13E 0.2766 1.0498 0.0478 0.0795 (19)*
H13F 0.1457 0.9371 0.0392 0.0795 (19)*
O14B 0.19111 (19) 0.54206 (11) 0.07452 (7) 0.0582 (4)
C15B 0.1540 (3) 0.42788 (16) 0.09996 (12) 0.0571 (5)
H15D 0.2679 0.3959 0.1280 0.0795 (19)*
H15E 0.0984 0.3781 0.0521 0.0795 (19)*
H15F 0.0705 0.4326 0.1369 0.0795 (19)*
C16B 0.6345 (2) 0.69686 (16) 0.48880 (11) 0.0477 (4)
C17B 0.7041 (3) 0.5870 (2) 0.48775 (13) 0.0708 (6)
H17B 0.6916 0.5444 0.4375 0.0716 (16)*
C18B 0.7922 (4) 0.5393 (2) 0.56032 (16) 0.0905 (8)
H18B 0.8401 0.4653 0.5584 0.0716 (16)*
C19B 0.8101 (4) 0.5986 (3) 0.63429 (16) 0.0886 (9)
H19B 0.8713 0.5662 0.6829 0.0716 (16)*
C20B 0.7371 (4) 0.7066 (3) 0.63683 (13) 0.0845 (8)
H20B 0.7460 0.7467 0.6877 0.0716 (16)*
C21B 0.6504 (3) 0.7572 (2) 0.56492 (12) 0.0640 (6)
H21B 0.6029 0.8313 0.5674 0.0716 (16)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1A 0.0561 (8) 0.0411 (7) 0.0418 (7) −0.0064 (6) 0.0050 (6) 0.0036 (5)
C2A 0.0397 (10) 0.0445 (10) 0.0415 (9) −0.0022 (8) 0.0068 (8) 0.0014 (8)
C3A 0.0570 (12) 0.0483 (11) 0.0431 (10) −0.0088 (9) 0.0020 (9) 0.0040 (8)
C4A 0.0564 (12) 0.0493 (11) 0.0490 (11) −0.0052 (9) −0.0011 (9) 0.0123 (9)
C5A 0.0462 (11) 0.0412 (10) 0.0572 (11) 0.0008 (8) 0.0108 (9) 0.0066 (9)
C6A 0.0551 (12) 0.0382 (10) 0.0579 (12) −0.0019 (8) 0.0131 (9) −0.0017 (9)
C7A 0.0470 (11) 0.0482 (11) 0.0463 (10) 0.0001 (8) 0.0125 (8) −0.0051 (8)
C8A 0.0487 (11) 0.0457 (11) 0.0431 (10) 0.0013 (8) 0.0098 (8) 0.0023 (8)
C9A 0.0395 (10) 0.0369 (10) 0.0479 (10) −0.0021 (7) 0.0094 (8) 0.0004 (8)
C10A 0.0410 (10) 0.0407 (10) 0.0475 (10) −0.0014 (8) 0.0056 (8) 0.0041 (8)
O11A 0.1298 (15) 0.0642 (10) 0.0536 (9) −0.0281 (9) −0.0169 (9) 0.0215 (8)
O12A 0.0768 (10) 0.0429 (8) 0.0616 (8) −0.0094 (7) 0.0014 (7) 0.0124 (6)
C13A 0.0828 (16) 0.0411 (11) 0.0732 (14) −0.0029 (11) 0.0086 (12) 0.0073 (10)
O14A 0.0793 (10) 0.0523 (8) 0.0473 (8) −0.0068 (7) 0.0104 (7) −0.0076 (6)
C15A 0.0802 (16) 0.0634 (14) 0.0472 (11) −0.0097 (11) 0.0077 (10) −0.0046 (10)
C16A 0.0382 (10) 0.0424 (10) 0.0455 (10) 0.0002 (8) 0.0103 (8) 0.0033 (8)
C17A 0.0615 (13) 0.0478 (11) 0.0468 (10) −0.0043 (9) 0.0101 (9) 0.0012 (9)
C18A 0.0715 (14) 0.0504 (12) 0.0575 (12) −0.0033 (10) 0.0150 (11) 0.0125 (10)
C19A 0.0613 (13) 0.0415 (11) 0.0712 (14) −0.0060 (9) 0.0139 (11) 0.0045 (10)
C20A 0.0670 (14) 0.0486 (12) 0.0583 (12) −0.0090 (10) 0.0103 (10) −0.0081 (10)
C21A 0.0586 (12) 0.0505 (11) 0.0458 (10) −0.0063 (9) 0.0098 (9) 0.0015 (9)
O1B 0.0634 (8) 0.0400 (7) 0.0363 (6) 0.0004 (6) 0.0005 (6) 0.0056 (5)
C2B 0.0442 (10) 0.0437 (10) 0.0389 (9) 0.0000 (8) 0.0052 (8) −0.0002 (8)
C3B 0.0537 (12) 0.0429 (11) 0.0447 (10) −0.0017 (8) 0.0052 (9) −0.0014 (8)
C4B 0.0467 (11) 0.0385 (10) 0.0503 (10) −0.0006 (8) 0.0070 (8) 0.0032 (8)
C5B 0.0458 (10) 0.0379 (10) 0.0458 (10) 0.0026 (8) 0.0086 (8) 0.0094 (8)
C6B 0.0551 (11) 0.0485 (11) 0.0368 (9) 0.0023 (9) 0.0054 (8) 0.0084 (8)
C7B 0.0466 (11) 0.0438 (10) 0.0400 (9) 0.0000 (8) 0.0070 (8) 0.0013 (8)
C8B 0.0485 (11) 0.0359 (9) 0.0427 (10) 0.0003 (8) 0.0091 (8) 0.0054 (7)
C9B 0.0419 (10) 0.0410 (10) 0.0357 (9) 0.0024 (7) 0.0066 (7) 0.0059 (7)
C10B 0.0402 (10) 0.0387 (9) 0.0419 (9) 0.0030 (7) 0.0057 (8) 0.0055 (7)
O11B 0.0908 (11) 0.0367 (8) 0.0641 (9) −0.0052 (7) 0.0034 (8) 0.0062 (6)
O12B 0.0784 (10) 0.0411 (7) 0.0495 (7) 0.0003 (6) 0.0023 (7) 0.0152 (6)
C13B 0.112 (2) 0.0524 (13) 0.0505 (12) 0.0059 (12) 0.0084 (12) 0.0219 (10)
O14B 0.0795 (10) 0.0478 (8) 0.0414 (7) −0.0099 (7) 0.0034 (6) −0.0021 (6)
C15B 0.0674 (14) 0.0449 (11) 0.0562 (12) −0.0079 (9) 0.0101 (10) −0.0039 (9)
C16B 0.0450 (11) 0.0562 (12) 0.0401 (10) −0.0037 (9) 0.0058 (8) 0.0066 (8)
C17B 0.0904 (17) 0.0693 (15) 0.0514 (12) 0.0209 (12) 0.0086 (11) 0.0136 (11)
C18B 0.104 (2) 0.0924 (19) 0.0740 (17) 0.0314 (16) 0.0065 (15) 0.0352 (15)
C19B 0.0694 (17) 0.131 (3) 0.0593 (15) −0.0098 (16) −0.0052 (12) 0.0459 (17)
C20B 0.0812 (18) 0.126 (2) 0.0370 (11) −0.0270 (17) −0.0028 (11) 0.0029 (13)
C21B 0.0662 (14) 0.0742 (15) 0.0465 (11) −0.0095 (11) 0.0047 (10) −0.0034 (10)

Geometric parameters (Å, °)

O1A—C2A 1.369 (2) O1B—C2B 1.362 (2)
O1A—C9A 1.380 (2) O1B—C9B 1.3773 (19)
C2A—C3A 1.333 (2) C2B—C3B 1.329 (2)
C2A—C16A 1.472 (2) C2B—C16B 1.474 (2)
C3A—C4A 1.445 (3) C3B—C4B 1.450 (2)
C3A—H3A 0.9300 C3B—H3B 0.9300
C4A—O11A 1.228 (2) C4B—O11B 1.231 (2)
C4A—C10A 1.468 (3) C4B—C10B 1.474 (2)
C5A—O12A 1.356 (2) C5B—O12B 1.3517 (19)
C5A—C6A 1.379 (3) C5B—C6B 1.378 (2)
C5A—C10A 1.422 (2) C5B—C10B 1.426 (2)
C6A—C7A 1.392 (2) C6B—C7B 1.389 (2)
C6A—H6A 0.9300 C6B—H6B 0.9300
C7A—O14A 1.365 (2) C7B—O14B 1.365 (2)
C7A—C8A 1.375 (2) C7B—C8B 1.373 (2)
C8A—C9A 1.388 (2) C8B—C9B 1.387 (2)
C8A—H8A 0.9300 C8B—H8B 0.9300
C9A—C10A 1.390 (2) C9B—C10B 1.391 (2)
O12A—C13A 1.425 (2) O12B—C13B 1.430 (2)
C13A—H13A 0.9600 C13B—H13D 0.9600
C13A—H13B 0.9600 C13B—H13E 0.9600
C13A—H13C 0.9600 C13B—H13F 0.9600
O14A—C15A 1.424 (2) O14B—C15B 1.425 (2)
C15A—H15A 0.9600 C15B—H15D 0.9600
C15A—H15B 0.9600 C15B—H15E 0.9600
C15A—H15C 0.9600 C15B—H15F 0.9600
C16A—C17A 1.384 (2) C16B—C17B 1.374 (3)
C16A—C21A 1.395 (2) C16B—C21B 1.390 (3)
C17A—C18A 1.383 (3) C17B—C18B 1.378 (3)
C17A—H17A 0.9300 C17B—H17B 0.9300
C18A—C19A 1.373 (3) C18B—C19B 1.352 (4)
C18A—H18A 0.9300 C18B—H18B 0.9300
C19A—C20A 1.381 (3) C19B—C20B 1.366 (4)
C19A—H19A 0.9300 C19B—H19B 0.9300
C20A—C21A 1.375 (3) C20B—C21B 1.381 (3)
C20A—H20A 0.9300 C20B—H20B 0.9300
C21A—H21A 0.9300 C21B—H21B 0.9300
C2A—O1A—C9A 119.71 (13) C2B—O1B—C9B 119.73 (13)
C3A—C2A—O1A 120.94 (16) C3B—C2B—O1B 121.51 (15)
C3A—C2A—C16A 127.26 (16) C3B—C2B—C16B 127.33 (16)
O1A—C2A—C16A 111.79 (14) O1B—C2B—C16B 111.08 (15)
C2A—C3A—C4A 123.68 (17) C2B—C3B—C4B 123.40 (17)
C2A—C3A—H3A 118.2 C2B—C3B—H3B 118.3
C4A—C3A—H3A 118.2 C4B—C3B—H3B 118.3
O11A—C4A—C3A 120.59 (18) O11B—C4B—C3B 120.83 (16)
O11A—C4A—C10A 124.93 (17) O11B—C4B—C10B 125.04 (16)
C3A—C4A—C10A 114.47 (16) C3B—C4B—C10B 114.12 (15)
O12A—C5A—C6A 123.64 (16) O12B—C5B—C6B 123.15 (15)
O12A—C5A—C10A 115.79 (16) O12B—C5B—C10B 116.05 (15)
C6A—C5A—C10A 120.57 (17) C6B—C5B—C10B 120.80 (15)
C5A—C6A—C7A 120.67 (17) C5B—C6B—C7B 120.73 (16)
C5A—C6A—H6A 119.7 C5B—C6B—H6B 119.6
C7A—C6A—H6A 119.7 C7B—C6B—H6B 119.6
O14A—C7A—C8A 124.12 (17) O14B—C7B—C8B 123.99 (16)
O14A—C7A—C6A 115.13 (16) O14B—C7B—C6B 115.29 (15)
C8A—C7A—C6A 120.76 (17) C8B—C7B—C6B 120.71 (16)
C7A—C8A—C9A 117.70 (16) C7B—C8B—C9B 117.70 (16)
C7A—C8A—H8A 121.2 C7B—C8B—H8B 121.1
C9A—C8A—H8A 121.2 C9B—C8B—H8B 121.1
O1A—C9A—C8A 113.28 (15) O1B—C9B—C8B 113.06 (14)
O1A—C9A—C10A 122.35 (15) O1B—C9B—C10B 122.23 (15)
C8A—C9A—C10A 124.36 (16) C8B—C9B—C10B 124.70 (15)
C9A—C10A—C5A 115.92 (16) C9B—C10B—C5B 115.31 (15)
C9A—C10A—C4A 118.78 (16) C9B—C10B—C4B 118.81 (15)
C5A—C10A—C4A 125.28 (16) C5B—C10B—C4B 125.86 (15)
C5A—O12A—C13A 117.71 (15) C5B—O12B—C13B 117.79 (14)
O12A—C13A—H13A 109.5 O12B—C13B—H13D 109.5
O12A—C13A—H13B 109.5 O12B—C13B—H13E 109.5
H13A—C13A—H13B 109.5 H13D—C13B—H13E 109.5
O12A—C13A—H13C 109.5 O12B—C13B—H13F 109.5
H13A—C13A—H13C 109.5 H13D—C13B—H13F 109.5
H13B—C13A—H13C 109.5 H13E—C13B—H13F 109.5
C7A—O14A—C15A 117.48 (15) C7B—O14B—C15B 117.91 (13)
O14A—C15A—H15A 109.5 O14B—C15B—H15D 109.5
O14A—C15A—H15B 109.5 O14B—C15B—H15E 109.5
H15A—C15A—H15B 109.5 H15D—C15B—H15E 109.5
O14A—C15A—H15C 109.5 O14B—C15B—H15F 109.5
H15A—C15A—H15C 109.5 H15D—C15B—H15F 109.5
H15B—C15A—H15C 109.5 H15E—C15B—H15F 109.5
C17A—C16A—C21A 118.04 (16) C17B—C16B—C21B 118.44 (18)
C17A—C16A—C2A 121.46 (16) C17B—C16B—C2B 120.39 (17)
C21A—C16A—C2A 120.47 (15) C21B—C16B—C2B 121.14 (18)
C18A—C17A—C16A 120.81 (18) C16B—C17B—C18B 120.7 (2)
C18A—C17A—H17A 119.6 C16B—C17B—H17B 119.7
C16A—C17A—H17A 119.6 C18B—C17B—H17B 119.7
C19A—C18A—C17A 120.55 (18) C19B—C18B—C17B 120.9 (3)
C19A—C18A—H18A 119.7 C19B—C18B—H18B 119.5
C17A—C18A—H18A 119.7 C17B—C18B—H18B 119.5
C18A—C19A—C20A 119.32 (18) C18B—C19B—C20B 119.3 (2)
C18A—C19A—H19A 120.3 C18B—C19B—H19B 120.4
C20A—C19A—H19A 120.3 C20B—C19B—H19B 120.4
C21A—C20A—C19A 120.36 (18) C19B—C20B—C21B 121.0 (2)
C21A—C20A—H20A 119.8 C19B—C20B—H20B 119.5
C19A—C20A—H20A 119.8 C21B—C20B—H20B 119.5
C20A—C21A—C16A 120.90 (17) C20B—C21B—C16B 119.7 (2)
C20A—C21A—H21A 119.5 C20B—C21B—H21B 120.2
C16A—C21A—H21A 119.5 C16B—C21B—H21B 120.2
C9A—O1A—C2A—C3A 1.6 (2) C9B—O1B—C2B—C3B 2.6 (2)
C9A—O1A—C2A—C16A −177.46 (14) C9B—O1B—C2B—C16B −174.21 (14)
O1A—C2A—C3A—C4A −0.1 (3) O1B—C2B—C3B—C4B −2.6 (3)
C16A—C2A—C3A—C4A 178.82 (18) C16B—C2B—C3B—C4B 173.59 (17)
C2A—C3A—C4A—O11A 177.3 (2) C2B—C3B—C4B—O11B 179.30 (18)
C2A—C3A—C4A—C10A −2.1 (3) C2B—C3B—C4B—C10B −0.8 (3)
O12A—C5A—C6A—C7A −179.36 (17) O12B—C5B—C6B—C7B −179.50 (16)
C10A—C5A—C6A—C7A 0.4 (3) C10B—C5B—C6B—C7B 0.1 (3)
C5A—C6A—C7A—O14A 179.18 (16) C5B—C6B—C7B—O14B 179.95 (16)
C5A—C6A—C7A—C8A −0.7 (3) C5B—C6B—C7B—C8B −0.9 (3)
O14A—C7A—C8A—C9A −179.62 (16) O14B—C7B—C8B—C9B 179.06 (16)
C6A—C7A—C8A—C9A 0.3 (3) C6B—C7B—C8B—C9B 0.0 (3)
C2A—O1A—C9A—C8A 179.66 (14) C2B—O1B—C9B—C8B −179.34 (15)
C2A—O1A—C9A—C10A −0.7 (2) C2B—O1B—C9B—C10B 1.1 (2)
C7A—C8A—C9A—O1A −179.81 (15) C7B—C8B—C9B—O1B −177.72 (15)
C7A—C8A—C9A—C10A 0.6 (3) C7B—C8B—C9B—C10B 1.8 (3)
O1A—C9A—C10A—C5A 179.54 (15) O1B—C9B—C10B—C5B 176.98 (15)
C8A—C9A—C10A—C5A −0.9 (3) C8B—C9B—C10B—C5B −2.5 (3)
O1A—C9A—C10A—C4A −1.6 (3) O1B—C9B—C10B—C4B −4.5 (2)
C8A—C9A—C10A—C4A 177.98 (16) C8B—C9B—C10B—C4B 176.01 (16)
O12A—C5A—C10A—C9A −179.87 (15) O12B—C5B—C10B—C9B −178.86 (15)
C6A—C5A—C10A—C9A 0.4 (3) C6B—C5B—C10B—C9B 1.5 (2)
O12A—C5A—C10A—C4A 1.4 (3) O12B—C5B—C10B—C4B 2.7 (3)
C6A—C5A—C10A—C4A −178.39 (17) C6B—C5B—C10B—C4B −176.92 (17)
O11A—C4A—C10A—C9A −176.5 (2) O11B—C4B—C10B—C9B −175.93 (17)
C3A—C4A—C10A—C9A 2.9 (3) C3B—C4B—C10B—C9B 4.1 (2)
O11A—C4A—C10A—C5A 2.2 (3) O11B—C4B—C10B—C5B 2.5 (3)
C3A—C4A—C10A—C5A −178.40 (17) C3B—C4B—C10B—C5B −177.47 (16)
C6A—C5A—O12A—C13A 8.5 (3) C6B—C5B—O12B—C13B 1.8 (3)
C10A—C5A—O12A—C13A −171.26 (17) C10B—C5B—O12B—C13B −177.77 (17)
C8A—C7A—O14A—C15A −2.3 (3) C8B—C7B—O14B—C15B 11.0 (3)
C6A—C7A—O14A—C15A 177.86 (17) C6B—C7B—O14B—C15B −169.90 (16)
C3A—C2A—C16A—C17A −168.56 (19) C3B—C2B—C16B—C17B −148.0 (2)
O1A—C2A—C16A—C17A 10.4 (2) O1B—C2B—C16B—C17B 28.5 (3)
C3A—C2A—C16A—C21A 9.7 (3) C3B—C2B—C16B—C21B 30.0 (3)
O1A—C2A—C16A—C21A −171.29 (15) O1B—C2B—C16B—C21B −153.46 (17)
C21A—C16A—C17A—C18A −0.6 (3) C21B—C16B—C17B—C18B −1.8 (3)
C2A—C16A—C17A—C18A 177.72 (17) C2B—C16B—C17B—C18B 176.3 (2)
C16A—C17A—C18A—C19A −0.3 (3) C16B—C17B—C18B—C19B 0.9 (4)
C17A—C18A—C19A—C20A 0.3 (3) C17B—C18B—C19B—C20B 0.9 (4)
C18A—C19A—C20A—C21A 0.5 (3) C18B—C19B—C20B—C21B −1.8 (4)
C19A—C20A—C21A—C16A −1.5 (3) C19B—C20B—C21B—C16B 0.9 (4)
C17A—C16A—C21A—C20A 1.5 (3) C17B—C16B—C21B—C20B 0.9 (3)
C2A—C16A—C21A—C20A −176.89 (17) C2B—C16B—C21B—C20B −177.16 (18)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C17A—H17A···O1A 0.93 2.38 2.713 (2) 101
C13B—H13E···O11Ai 0.96 2.37 3.169 (2) 141
C19A—H19A···O11Bii 0.93 2.57 3.256 (2) 131
C19A—H19A···O12Bii 0.93 2.55 3.442 (2) 161
C13A—H13A···Cg5iii 0.96 3.14 3.838 131
C15A—H15A···Cg6 0.96 3.16 4.059 156
C15B—H15D···Cg5 0.96 2.85 3.786 166

Symmetry codes: (i) −x+1, −y+2, −z; (ii) x, y−1, z; (iii) x, y+1, z.

Table 2 π–π Stacking interactions (Å, °)

Cg···Cg α perp
Cg1 Cg2 3.972 (1) 10.88 3.575
Cg1 Cg4 3.646 (1) 8.06 3.578
Cg1 Cg4i 3.785 (1) 8.06 3.535
Cg2 Cg3i 3.792 (1) 9.89 3.599
Cg2 Cg3 3.883 (1) 9.89 3.743
Cg3 Cg4i 3.769 (1) 7.07 3.516

Symmetry code: (i) 1+x, y, z.Cg1, Cg2, Cg3, and Cg4 are the centroids of the O1A/C2A–C4A/C9A/C10A, O1B/C2B–C4B/C9B/C10B, C5A–C10A and C5B–C10B rings, respectively. α is the dihedral angle between ring planes and perp is the perpendicular distance between ring planes.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2766).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  2. Brooks, G. T. (1998). Pestic. Sci.22, 41–50.
  3. Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids, pp. 125–167. Amsterdam: Elsevier.
  5. Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, pp. 11–40. New York: Oxford University Press.
  6. Etter, M. C. (1990). Acc. Chem. Res.23, 120–126.
  7. Hatakeyama, S., Ochi, N., Numata, H. & Takano, S. (1988). J. Chem. Soc. Chem. Commun. pp. 1022–1024.
  8. Hyana, T. & Saimoto, H. (1987). Jpn Patent JP 621 812 768.
  9. Liu, C.-B., Chen, Y.-H., Zhou, X.-Y., Ding, L. & Wen, H.-L. (2007). Acta Cryst. E63, o90–o91.
  10. Sheldrick, G. M. (1996). SADABS University of Gottingen, Germany.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  13. Tang, Q.-G., Wu, W.-Y., He, W., Sun, H.-S. & Guo, C. (2007). Acta Cryst. E63, o1437–o1438.
  14. Wang, J.-F., Fang, M.-J., Huang, H.-Q., Li, G.-L., Su, W.-J. & Zhao, Y.-F. (2003). Acta Cryst. E59, o1517–o1518.
  15. Wang, J.-F., Zhang, Y.-J., Fang, M.-J., Huang, Y.-J., Wei, Z.-B., Zheng, Z.-H., Su, W.-J. & Zhao, Y.-F. (2003). Acta Cryst. E59, o1244–o1245.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809003948/lh2766sup1.cif

e-65-0o504-sup1.cif (27.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809003948/lh2766Isup2.hkl

e-65-0o504-Isup2.hkl (298.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES