Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Feb 21;65(Pt 3):o572. doi: 10.1107/S1600536809005613

4-Benz­yloxy-3-methoxy­benzonitrile

Muhammad Hanif a, Muhammad Rafiq a, Muhammad Saleem b, Ghulam Qadeer a,*, Wai-Yeung Wong c,
PMCID: PMC2968475  PMID: 21582227

Abstract

In the mol­ecule of the title compound, C15H13NO2, the aromatic rings are oriented at a dihedral angle of 81.65 (3)°. In the crystal structure, weak inter­molecular C—H⋯N hydrogen bonds link the mol­ecules into chains along the b axis.

Related literature

For the potential application of highly conjugated mol­ecules in nanoelectronics, see: Tour (2003) and in optoelectronics, see: Lind et al. (2004); Ornelas et al. (2005, 2008). Terminal cyano groups provide the ability to coordinate to transition metal centres such as RuCp, see: Garcia et al. (2001); Ornelas et al. (2005). For bond-length data, see: Allen et al. (1987).graphic file with name e-65-0o572-scheme1.jpg

Experimental

Crystal data

  • C15H13NO2

  • M r = 239.26

  • Monoclinic, Inline graphic

  • a = 14.9434 (12) Å

  • b = 9.5469 (8) Å

  • c = 8.8522 (7) Å

  • β = 102.663 (2)°

  • V = 1232.16 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 K

  • 0.32 × 0.25 × 0.23 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.864, T max = 0.980

  • 7286 measured reflections

  • 2983 independent reflections

  • 2499 reflections with I > 2σ(I)

  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.114

  • S = 1.02

  • 2983 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2009); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2009).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809005613/hk2626sup1.cif

e-65-0o572-sup1.cif (15.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809005613/hk2626Isup2.hkl

e-65-0o572-Isup2.hkl (146.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14B⋯N1i 0.98 2.58 3.5170 (17) 160

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors gratefully acknowledge the financial support of the Higher Education Commission, Islamabad, Pakistan.

supplementary crystallographic information

Comment

Schiff base compounds have attracted great attention for many years. They play an important role in the development of coordination chemistry related to catalysis and enzymatic reactions, magnetism, photochromism and thermochromism. We report herein the crystal structure of the title compound.

In the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C1-C6) and B (C8-C13) are, of course, planar, and they are oriented at a dihedral angle of 81.65 (3)°.

In the crystal structure, weak intermolecular C-H···N hydrogen bonds (Table 1) link the molecules into chains along the b axis (Fig. 2), in which they may be effective in the stabilization of the structure.

The preparation of highly conjugated molecules has been of great interest for their potential applications in fields such as nanoelectronics (Tour, 2003) or optoelectronics (Ornelas et al., 2005, 2008; Lind et al., 2004). Terminal cyano groups provide the ability to coordinate to transition metal centres such as RuCp (Cp = cyclopentadienyl); (Garcia et al., 2001; Ornelas et al., 2005) which should result in an increase of the physical properties such as the first molecular hyperpolarizability β, which is reported to rise with the coordination to cyclopentadienylruthenium type centres (Ornelas et al., 2005, 2008). As such the preparation of the π-conjugated title compound was intended for the preparation of dinuclear ruthenium complexes for nanoelectronic application.

Experimental

For the preparation of the title compound, 4-(benzyloxy)-3-methoxy benzenamine (2.29 g, 10 mmol) was treated with sodium nitrite (0.7 g, 10 mmol) in the presence of concentrated hydrochloric acid (10 ml) at 273-278 K. Aqueous cupreous cyanate solution (48%, 1.05 g, 10 mmol) was added into the resulting diazonnium salt (1.95 g, 8 mmol). The obtained title compound was separated and recrystallized in ethanol/THF mixture (yield; 65%, m.p. 411-412 K).

Refinement

H atoms were positioned geometrically, with C-H = 0.95, 0.99 and 0.98 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with the atom-numbering scheme.

Fig. 2.

Fig. 2.

A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Fig. 3.

Fig. 3.

The formation of the title compound.

Crystal data

C15H13NO2 F(000) = 504
Mr = 239.26 Dx = 1.290 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 7856 reflections
a = 14.9434 (12) Å θ = 2.6–28.3°
b = 9.5469 (8) Å µ = 0.09 mm1
c = 8.8522 (7) Å T = 173 K
β = 102.663 (2)° Block, colorless
V = 1232.16 (17) Å3 0.32 × 0.25 × 0.23 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer 2983 independent reflections
Radiation source: fine-focus sealed tube 2499 reflections with I > 2σ(I)
graphite Rint = 0.018
ω and φ scans θmax = 28.3°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −17→19
Tmin = 0.864, Tmax = 0.980 k = −11→12
7286 measured reflections l = −11→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0606P)2 + 0.2089P] where P = (Fo2 + 2Fc2)/3
2983 reflections (Δ/σ)max < 0.001
163 parameters Δρmax = 0.23 e Å3
0 restraints Δρmin = −0.17 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.26381 (5) 0.56473 (9) 0.00751 (9) 0.0409 (2)
O2 0.26362 (5) 0.38653 (9) 0.22449 (9) 0.0423 (2)
N1 −0.09205 (7) 0.55876 (14) 0.35630 (13) 0.0545 (3)
C1 0.44027 (9) 0.66914 (15) −0.09352 (15) 0.0492 (3)
H1A 0.4473 0.7296 −0.0065 0.059*
C2 0.51719 (9) 0.62309 (16) −0.14277 (16) 0.0520 (3)
H2A 0.5765 0.6523 −0.0893 0.062*
C3 0.50825 (9) 0.53599 (14) −0.26781 (15) 0.0479 (3)
H3A 0.5612 0.5033 −0.3000 0.058*
C4 0.42195 (9) 0.49571 (15) −0.34716 (16) 0.0510 (3)
H4A 0.4155 0.4364 −0.4351 0.061*
C5 0.34464 (8) 0.54158 (13) −0.29886 (14) 0.0440 (3)
H5A 0.2855 0.5137 −0.3543 0.053*
C6 0.35295 (8) 0.62749 (12) −0.17068 (13) 0.0375 (2)
C7 0.26977 (8) 0.66610 (13) −0.11153 (14) 0.0425 (3)
H7A 0.2760 0.7620 −0.0680 0.051*
H7B 0.2141 0.6623 −0.1961 0.051*
C8 0.18984 (7) 0.57131 (11) 0.07225 (12) 0.0339 (2)
C9 0.18915 (7) 0.47256 (11) 0.19135 (12) 0.0328 (2)
C10 0.11690 (7) 0.46987 (12) 0.26518 (12) 0.0343 (2)
H10A 0.1166 0.4048 0.3462 0.041*
C11 0.04377 (7) 0.56410 (12) 0.21963 (12) 0.0358 (2)
C12 0.04428 (8) 0.66074 (13) 0.10355 (13) 0.0403 (3)
H12A −0.0055 0.7241 0.0736 0.048*
C13 0.11769 (8) 0.66500 (13) 0.03071 (13) 0.0399 (3)
H13A 0.1185 0.7324 −0.0479 0.048*
C14 0.26552 (8) 0.28301 (13) 0.34102 (13) 0.0411 (3)
H14A 0.3220 0.2280 0.3534 0.062*
H14B 0.2124 0.2210 0.3105 0.062*
H14C 0.2635 0.3288 0.4393 0.062*
C15 −0.03198 (7) 0.55965 (13) 0.29606 (13) 0.0411 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0369 (4) 0.0459 (5) 0.0439 (4) 0.0084 (3) 0.0176 (3) 0.0109 (3)
O2 0.0311 (4) 0.0469 (5) 0.0509 (5) 0.0104 (3) 0.0132 (3) 0.0138 (4)
N1 0.0373 (5) 0.0777 (8) 0.0499 (6) 0.0106 (5) 0.0128 (4) 0.0015 (5)
C1 0.0493 (7) 0.0525 (7) 0.0454 (6) −0.0055 (5) 0.0094 (5) −0.0083 (5)
C2 0.0378 (6) 0.0625 (8) 0.0544 (7) −0.0090 (6) 0.0071 (5) −0.0007 (6)
C3 0.0408 (6) 0.0529 (7) 0.0547 (7) −0.0047 (5) 0.0204 (5) 0.0033 (6)
C4 0.0481 (7) 0.0573 (8) 0.0528 (7) −0.0108 (6) 0.0220 (6) −0.0127 (6)
C5 0.0383 (6) 0.0496 (7) 0.0463 (6) −0.0109 (5) 0.0142 (5) −0.0036 (5)
C6 0.0408 (6) 0.0350 (5) 0.0392 (5) −0.0020 (4) 0.0139 (4) 0.0061 (4)
C7 0.0475 (6) 0.0398 (6) 0.0435 (6) 0.0055 (5) 0.0171 (5) 0.0084 (5)
C8 0.0317 (5) 0.0370 (5) 0.0337 (5) 0.0025 (4) 0.0085 (4) −0.0009 (4)
C9 0.0263 (5) 0.0351 (5) 0.0362 (5) 0.0026 (4) 0.0054 (4) −0.0002 (4)
C10 0.0295 (5) 0.0386 (5) 0.0348 (5) 0.0000 (4) 0.0068 (4) −0.0003 (4)
C11 0.0293 (5) 0.0427 (6) 0.0354 (5) 0.0022 (4) 0.0072 (4) −0.0078 (4)
C12 0.0367 (5) 0.0433 (6) 0.0401 (5) 0.0119 (4) 0.0069 (4) −0.0025 (5)
C13 0.0421 (6) 0.0411 (6) 0.0373 (5) 0.0090 (5) 0.0106 (4) 0.0032 (4)
C14 0.0366 (5) 0.0411 (6) 0.0431 (6) 0.0037 (4) 0.0034 (4) 0.0065 (5)
C15 0.0320 (5) 0.0523 (7) 0.0385 (6) 0.0063 (5) 0.0067 (4) −0.0043 (5)

Geometric parameters (Å, °)

C1—C2 1.3872 (18) C8—C13 1.3870 (15)
C1—C6 1.3916 (17) C8—C9 1.4161 (15)
C1—H1A 0.9500 C9—O2 1.3624 (12)
C2—C3 1.3673 (19) C9—C10 1.3794 (14)
C2—H2A 0.9500 C10—C11 1.4046 (14)
C3—C4 1.3810 (18) C10—H10A 0.9500
C3—H3A 0.9500 C11—C12 1.3822 (16)
C4—C5 1.3878 (17) C11—C15 1.4411 (14)
C4—H4A 0.9500 C12—C13 1.3897 (15)
C5—C6 1.3834 (16) C12—H12A 0.9500
C5—H5A 0.9500 C13—H13A 0.9500
C6—C7 1.4967 (15) C14—O2 1.4244 (13)
C7—O1 1.4478 (13) C14—H14A 0.9800
C7—H7A 0.9900 C14—H14B 0.9800
C7—H7B 0.9900 C14—H14C 0.9800
C8—O1 1.3535 (12) C15—N1 1.1402 (15)
C8—O1—C7 117.61 (8) O1—C8—C13 125.25 (10)
C9—O2—C14 117.38 (8) O1—C8—C9 115.10 (9)
C2—C1—C6 120.51 (12) C13—C8—C9 119.65 (9)
C2—C1—H1A 119.7 O2—C9—C10 125.03 (9)
C6—C1—H1A 119.7 O2—C9—C8 115.01 (9)
C3—C2—C1 120.43 (12) C10—C9—C8 119.96 (9)
C3—C2—H2A 119.8 C9—C10—C11 119.51 (10)
C1—C2—H2A 119.8 C9—C10—H10A 120.2
C2—C3—C4 119.72 (12) C11—C10—H10A 120.2
C2—C3—H3A 120.1 C12—C11—C10 120.68 (10)
C4—C3—H3A 120.1 C12—C11—C15 120.10 (10)
C3—C4—C5 120.20 (12) C10—C11—C15 119.22 (10)
C3—C4—H4A 119.9 C11—C12—C13 119.87 (10)
C5—C4—H4A 119.9 C11—C12—H12A 120.1
C6—C5—C4 120.58 (11) C13—C12—H12A 120.1
C6—C5—H5A 119.7 C8—C13—C12 120.33 (10)
C4—C5—H5A 119.7 C8—C13—H13A 119.8
C5—C6—C1 118.55 (11) C12—C13—H13A 119.8
C5—C6—C7 120.06 (10) O2—C14—H14A 109.5
C1—C6—C7 121.28 (11) O2—C14—H14B 109.5
O1—C7—C6 106.16 (9) H14A—C14—H14B 109.5
O1—C7—H7A 110.5 O2—C14—H14C 109.5
C6—C7—H7A 110.5 H14A—C14—H14C 109.5
O1—C7—H7B 110.5 H14B—C14—H14C 109.5
C6—C7—H7B 110.5 N1—C15—C11 178.73 (13)
H7A—C7—H7B 108.7

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C14—H14B···N1i 0.98 2.58 3.5170 (17) 160

Symmetry codes: (i) −x, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2626).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2001). SMART and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2002). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Garcia, M. H., Rodrigues, J. C., Dias, A. R., Piedade, M. F. M., Duarte, M. T., Robalo, M. P. & Lopes, N. (2001). J. Organomet. Chem.632, 133–144.
  6. Lind, P., Lopes, C. O., berg, K. & Eliasson, B. (2004). Chem. Phys. Lett.387, 238–242.
  7. Ornelas, C., Gandum, C., Mesquita, J., Rodrigues, J., Garcia, M. H., Lopes, N., Robalo, M. P., Na ttinen, K. & Rissanen, K. (2005). Inorg. Chim. Acta, 358, 2482–2488.
  8. Ornelas, C., Ruiz, J., Rodrigues, J. & Astruc, D. (2008). Inorg. Chem. 47, 4421–4428. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Tour, M. J. (2003). Molecular Electronics, Commercial Insights, Chemistry, Devices, Architecture and Programming Singapore: World Scientific Publishing Co Pte Ltd.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809005613/hk2626sup1.cif

e-65-0o572-sup1.cif (15.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809005613/hk2626Isup2.hkl

e-65-0o572-Isup2.hkl (146.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES