Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Feb 28;65(Pt 3):o623. doi: 10.1107/S1600536809006588

N′-(2-Chloro-5-nitro­benzyl­idene)isonicotinohydrazide

Feng Zhi a,*
PMCID: PMC2968476  PMID: 21582275

Abstract

The title compound, C13H9ClN4O3, was synthesized by the condensation reaction of 2-chloro-5-nitro­benzaldehyde with isonicotinohydrazide in a methanol solution. The mol­ecule of the compound displays a trans configuration with respect to the C=N and C—N bonds. The dihedral angle between the benzene and pyridine rings is 12.1 (2)°. In the crystal structure, adjacent mol­ecules are linked through inter­molecular N—H⋯O hydrogen bonds, forming dimers.

Related literature

For Schiff base compounds, see: Fan et al. (2007); Kim et al. (2005); Nimitsiriwat et al. (2004). For the biological activity of Schiff base compounds, see: Chen et al. (1997); Ren et al. (2002). For similar structures, see: Mohd Lair et al. (2009); Fun et al. (2008); Yang (2008); Zhi (2008); Zhi & Yang (2007).graphic file with name e-65-0o623-scheme1.jpg

Experimental

Crystal data

  • C13H9ClN4O3

  • M r = 304.69

  • Tetragonal, Inline graphic

  • a = 18.586 (3) Å

  • c = 15.183 (3) Å

  • V = 5244.9 (15) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 298 K

  • 0.12 × 0.10 × 0.10 mm

Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.964, T max = 0.970

  • 16616 measured reflections

  • 2869 independent reflections

  • 1685 reflections with I > 2σ(I)

  • R int = 0.083

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.131

  • S = 1.03

  • 2869 reflections

  • 194 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809006588/hg2481sup1.cif

e-65-0o623-sup1.cif (16KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809006588/hg2481Isup2.hkl

e-65-0o623-Isup2.hkl (141.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3i 0.892 (10) 2.187 (13) 3.055 (3) 164 (3)

Symmetry code: (i) Inline graphic.

Acknowledgments

Financial support from the Third Affiliated Hospital of Suzhou University is acknowledged.

supplementary crystallographic information

Comment

Schiff base compounds have been widely investigated over a century (Fan et al., 2007; Kim et al., 2005; Nimitsiriwat et al., 2004). Some of the compounds have been found to have pharmacological and antibacterial activity (Chen et al., 1997; Ren et al., 2002). In this paper, the crystal structure of a new Schiff base compound, (I), Fig. 1, derived from the condensation reaction of 2-chloro-5-nitrobenzaldehyde with isonicotinohydrazide is reported.

In (I), the molecular structure of the compound displays a trans configuration with respect to the C=N and C-N bonds. The dihedral angle between the benzene ring and the pyridine ring is 12.1 (2)°. The dihedral angle between the O1/N4/O2 plane and the benzene ring is 8.1 (2)°. All the bond lengths are within normal ranges and comparable to those in other similar compounds (Mohd Lair et al., 2009; Fun et al., 2008; Yang, 2008; Zhi, 2008; Zhi & Yang, 2007).

In the crystal structure, adjacent molecules are linked through intermolecular N—H···O hydrogen bonds (Table 1), forming dimers (Fig. 2).

Experimental

2-Chloro-5-nitrobenzaldehyde (0.01 mol, 1.85 g) and isonicotinohydrazide (0.01 mol, 1.37 g) were dissolved in a methanol solution (50 ml). The mixture was stirred at room temperature to give a clear colorless solution. Crystals of the title compound were formed by gradual evaporation of the solvent for a week at room temperature.

Refinement

The N proton H2 was located in a difference map and refined with N–H distance restrained to 0.90 (1) Å. All other H atoms were positioned geometrically [C–H = 0.93 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The structure of (I) at the 30% probability level.

Fig. 2.

Fig. 2.

Molecular packing of (I), viewed along the b axis. Intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

C13H9ClN4O3 Dx = 1.543 Mg m3
Mr = 304.69 Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/a Cell parameters from 1528 reflections
Hall symbol: -I 4ad θ = 2.2–24.5°
a = 18.586 (3) Å µ = 0.31 mm1
c = 15.183 (3) Å T = 298 K
V = 5244.9 (15) Å3 Block, colorless
Z = 16 0.12 × 0.10 × 0.10 mm
F(000) = 2496

Data collection

Bruker SMART 1000 CCD area-detector diffractometer 2869 independent reflections
Radiation source: fine-focus sealed tube 1685 reflections with I > 2σ(I)
graphite Rint = 0.083
ω scans θmax = 27.0°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −23→22
Tmin = 0.964, Tmax = 0.970 k = −21→23
16616 measured reflections l = −19→19

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0346P)2 + 2.6778P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
2869 reflections Δρmax = 0.17 e Å3
194 parameters Δρmin = −0.21 e Å3
1 restraint Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.00084 (18)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.14870 (5) 0.28558 (6) 0.06873 (6) 0.0950 (4)
O1 0.24702 (14) 0.38109 (14) 0.46884 (14) 0.0866 (7)
O2 0.17681 (13) 0.29247 (14) 0.49968 (15) 0.0980 (8)
O3 0.36910 (10) 0.56885 (10) 0.18178 (11) 0.0646 (5)
N1 0.29514 (11) 0.44612 (12) 0.16009 (13) 0.0507 (5)
N2 0.33431 (12) 0.47740 (12) 0.09354 (12) 0.0520 (6)
N3 0.50947 (13) 0.62326 (13) −0.09159 (15) 0.0627 (6)
N4 0.20600 (15) 0.33277 (15) 0.44731 (16) 0.0674 (7)
C1 0.21758 (13) 0.35202 (14) 0.20311 (17) 0.0497 (6)
C2 0.16520 (15) 0.30249 (16) 0.17913 (19) 0.0624 (8)
C3 0.12506 (16) 0.26504 (17) 0.2413 (3) 0.0767 (10)
H3 0.0893 0.2333 0.2231 0.092*
C4 0.13799 (16) 0.27471 (16) 0.3291 (2) 0.0723 (9)
H4 0.1120 0.2494 0.3713 0.087*
C5 0.19049 (14) 0.32300 (14) 0.35332 (18) 0.0540 (7)
C6 0.22899 (13) 0.36163 (14) 0.29285 (16) 0.0505 (6)
H6 0.2632 0.3947 0.3120 0.061*
C7 0.25958 (14) 0.39094 (15) 0.13746 (17) 0.0544 (7)
H7 0.2603 0.3753 0.0793 0.065*
C8 0.37206 (13) 0.53777 (14) 0.11106 (15) 0.0471 (6)
C9 0.41915 (13) 0.56487 (13) 0.03806 (15) 0.0446 (6)
C10 0.41588 (15) 0.54180 (14) −0.04791 (15) 0.0543 (7)
H10 0.3836 0.5060 −0.0645 0.065*
C11 0.46139 (17) 0.57273 (16) −0.10915 (17) 0.0643 (8)
H11 0.4580 0.5568 −0.1671 0.077*
C12 0.51235 (15) 0.64389 (16) −0.00807 (19) 0.0632 (8)
H12 0.5459 0.6789 0.0070 0.076*
C13 0.46919 (15) 0.61719 (15) 0.05767 (17) 0.0588 (7)
H13 0.4737 0.6343 0.1150 0.071*
H2 0.3334 (16) 0.4566 (14) 0.0406 (10) 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0684 (6) 0.1253 (8) 0.0914 (6) 0.0108 (5) −0.0135 (4) −0.0546 (6)
O1 0.1009 (18) 0.1033 (19) 0.0558 (13) −0.0094 (15) −0.0011 (12) 0.0119 (12)
O2 0.1027 (18) 0.1125 (19) 0.0787 (15) 0.0079 (15) 0.0333 (13) 0.0459 (14)
O3 0.0837 (14) 0.0749 (13) 0.0351 (10) −0.0072 (11) 0.0146 (9) −0.0096 (9)
N1 0.0517 (13) 0.0618 (14) 0.0385 (11) 0.0045 (11) 0.0075 (10) 0.0043 (10)
N2 0.0645 (14) 0.0606 (15) 0.0308 (11) 0.0020 (12) 0.0090 (10) −0.0004 (10)
N3 0.0636 (16) 0.0770 (17) 0.0476 (15) 0.0023 (13) 0.0087 (11) 0.0066 (12)
N4 0.0682 (17) 0.0753 (18) 0.0588 (16) 0.0173 (15) 0.0191 (13) 0.0226 (14)
C1 0.0445 (15) 0.0519 (16) 0.0526 (15) 0.0061 (12) 0.0028 (12) −0.0037 (12)
C2 0.0493 (17) 0.0646 (19) 0.073 (2) 0.0108 (14) 0.0018 (15) −0.0201 (15)
C3 0.0525 (19) 0.062 (2) 0.116 (3) −0.0120 (15) 0.0152 (19) −0.0258 (19)
C4 0.064 (2) 0.0575 (19) 0.095 (3) −0.0031 (16) 0.0257 (18) −0.0006 (17)
C5 0.0489 (16) 0.0497 (16) 0.0635 (18) 0.0065 (13) 0.0140 (13) 0.0059 (13)
C6 0.0469 (15) 0.0528 (16) 0.0519 (16) 0.0001 (12) 0.0037 (12) 0.0029 (12)
C7 0.0588 (17) 0.0681 (19) 0.0364 (14) 0.0076 (15) 0.0028 (12) −0.0043 (13)
C8 0.0546 (16) 0.0541 (16) 0.0325 (13) 0.0091 (13) 0.0035 (11) 0.0015 (11)
C9 0.0470 (15) 0.0507 (15) 0.0359 (13) 0.0129 (12) 0.0034 (11) 0.0023 (11)
C10 0.0679 (18) 0.0570 (16) 0.0378 (14) −0.0026 (14) 0.0091 (12) −0.0018 (12)
C11 0.081 (2) 0.074 (2) 0.0377 (15) 0.0014 (18) 0.0124 (14) −0.0056 (14)
C12 0.0542 (17) 0.078 (2) 0.0572 (18) −0.0075 (15) −0.0030 (14) 0.0078 (15)
C13 0.0644 (18) 0.0738 (19) 0.0383 (14) −0.0027 (15) −0.0019 (13) −0.0018 (13)

Geometric parameters (Å, °)

Cl1—C2 1.733 (3) C3—H3 0.9300
O1—N4 1.222 (3) C4—C5 1.376 (4)
O2—N4 1.220 (3) C4—H4 0.9300
O3—C8 1.221 (3) C5—C6 1.368 (3)
N1—C7 1.268 (3) C6—H6 0.9300
N1—N2 1.374 (3) C7—H7 0.9300
N2—C8 1.350 (3) C8—C9 1.499 (3)
N2—H2 0.892 (10) C9—C10 1.375 (3)
N3—C11 1.324 (4) C9—C13 1.378 (3)
N3—C12 1.326 (3) C10—C11 1.382 (4)
N4—C5 1.467 (4) C10—H10 0.9300
C1—C2 1.388 (4) C11—H11 0.9300
C1—C6 1.391 (3) C12—C13 1.373 (4)
C1—C7 1.458 (4) C12—H12 0.9300
C2—C3 1.390 (4) C13—H13 0.9300
C3—C4 1.367 (4)
C7—N1—N2 114.8 (2) C5—C6—H6 119.6
C8—N2—N1 118.8 (2) C1—C6—H6 119.6
C8—N2—H2 123 (2) N1—C7—C1 119.7 (2)
N1—N2—H2 118 (2) N1—C7—H7 120.2
C11—N3—C12 115.2 (2) C1—C7—H7 120.2
O2—N4—O1 123.7 (3) O3—C8—N2 122.9 (2)
O2—N4—C5 118.1 (3) O3—C8—C9 121.2 (2)
O1—N4—C5 118.3 (2) N2—C8—C9 115.9 (2)
C2—C1—C6 116.7 (2) C10—C9—C13 117.1 (2)
C2—C1—C7 121.7 (3) C10—C9—C8 124.8 (2)
C6—C1—C7 121.6 (2) C13—C9—C8 118.1 (2)
C1—C2—C3 122.0 (3) C9—C10—C11 118.8 (3)
C1—C2—Cl1 119.9 (2) C9—C10—H10 120.6
C3—C2—Cl1 118.1 (2) C11—C10—H10 120.6
C4—C3—C2 120.1 (3) N3—C11—C10 124.9 (3)
C4—C3—H3 119.9 N3—C11—H11 117.5
C2—C3—H3 119.9 C10—C11—H11 117.5
C3—C4—C5 118.1 (3) N3—C12—C13 124.6 (3)
C3—C4—H4 120.9 N3—C12—H12 117.7
C5—C4—H4 120.9 C13—C12—H12 117.7
C6—C5—C4 122.3 (3) C12—C13—C9 119.5 (2)
C6—C5—N4 119.0 (3) C12—C13—H13 120.3
C4—C5—N4 118.7 (3) C9—C13—H13 120.3
C5—C6—C1 120.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2···O3i 0.89 (1) 2.19 (1) 3.055 (3) 164 (3)

Symmetry codes: (i) y−1/4, −x+3/4, z−1/4.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2481).

References

  1. Bruker (2002). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Chen, H. Q., Hall, S., Zheng, B. & Rhodes, J. (1997). Biodrugs, 7, 217–231. [DOI] [PubMed]
  3. Fan, Y. H., He, X. T., Bi, C. F., Guo, F., Bao, Y. & Chen, R. (2007). Russ. J. Coord. Chem.33, 535–538.
  4. Fun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707. [DOI] [PMC free article] [PubMed]
  5. Kim, H.-J., Kim, W., Lough, A. J., Kim, B. M. & Chin, J. (2005). J. Am. Chem. Soc.127, 16776–16777. [DOI] [PubMed]
  6. Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o189. [DOI] [PMC free article] [PubMed]
  7. Nimitsiriwat, N., Marshall, E. L., Gibson, V. C., Elsegood, M. R. J. & Dale, S. H. (2004). J. Am. Chem. Soc.126, 13598–13599. [DOI] [PubMed]
  8. Ren, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem.45, 410–419. [DOI] [PubMed]
  9. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Yang, D.-S. (2008). Acta Cryst. E64, o1850. [DOI] [PMC free article] [PubMed]
  12. Zhi, F. (2008). Acta Cryst. E64, o150. [DOI] [PMC free article] [PubMed]
  13. Zhi, F. & Yang, Y.-L. (2007). Acta Cryst. E63, o4471.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809006588/hg2481sup1.cif

e-65-0o623-sup1.cif (16KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809006588/hg2481Isup2.hkl

e-65-0o623-Isup2.hkl (141.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES