Abstract
In the molecule of the title compound, C15H13NO2, the aromatic rings are oriented at a dihedral angle of 81.65 (3)°. In the crystal structure, weak intermolecular C—H⋯N hydrogen bonds link the molecules into chains along the b axis.
Related literature
For the potential application of highly conjugated molecules in nanoelectronics, see: Tour (2003 ▶) and in optoelectronics, see: Lind et al. (2004 ▶); Ornelas et al. (2005 ▶, 2008 ▶). Terminal cyano groups provide the ability to coordinate to transition metal centres such as RuCp, see: Garcia et al. (2001 ▶); Ornelas et al. (2005 ▶). For bond-length data, see: Allen et al. (1987 ▶).
Experimental
Crystal data
C15H13NO2
M r = 239.26
Monoclinic,
a = 14.9434 (12) Å
b = 9.5469 (8) Å
c = 8.8522 (7) Å
β = 102.663 (2)°
V = 1232.16 (17) Å3
Z = 4
Mo Kα radiation
μ = 0.09 mm−1
T = 173 K
0.32 × 0.25 × 0.23 mm
Data collection
Bruker SMART CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2001 ▶) T min = 0.864, T max = 0.980
7286 measured reflections
2983 independent reflections
2499 reflections with I > 2σ(I)
R int = 0.018
Refinement
R[F 2 > 2σ(F 2)] = 0.038
wR(F 2) = 0.114
S = 1.02
2983 reflections
163 parameters
H-atom parameters constrained
Δρmax = 0.23 e Å−3
Δρmin = −0.17 e Å−3
Data collection: SMART (Bruker, 2001 ▶); cell refinement: SAINT (Bruker, 2002 ▶); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2009 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 ▶); software used to prepare material for publication: SHELXTL (Sheldrick, 2009 ▶).
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809005613/hk2626sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809005613/hk2626Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
---|---|---|---|---|
C14—H14B⋯N1i | 0.98 | 2.58 | 3.5170 (17) | 160 |
Symmetry code: (i) .
Acknowledgments
The authors gratefully acknowledge the financial support of the Higher Education Commission, Islamabad, Pakistan.
supplementary crystallographic information
Comment
Schiff base compounds have attracted great attention for many years. They play an important role in the development of coordination chemistry related to catalysis and enzymatic reactions, magnetism, photochromism and thermochromism. We report herein the crystal structure of the title compound.
In the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C1-C6) and B (C8-C13) are, of course, planar, and they are oriented at a dihedral angle of 81.65 (3)°.
In the crystal structure, weak intermolecular C-H···N hydrogen bonds (Table 1) link the molecules into chains along the b axis (Fig. 2), in which they may be effective in the stabilization of the structure.
The preparation of highly conjugated molecules has been of great interest for their potential applications in fields such as nanoelectronics (Tour, 2003) or optoelectronics (Ornelas et al., 2005, 2008; Lind et al., 2004). Terminal cyano groups provide the ability to coordinate to transition metal centres such as RuCp (Cp = cyclopentadienyl); (Garcia et al., 2001; Ornelas et al., 2005) which should result in an increase of the physical properties such as the first molecular hyperpolarizability β, which is reported to rise with the coordination to cyclopentadienylruthenium type centres (Ornelas et al., 2005, 2008). As such the preparation of the π-conjugated title compound was intended for the preparation of dinuclear ruthenium complexes for nanoelectronic application.
Experimental
For the preparation of the title compound, 4-(benzyloxy)-3-methoxy benzenamine (2.29 g, 10 mmol) was treated with sodium nitrite (0.7 g, 10 mmol) in the presence of concentrated hydrochloric acid (10 ml) at 273-278 K. Aqueous cupreous cyanate solution (48%, 1.05 g, 10 mmol) was added into the resulting diazonnium salt (1.95 g, 8 mmol). The obtained title compound was separated and recrystallized in ethanol/THF mixture (yield; 65%, m.p. 411-412 K).
Refinement
H atoms were positioned geometrically, with C-H = 0.95, 0.99 and 0.98 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.
Figures
Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme.
Fig. 2.
A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
Fig. 3.
The formation of the title compound.
Crystal data
C15H13NO2 | F(000) = 504 |
Mr = 239.26 | Dx = 1.290 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 7856 reflections |
a = 14.9434 (12) Å | θ = 2.6–28.3° |
b = 9.5469 (8) Å | µ = 0.09 mm−1 |
c = 8.8522 (7) Å | T = 173 K |
β = 102.663 (2)° | Block, colorless |
V = 1232.16 (17) Å3 | 0.32 × 0.25 × 0.23 mm |
Z = 4 |
Data collection
Bruker SMART CCD area-detector diffractometer | 2983 independent reflections |
Radiation source: fine-focus sealed tube | 2499 reflections with I > 2σ(I) |
graphite | Rint = 0.018 |
ω and φ scans | θmax = 28.3°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −17→19 |
Tmin = 0.864, Tmax = 0.980 | k = −11→12 |
7286 measured reflections | l = −11→11 |
Refinement
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.114 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0606P)2 + 0.2089P] where P = (Fo2 + 2Fc2)/3 |
2983 reflections | (Δ/σ)max < 0.001 |
163 parameters | Δρmax = 0.23 e Å−3 |
0 restraints | Δρmin = −0.17 e Å−3 |
Special details
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x | y | z | Uiso*/Ueq | ||
O1 | 0.26381 (5) | 0.56473 (9) | 0.00751 (9) | 0.0409 (2) | |
O2 | 0.26362 (5) | 0.38653 (9) | 0.22449 (9) | 0.0423 (2) | |
N1 | −0.09205 (7) | 0.55876 (14) | 0.35630 (13) | 0.0545 (3) | |
C1 | 0.44027 (9) | 0.66914 (15) | −0.09352 (15) | 0.0492 (3) | |
H1A | 0.4473 | 0.7296 | −0.0065 | 0.059* | |
C2 | 0.51719 (9) | 0.62309 (16) | −0.14277 (16) | 0.0520 (3) | |
H2A | 0.5765 | 0.6523 | −0.0893 | 0.062* | |
C3 | 0.50825 (9) | 0.53599 (14) | −0.26781 (15) | 0.0479 (3) | |
H3A | 0.5612 | 0.5033 | −0.3000 | 0.058* | |
C4 | 0.42195 (9) | 0.49571 (15) | −0.34716 (16) | 0.0510 (3) | |
H4A | 0.4155 | 0.4364 | −0.4351 | 0.061* | |
C5 | 0.34464 (8) | 0.54158 (13) | −0.29886 (14) | 0.0440 (3) | |
H5A | 0.2855 | 0.5137 | −0.3543 | 0.053* | |
C6 | 0.35295 (8) | 0.62749 (12) | −0.17068 (13) | 0.0375 (2) | |
C7 | 0.26977 (8) | 0.66610 (13) | −0.11153 (14) | 0.0425 (3) | |
H7A | 0.2760 | 0.7620 | −0.0680 | 0.051* | |
H7B | 0.2141 | 0.6623 | −0.1961 | 0.051* | |
C8 | 0.18984 (7) | 0.57131 (11) | 0.07225 (12) | 0.0339 (2) | |
C9 | 0.18915 (7) | 0.47256 (11) | 0.19135 (12) | 0.0328 (2) | |
C10 | 0.11690 (7) | 0.46987 (12) | 0.26518 (12) | 0.0343 (2) | |
H10A | 0.1166 | 0.4048 | 0.3462 | 0.041* | |
C11 | 0.04377 (7) | 0.56410 (12) | 0.21963 (12) | 0.0358 (2) | |
C12 | 0.04428 (8) | 0.66074 (13) | 0.10355 (13) | 0.0403 (3) | |
H12A | −0.0055 | 0.7241 | 0.0736 | 0.048* | |
C13 | 0.11769 (8) | 0.66500 (13) | 0.03071 (13) | 0.0399 (3) | |
H13A | 0.1185 | 0.7324 | −0.0479 | 0.048* | |
C14 | 0.26552 (8) | 0.28301 (13) | 0.34102 (13) | 0.0411 (3) | |
H14A | 0.3220 | 0.2280 | 0.3534 | 0.062* | |
H14B | 0.2124 | 0.2210 | 0.3105 | 0.062* | |
H14C | 0.2635 | 0.3288 | 0.4393 | 0.062* | |
C15 | −0.03198 (7) | 0.55965 (13) | 0.29606 (13) | 0.0411 (3) |
Atomic displacement parameters (Å2)
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0369 (4) | 0.0459 (5) | 0.0439 (4) | 0.0084 (3) | 0.0176 (3) | 0.0109 (3) |
O2 | 0.0311 (4) | 0.0469 (5) | 0.0509 (5) | 0.0104 (3) | 0.0132 (3) | 0.0138 (4) |
N1 | 0.0373 (5) | 0.0777 (8) | 0.0499 (6) | 0.0106 (5) | 0.0128 (4) | 0.0015 (5) |
C1 | 0.0493 (7) | 0.0525 (7) | 0.0454 (6) | −0.0055 (5) | 0.0094 (5) | −0.0083 (5) |
C2 | 0.0378 (6) | 0.0625 (8) | 0.0544 (7) | −0.0090 (6) | 0.0071 (5) | −0.0007 (6) |
C3 | 0.0408 (6) | 0.0529 (7) | 0.0547 (7) | −0.0047 (5) | 0.0204 (5) | 0.0033 (6) |
C4 | 0.0481 (7) | 0.0573 (8) | 0.0528 (7) | −0.0108 (6) | 0.0220 (6) | −0.0127 (6) |
C5 | 0.0383 (6) | 0.0496 (7) | 0.0463 (6) | −0.0109 (5) | 0.0142 (5) | −0.0036 (5) |
C6 | 0.0408 (6) | 0.0350 (5) | 0.0392 (5) | −0.0020 (4) | 0.0139 (4) | 0.0061 (4) |
C7 | 0.0475 (6) | 0.0398 (6) | 0.0435 (6) | 0.0055 (5) | 0.0171 (5) | 0.0084 (5) |
C8 | 0.0317 (5) | 0.0370 (5) | 0.0337 (5) | 0.0025 (4) | 0.0085 (4) | −0.0009 (4) |
C9 | 0.0263 (5) | 0.0351 (5) | 0.0362 (5) | 0.0026 (4) | 0.0054 (4) | −0.0002 (4) |
C10 | 0.0295 (5) | 0.0386 (5) | 0.0348 (5) | 0.0000 (4) | 0.0068 (4) | −0.0003 (4) |
C11 | 0.0293 (5) | 0.0427 (6) | 0.0354 (5) | 0.0022 (4) | 0.0072 (4) | −0.0078 (4) |
C12 | 0.0367 (5) | 0.0433 (6) | 0.0401 (5) | 0.0119 (4) | 0.0069 (4) | −0.0025 (5) |
C13 | 0.0421 (6) | 0.0411 (6) | 0.0373 (5) | 0.0090 (5) | 0.0106 (4) | 0.0032 (4) |
C14 | 0.0366 (5) | 0.0411 (6) | 0.0431 (6) | 0.0037 (4) | 0.0034 (4) | 0.0065 (5) |
C15 | 0.0320 (5) | 0.0523 (7) | 0.0385 (6) | 0.0063 (5) | 0.0067 (4) | −0.0043 (5) |
Geometric parameters (Å, °)
C1—C2 | 1.3872 (18) | C8—C13 | 1.3870 (15) |
C1—C6 | 1.3916 (17) | C8—C9 | 1.4161 (15) |
C1—H1A | 0.9500 | C9—O2 | 1.3624 (12) |
C2—C3 | 1.3673 (19) | C9—C10 | 1.3794 (14) |
C2—H2A | 0.9500 | C10—C11 | 1.4046 (14) |
C3—C4 | 1.3810 (18) | C10—H10A | 0.9500 |
C3—H3A | 0.9500 | C11—C12 | 1.3822 (16) |
C4—C5 | 1.3878 (17) | C11—C15 | 1.4411 (14) |
C4—H4A | 0.9500 | C12—C13 | 1.3897 (15) |
C5—C6 | 1.3834 (16) | C12—H12A | 0.9500 |
C5—H5A | 0.9500 | C13—H13A | 0.9500 |
C6—C7 | 1.4967 (15) | C14—O2 | 1.4244 (13) |
C7—O1 | 1.4478 (13) | C14—H14A | 0.9800 |
C7—H7A | 0.9900 | C14—H14B | 0.9800 |
C7—H7B | 0.9900 | C14—H14C | 0.9800 |
C8—O1 | 1.3535 (12) | C15—N1 | 1.1402 (15) |
C8—O1—C7 | 117.61 (8) | O1—C8—C13 | 125.25 (10) |
C9—O2—C14 | 117.38 (8) | O1—C8—C9 | 115.10 (9) |
C2—C1—C6 | 120.51 (12) | C13—C8—C9 | 119.65 (9) |
C2—C1—H1A | 119.7 | O2—C9—C10 | 125.03 (9) |
C6—C1—H1A | 119.7 | O2—C9—C8 | 115.01 (9) |
C3—C2—C1 | 120.43 (12) | C10—C9—C8 | 119.96 (9) |
C3—C2—H2A | 119.8 | C9—C10—C11 | 119.51 (10) |
C1—C2—H2A | 119.8 | C9—C10—H10A | 120.2 |
C2—C3—C4 | 119.72 (12) | C11—C10—H10A | 120.2 |
C2—C3—H3A | 120.1 | C12—C11—C10 | 120.68 (10) |
C4—C3—H3A | 120.1 | C12—C11—C15 | 120.10 (10) |
C3—C4—C5 | 120.20 (12) | C10—C11—C15 | 119.22 (10) |
C3—C4—H4A | 119.9 | C11—C12—C13 | 119.87 (10) |
C5—C4—H4A | 119.9 | C11—C12—H12A | 120.1 |
C6—C5—C4 | 120.58 (11) | C13—C12—H12A | 120.1 |
C6—C5—H5A | 119.7 | C8—C13—C12 | 120.33 (10) |
C4—C5—H5A | 119.7 | C8—C13—H13A | 119.8 |
C5—C6—C1 | 118.55 (11) | C12—C13—H13A | 119.8 |
C5—C6—C7 | 120.06 (10) | O2—C14—H14A | 109.5 |
C1—C6—C7 | 121.28 (11) | O2—C14—H14B | 109.5 |
O1—C7—C6 | 106.16 (9) | H14A—C14—H14B | 109.5 |
O1—C7—H7A | 110.5 | O2—C14—H14C | 109.5 |
C6—C7—H7A | 110.5 | H14A—C14—H14C | 109.5 |
O1—C7—H7B | 110.5 | H14B—C14—H14C | 109.5 |
C6—C7—H7B | 110.5 | N1—C15—C11 | 178.73 (13) |
H7A—C7—H7B | 108.7 |
Hydrogen-bond geometry (Å, °)
D—H···A | D—H | H···A | D···A | D—H···A |
C14—H14B···N1i | 0.98 | 2.58 | 3.5170 (17) | 160 |
Symmetry codes: (i) −x, y−1/2, −z+1/2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2626).
References
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bruker (2001). SMART and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2002). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
- Garcia, M. H., Rodrigues, J. C., Dias, A. R., Piedade, M. F. M., Duarte, M. T., Robalo, M. P. & Lopes, N. (2001). J. Organomet. Chem.632, 133–144.
- Lind, P., Lopes, C. O., berg, K. & Eliasson, B. (2004). Chem. Phys. Lett.387, 238–242.
- Ornelas, C., Gandum, C., Mesquita, J., Rodrigues, J., Garcia, M. H., Lopes, N., Robalo, M. P., Na ttinen, K. & Rissanen, K. (2005). Inorg. Chim. Acta, 358, 2482–2488.
- Ornelas, C., Ruiz, J., Rodrigues, J. & Astruc, D. (2008). Inorg. Chem. 47, 4421–4428. [DOI] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Tour, M. J. (2003). Molecular Electronics, Commercial Insights, Chemistry, Devices, Architecture and Programming Singapore: World Scientific Publishing Co Pte Ltd.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809005613/hk2626sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809005613/hk2626Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report