Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Feb 6;65(Pt 3):m257–m258. doi: 10.1107/S1600536809000841

{6,6′-Dimeth­oxy-2,2′-[naphthalene-2,3-diylbis(nitrilo­methyl­idyne)]diphenolato}thio­cyanato­cobalt(III) diethyl ether dichloro­methane solvate

Zhong Yu a,b,*, Takayoshi Kuroda-Sowa a, Atsuhiro Nabei a, Masahiko Maekawa a, Takashi Okubo a
PMCID: PMC2968487  PMID: 21582048

Abstract

In the title complex, [Co(C26H20N2O4)(NCS)]·C4H10O·CH2Cl2, the penta­coordinated CoIII atom exhibits a distorted square-pyramidal geometry with an N,N′,O,O′ tetra­dentate Schiff base ligand in the basal plane and one thio­cyanate ligand at the apical site. The diethyl ether mol­ecule is located in a cavity provided by four O atoms of the ligand with weak C—H⋯O inter­actions, generating two short O⋯O contact distances [2.766 (3) and 2.745 (3) Å] between the diethyl ether mol­ecule and the ligand. The crystal structure is stabilized by the weak C—H⋯O and C—H⋯N inter­actions and π–π inter­actions between the naphthyl ring system and the benzene ring [centroid–centroid distance = 3.657 (5) Å] and between the two naphthyl ring systems [centroid–centroid distance = 4.305 (2) Å].

Related literature

For the properties of Co(III) complexes with Schiff base ligands, see: Ito & Katsuki (1999); Wezenberg & Kleij (2008); Di Bella et al. (1995). For related structures, see: Kennedy et al. (1984); Marzilli et al. (1985); Álvarez et al. (2002). For hydrogen-bond length data, see: Desiraju & Steiner (1999). For non-bonded contact distances, see: Rowland & Taylor (1996); De Angelis et al. (1996). For the preparation of bis­(o-vanillin)-2,3-naphthalene­diimine, see: Nabei et al. (2008).graphic file with name e-65-0m257-scheme1.jpg

Experimental

Crystal data

  • [Co(C26H20N2O4)(NCS)]·C4H10O·CH2Cl2

  • M r = 700.52

  • Monoclinic, Inline graphic

  • a = 9.1935 (9) Å

  • b = 13.3640 (11) Å

  • c = 25.910 (3) Å

  • β = 92.462 (6)°

  • V = 3180.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.82 mm−1

  • T = 120 (1) K

  • 0.40 × 0.10 × 0.10 mm

Data collection

  • Rigaku Mercury diffractometer

  • Absorption correction: multi-scan (Jacobson, 1998) T min = 0.799, T max = 0.921

  • 24340 measured reflections

  • 7241 independent reflections

  • 6234 reflections with I 2 > 2σ(I 2)

  • R int = 0.051

Refinement

  • R[F 2 > 2σ(F 2)] = 0.075

  • wR(F 2) = 0.136

  • S = 1.21

  • 7241 reflections

  • 397 parameters

  • H-atom parameters constrained

  • Δρmax = 0.69 e Å−3

  • Δρmin = −0.60 e Å−3

Data collection: CrystalClear (Rigaku, 2001); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97; software used to prepare material for publication: CrystalStructure.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809000841/is2372sup1.cif

e-65-0m257-sup1.cif (30KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809000841/is2372Isup2.hkl

e-65-0m257-Isup2.hkl (354.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯N3i 0.95 2.64 3.579 (4) 172
C28—H28A⋯O2 0.99 2.42 3.352 (4) 157
C29—H29B⋯O4 0.99 2.94 3.424 (4) 111
C30—H30B⋯O3 0.98 2.96 3.607 (5) 125
C32—H32B⋯O2 0.98 2.80 3.453 (4) 124
C32—H32C⋯O1 0.98 2.80 3.423 (4) 122

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported in part by a Grant-in-Aid for Science Research from the Ministry of Education, Science and Culture, Japan (grant No. 18033054). The authors are grateful to Kinki University for financial support. Partial financial support from Xi’an Applied Materials Innovation Fund (grant No. 200713) is also acknowledged.

supplementary crystallographic information

Comment

Cobalt Schiff base complexes have undergone extensive research as a promising catalyst for various homogeneous reactions (Ito & Katsuki, 1999). Since novel solid state properties on structural types, conductive and magnetic properties (Wezenberg & Kleij, 2008; Di Bella et al., 1995), they recently attract new attentions on the material applications. Herein we report a new Co(III) complex based on the Schiff base ligand bis(o-vanillin)-2,3-naphthalenediimine.

In the title complex, the Co(III) ion shows the five-coordinated square pyramidal geometry, which is defined by two N and two O atoms of the tetradentate ligand in the approximate basal plane and one N atoms of thiocyanate in the apical position (Fig. 1). The bond distances and angles associated with Co(III) atoms are comparable with related five-coordinated cobalt species (Kennedy et al., 1984; Marzilli et al., 1985; Álvarez et al., 2002). The ligand plane is distorted with a dihedral angle of 27.81 (12)° between two phenyl rings. The diethyl ether molecule is approximately perpendicular to ligand plane, with the O atom almost coplanar in the ligand.

In the crystal structure, the complex molecule provides a planar cavity of four O atoms which accommodates a diethyl ether molecule via weak C—H···O interactions (Table 1). The range for the H···O distances agree with those found for weak C—H···O hydrogen bonds (Desiraju & Steiner, 1999). There are short non-bonded intramolecular distances between O atoms of diethyl ether and ligand: O1···O5 = 2.766 (3) Å and O2···O5 = 2.745 (3) Å, slightly less than the corresponding van der Waals distances (O···O = 2.80 Å; Rowland & Taylor, 1996). It may be attributed to those weak interactions between diethyl ether and complex, as well as some effects of crystal packing, which is comparable with a distance [Na···O(Me) = 2.54 (3) Å] in a similar structure (De Angelis et al., 1996). The crystal structure is further stabilized by additional interactions C1—H1···N3i and C28—H28A···O2 (Table 2), together with extended π-π interactions between naphthyl rings and phenyl rings [centroid-centroidi distances of 3.657 (5) Å, dihedral angles of 12.97 (10)°] as well as naphthyl rings [centroid-centroidii distances of 4.305 (2) Å, interplanar distances of 3.521 (4) Å] of adjacent molecules [symmetry codes: (i) -x + 2, -y, -z; (ii) -x + 1, -y, -z], forming an infinite three-dimensional network (Fig. 2).

Experimental

The desired ligand, bis(o-vanillin)-2,3-naphthalenediimine, was synthesized according to the literature procedures (Nabei et al., 2008). A solution of Co(SCN)2 (0.1 mmol, 17.6 mg) in methanol (10 ml) was layered over a solution of ligand (0.1 mmol, 42.6 mg) in dichloromethane (10 ml). After standing for two weeks at room temperature, the brown brick crystals of title complex suitable for X-ray analysis were obtained.

Refinement

All H atoms were placed in calculated positions and refined as riding, with C—H = 0.95–0.99 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

A view of the title molecule, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Weak hydrogen bonds are indicated with dashed lines.

Fig. 2.

Fig. 2.

A view of crystal packing of the title complex. The π-π interactions are indicated with dashed lines. For clarity, H atoms are not shown.

Crystal data

[Co(C26H20N2O4)(NCS)]·C4H10O·CH2Cl2 F(000) = 1448.00
Mr = 700.52 Dx = 1.463 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2yn Cell parameters from 8164 reflections
a = 9.1935 (9) Å θ = 3.0–27.5°
b = 13.3640 (11) Å µ = 0.82 mm1
c = 25.910 (3) Å T = 120 K
β = 92.462 (6)° Block, brown
V = 3180.4 (5) Å3 0.40 × 0.10 × 0.10 mm
Z = 4

Data collection

Rigaku Mercury diffractometer 6234 reflections with F2 > 2σ(F2)
Detector resolution: 7.31 pixels mm-1 Rint = 0.051
ω scans θmax = 27.5°
Absorption correction: multi-scan (Jacobson, 1998) h = −11→11
Tmin = 0.799, Tmax = 0.921 k = −17→16
24340 measured reflections l = −33→33
7241 independent reflections

Refinement

Refinement on F2 0 restraints
R[F2 > 2σ(F2)] = 0.075 H-atom parameters constrained
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.0406P)2 + 5.4074P] where P = (Fo2 + 2Fc2)/3
S = 1.21 (Δ/σ)max < 0.001
7241 reflections Δρmax = 0.69 e Å3
397 parameters Δρmin = −0.60 e Å3

Special details

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Co1 0.86917 (5) 0.14242 (3) 0.104634 (16) 0.01291 (12)
Cl1 0.94249 (14) −0.01789 (9) 0.26072 (5) 0.0457 (3)
Cl2 1.08816 (13) 0.13888 (10) 0.32166 (4) 0.0432 (2)
S1 1.23023 (10) −0.10089 (7) 0.16110 (3) 0.0209 (2)
O1 0.9600 (2) 0.26531 (17) 0.07695 (9) 0.0169 (5)
O2 0.8278 (2) 0.20652 (17) 0.17258 (9) 0.0169 (5)
O3 1.1184 (2) 0.42651 (18) 0.06792 (9) 0.0208 (5)
O4 0.8313 (2) 0.30348 (19) 0.25937 (9) 0.0227 (5)
O5 0.9766 (3) 0.3836 (2) 0.16464 (11) 0.0342 (7)
N1 0.8470 (3) 0.0896 (2) 0.02833 (10) 0.0136 (5)
N2 0.6785 (3) 0.0629 (2) 0.10650 (10) 0.0125 (5)
N3 1.0299 (3) 0.0455 (2) 0.12721 (11) 0.0200 (6)
C1 0.7473 (3) −0.0599 (2) −0.01750 (12) 0.0143 (6)
C2 0.7520 (3) 0.0062 (2) 0.02329 (13) 0.0135 (6)
C3 0.6577 (3) −0.0073 (2) 0.06516 (12) 0.0136 (6)
C4 0.5599 (3) −0.0851 (2) 0.06453 (13) 0.0152 (6)
C5 0.4501 (3) −0.2336 (2) 0.02066 (14) 0.0212 (7)
C6 0.4441 (4) −0.2974 (2) −0.02095 (14) 0.0231 (8)
C7 0.5377 (4) −0.2840 (2) −0.06230 (15) 0.0237 (8)
C8 0.6372 (3) −0.2082 (2) −0.06120 (13) 0.0188 (7)
C9 0.6461 (3) −0.1400 (2) −0.01923 (13) 0.0159 (6)
C10 0.5509 (3) −0.1530 (2) 0.02226 (13) 0.0155 (6)
C11 0.8959 (3) 0.1312 (2) −0.01225 (12) 0.0151 (6)
C12 0.9881 (3) 0.2190 (2) −0.01257 (13) 0.0151 (6)
C13 1.0523 (3) 0.2418 (2) −0.05992 (13) 0.0185 (7)
C14 1.1415 (4) 0.3229 (2) −0.06411 (14) 0.0224 (8)
C15 1.1658 (4) 0.3869 (2) −0.02166 (14) 0.0202 (7)
C16 1.1014 (3) 0.3677 (2) 0.02430 (13) 0.0175 (7)
C17 1.0133 (3) 0.2812 (2) 0.03134 (13) 0.0156 (7)
C18 1.2007 (4) 0.5168 (2) 0.06299 (15) 0.0267 (8)
C19 0.5787 (3) 0.0745 (2) 0.14003 (13) 0.0140 (6)
C20 0.5903 (3) 0.1340 (2) 0.18630 (12) 0.0144 (6)
C21 0.4719 (3) 0.1279 (2) 0.21954 (13) 0.0176 (7)
C22 0.4720 (4) 0.1784 (2) 0.26559 (13) 0.0207 (7)
C23 0.5933 (4) 0.2381 (2) 0.28035 (13) 0.0193 (7)
C24 0.7092 (3) 0.2458 (2) 0.24873 (13) 0.0165 (7)
C25 0.7134 (3) 0.1936 (2) 0.20060 (12) 0.0141 (6)
C26 0.8445 (4) 0.3472 (3) 0.30996 (14) 0.0286 (9)
C27 1.1133 (3) −0.0151 (2) 0.14180 (13) 0.0163 (7)
C28 1.0497 (4) 0.0897 (3) 0.25913 (15) 0.0294 (9)
C29 1.1140 (4) 0.4060 (2) 0.19570 (14) 0.0223 (7)
C30 1.2196 (4) 0.3211 (3) 0.19249 (17) 0.0334 (9)
C31 0.8751 (4) 0.4713 (2) 0.16089 (15) 0.0229 (8)
C32 0.7414 (4) 0.4437 (3) 0.12821 (15) 0.0258 (8)
H1 0.8123 −0.0517 −0.0447 0.017*
H4 0.4977 −0.0935 0.0926 0.018*
H5 0.3870 −0.2434 0.0483 0.025*
H6 0.3763 −0.3511 −0.0220 0.028*
H7 0.5312 −0.3281 −0.0911 0.028*
H8 0.7011 −0.2010 −0.0888 0.023*
H11 0.8691 0.1019 −0.0447 0.018*
H13 1.0330 0.2002 −0.0891 0.022*
H14 1.1870 0.3358 −0.0957 0.027*
H15 1.2269 0.4438 −0.0247 0.024*
H18A 1.2052 0.5524 0.0961 0.032*
H18B 1.1536 0.5595 0.0364 0.032*
H18C 1.2996 0.5003 0.0531 0.032*
H19 0.4893 0.0403 0.1333 0.017*
H21 0.3902 0.0877 0.2096 0.021*
H22 0.3916 0.1732 0.2873 0.025*
H23 0.5950 0.2731 0.3123 0.023*
H26A 0.9345 0.3864 0.3132 0.034*
H26B 0.8471 0.2941 0.3361 0.034*
H26C 0.7609 0.3910 0.3152 0.034*
H28A 0.9985 0.1411 0.2377 0.035*
H28B 1.1423 0.0737 0.2428 0.035*
H29A 1.1586 0.4679 0.1825 0.027*
H29B 1.0910 0.4173 0.2322 0.027*
H30A 1.3087 0.3372 0.2130 0.040*
H30B 1.2433 0.3106 0.1564 0.040*
H30C 1.1760 0.2602 0.2061 0.040*
H31A 0.9247 0.5289 0.1452 0.027*
H31B 0.8466 0.4911 0.1959 0.027*
H32A 0.6753 0.5012 0.1257 0.031*
H32B 0.6920 0.3874 0.1441 0.031*
H32C 0.7700 0.4247 0.0936 0.031*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.0163 (2) 0.0129 (2) 0.0096 (2) −0.00135 (19) 0.00109 (17) 0.00003 (18)
Cl1 0.0561 (7) 0.0395 (6) 0.0431 (6) −0.0178 (5) 0.0187 (5) −0.0048 (5)
Cl2 0.0424 (6) 0.0508 (7) 0.0355 (6) 0.0001 (5) −0.0067 (5) −0.0069 (5)
S1 0.0193 (4) 0.0229 (4) 0.0203 (4) 0.0029 (3) −0.0010 (3) 0.0034 (3)
O1 0.0238 (13) 0.0165 (12) 0.0107 (11) −0.0038 (10) 0.0018 (9) −0.0011 (9)
O2 0.0203 (12) 0.0179 (12) 0.0128 (11) −0.0037 (10) 0.0036 (9) −0.0025 (9)
O3 0.0301 (14) 0.0181 (12) 0.0142 (12) −0.0102 (11) −0.0006 (10) −0.0005 (9)
O4 0.0307 (14) 0.0230 (13) 0.0145 (12) −0.0071 (11) 0.0018 (10) −0.0085 (10)
O5 0.0363 (17) 0.0322 (16) 0.0337 (16) −0.0014 (13) −0.0025 (13) −0.0020 (12)
N1 0.0176 (14) 0.0122 (13) 0.0109 (13) 0.0019 (11) 0.0002 (11) 0.0002 (10)
N2 0.0181 (14) 0.0104 (12) 0.0089 (12) 0.0011 (11) −0.0013 (11) 0.0010 (10)
N3 0.0247 (16) 0.0222 (16) 0.0132 (14) 0.0026 (13) 0.0005 (12) −0.0002 (12)
C1 0.0149 (16) 0.0161 (16) 0.0119 (15) 0.0025 (13) 0.0015 (13) 0.0024 (12)
C2 0.0141 (16) 0.0124 (15) 0.0137 (15) 0.0031 (13) −0.0031 (13) 0.0012 (12)
C3 0.0164 (16) 0.0138 (16) 0.0102 (15) 0.0023 (13) −0.0043 (13) −0.0014 (12)
C4 0.0161 (16) 0.0165 (16) 0.0130 (15) 0.0026 (13) −0.0001 (13) 0.0002 (12)
C5 0.0193 (18) 0.0216 (18) 0.0228 (18) −0.0006 (15) 0.0002 (15) 0.0013 (14)
C6 0.0213 (18) 0.0219 (19) 0.0257 (19) −0.0073 (15) −0.0045 (15) −0.0028 (15)
C7 0.028 (2) 0.0192 (18) 0.0233 (19) 0.0012 (16) −0.0072 (16) −0.0064 (14)
C8 0.0209 (18) 0.0200 (17) 0.0151 (16) 0.0053 (14) −0.0040 (14) −0.0003 (13)
C9 0.0171 (16) 0.0146 (16) 0.0155 (16) 0.0040 (14) −0.0040 (13) −0.0005 (13)
C10 0.0164 (16) 0.0134 (16) 0.0164 (16) 0.0011 (13) −0.0043 (13) 0.0010 (13)
C11 0.0193 (17) 0.0142 (16) 0.0118 (15) 0.0027 (13) −0.0011 (13) 0.0008 (12)
C12 0.0185 (17) 0.0139 (16) 0.0129 (16) 0.0017 (13) −0.0005 (13) 0.0035 (12)
C13 0.0262 (19) 0.0163 (17) 0.0133 (16) −0.0008 (14) 0.0037 (14) 0.0011 (13)
C14 0.029 (2) 0.0248 (19) 0.0141 (16) 0.0014 (16) 0.0080 (15) 0.0073 (14)
C15 0.0218 (18) 0.0183 (17) 0.0202 (17) −0.0032 (14) −0.0012 (15) 0.0053 (14)
C16 0.0196 (17) 0.0172 (17) 0.0153 (16) −0.0011 (14) −0.0048 (13) 0.0011 (13)
C17 0.0167 (17) 0.0160 (16) 0.0140 (16) 0.0026 (13) −0.0019 (13) 0.0030 (13)
C18 0.032 (2) 0.0218 (19) 0.026 (2) −0.0113 (16) 0.0010 (17) 0.0001 (15)
C19 0.0142 (16) 0.0115 (15) 0.0162 (16) 0.0029 (12) −0.0013 (13) 0.0014 (12)
C20 0.0197 (17) 0.0105 (15) 0.0131 (15) 0.0050 (13) 0.0012 (13) 0.0027 (12)
C21 0.0170 (16) 0.0168 (17) 0.0193 (17) 0.0009 (14) 0.0019 (13) 0.0003 (13)
C22 0.0238 (19) 0.0217 (18) 0.0173 (17) 0.0043 (15) 0.0102 (15) 0.0019 (14)
C23 0.030 (2) 0.0138 (16) 0.0140 (16) 0.0032 (14) 0.0037 (14) −0.0026 (13)
C24 0.0226 (18) 0.0139 (16) 0.0129 (16) 0.0005 (14) −0.0004 (14) −0.0015 (12)
C25 0.0217 (17) 0.0103 (15) 0.0102 (15) 0.0029 (13) 0.0010 (13) 0.0021 (12)
C26 0.035 (2) 0.034 (2) 0.0175 (18) −0.0041 (18) 0.0019 (16) −0.0138 (16)
C27 0.0176 (17) 0.0192 (17) 0.0119 (15) −0.0047 (14) 0.0012 (13) −0.0020 (13)
C28 0.027 (2) 0.035 (2) 0.026 (2) −0.0033 (18) −0.0015 (17) −0.0021 (17)
C29 0.0241 (19) 0.0248 (19) 0.0176 (17) −0.0020 (15) −0.0053 (15) −0.0033 (14)
C30 0.031 (2) 0.031 (2) 0.037 (2) 0.0029 (18) −0.0063 (19) −0.0046 (18)
C31 0.0255 (19) 0.0165 (17) 0.026 (2) −0.0014 (15) −0.0012 (16) 0.0001 (14)
C32 0.026 (2) 0.025 (2) 0.026 (2) 0.0010 (16) −0.0039 (16) 0.0008 (16)

Geometric parameters (Å, °)

Co1—O1 1.990 (2) C20—C21 1.419 (4)
Co1—O2 2.009 (2) C20—C25 1.420 (4)
Co1—N1 2.101 (2) C21—C22 1.371 (4)
Co1—N2 2.053 (2) C22—C23 1.411 (5)
Co1—N3 2.033 (3) C23—C24 1.376 (5)
Cl1—C28 1.745 (4) C24—C25 1.430 (4)
Cl2—C28 1.770 (4) C29—C30 1.498 (5)
S1—C27 1.635 (3) C31—C32 1.508 (5)
O1—C17 1.316 (4) C1—H1 0.950
O2—C25 1.315 (4) C4—H4 0.950
O3—C16 1.380 (4) C5—H5 0.950
O3—C18 1.433 (4) C6—H6 0.950
O4—C24 1.380 (4) C7—H7 0.950
O4—C26 1.436 (4) C8—H8 0.950
O5—C29 1.499 (4) C11—H11 0.950
O5—C31 1.499 (4) C13—H13 0.950
N1—C2 1.419 (4) C14—H14 0.950
N1—C11 1.287 (4) C15—H15 0.950
N2—C3 1.430 (4) C18—H18A 0.980
N2—C19 1.299 (4) C18—H18B 0.980
N3—C27 1.166 (4) C18—H18C 0.980
C1—C2 1.376 (4) C19—H19 0.950
C1—C9 1.418 (4) C21—H21 0.950
C2—C3 1.428 (4) C22—H22 0.950
C3—C4 1.375 (4) C23—H23 0.950
C4—C10 1.422 (4) C26—H26A 0.980
C5—C6 1.374 (5) C26—H26B 0.980
C5—C10 1.420 (4) C26—H26C 0.980
C6—C7 1.414 (5) C28—H28A 0.990
C7—C8 1.364 (5) C28—H28B 0.990
C8—C9 1.419 (4) C29—H29A 0.990
C9—C10 1.426 (4) C29—H29B 0.990
C11—C12 1.448 (4) C30—H30A 0.980
C12—C13 1.417 (4) C30—H30B 0.980
C12—C17 1.420 (4) C30—H30C 0.980
C13—C14 1.366 (5) C31—H31A 0.990
C14—C15 1.404 (5) C31—H31B 0.990
C15—C16 1.377 (5) C32—H32A 0.980
C16—C17 1.428 (4) C32—H32B 0.980
C19—C20 1.439 (4) C32—H32C 0.980
O1···O5 2.766 (3) O1···H30B 3.305
O1···C32 3.423 (4) O1···H32B 3.483
O2···O5 2.745 (3) O1···H32C 2.799
O2···C28 3.352 (4) O2···H28A 2.417
O2···C31 3.580 (4) O2···H30C 3.358
O2···C32 3.453 (4) O2···H32B 2.804
O3···O5 2.931 (3) O2···H32C 3.589
O3···C29 3.324 (4) O3···H29A 3.028
O3···C31 3.410 (4) O3···H30B 2.957
O4···O5 3.039 (3) O3···H31A 3.059
O4···C29 3.424 (4) O3···H32C 3.299
O4···C31 3.434 (4) O4···H28A 2.732
O5···O1 2.766 (3) O4···H29B 2.942
O5···O2 2.745 (3) O4···H30C 3.558
O5···O3 2.931 (3) O4···H31B 3.006
O5···O4 3.039 (3) O4···H32B 3.389
O5···C30 2.464 (5) H1···N3i 2.636
O5···C32 2.457 (4) H28A···O2 2.417
C1···N3i 3.579 (4) H29A···O3 3.028
C28···O2 3.352 (4) H29B···O4 2.942
C29···O3 3.324 (4) H30B···O1 3.305
C29···O4 3.424 (4) H30B···O3 2.957
C30···O5 2.464 (5) H31A···O3 3.059
C31···O2 3.580 (4) H31B···O4 3.006
C31···O3 3.410 (4) H32B···O1 3.483
C31···O4 3.434 (4) H32B···O2 2.804
C32···Cl1ii 3.438 (4) H32B···O4 3.389
C32···O1 3.423 (4) H32C···O1 2.799
C32···O2 3.453 (4) H32C···O2 3.589
C32···O5 2.457 (4) H32C···O3 3.299
O1—Co1—O2 93.56 (9) O5—C31—C32 109.6 (2)
O1—Co1—N1 87.90 (10) C2—C1—H1 119.7
O1—Co1—N2 143.89 (10) C9—C1—H1 119.8
O1—Co1—N3 108.59 (11) C3—C4—H4 119.7
O2—Co1—N1 162.48 (10) C10—C4—H4 119.7
O2—Co1—N2 90.36 (10) C6—C5—H5 120.1
O2—Co1—N3 100.51 (10) C10—C5—H5 120.1
N1—Co1—N2 78.44 (10) C5—C6—H6 119.7
N1—Co1—N3 95.54 (11) C7—C6—H6 119.7
N2—Co1—N3 105.92 (11) C6—C7—H7 119.7
Co1—O1—C17 129.4 (2) C8—C7—H7 119.7
Co1—O2—C25 127.9 (2) C7—C8—H8 119.7
C16—O3—C18 116.6 (2) C9—C8—H8 119.7
C24—O4—C26 116.5 (2) N1—C11—H11 117.3
C29—O5—C31 112.7 (2) C12—C11—H11 117.3
Co1—N1—C2 112.7 (2) C12—C13—H13 119.6
Co1—N1—C11 126.9 (2) C14—C13—H13 119.5
C2—N1—C11 119.9 (2) C13—C14—H14 120.1
Co1—N2—C3 114.1 (2) C15—C14—H14 120.1
Co1—N2—C19 125.6 (2) C14—C15—H15 119.9
C3—N2—C19 120.3 (2) C16—C15—H15 119.9
Co1—N3—C27 174.4 (2) O3—C18—H18A 109.5
C2—C1—C9 120.5 (3) O3—C18—H18B 109.5
N1—C2—C1 125.0 (3) O3—C18—H18C 109.5
N1—C2—C3 114.8 (2) H18A—C18—H18B 109.5
C1—C2—C3 120.2 (2) H18A—C18—H18C 109.5
N2—C3—C2 114.9 (2) H18B—C18—H18C 109.5
N2—C3—C4 124.8 (2) N2—C19—H19 116.8
C2—C3—C4 120.3 (2) C20—C19—H19 116.8
C3—C4—C10 120.6 (3) C20—C21—H21 119.1
C6—C5—C10 119.9 (3) C22—C21—H21 119.1
C5—C6—C7 120.7 (3) C21—C22—H22 120.5
C6—C7—C8 120.5 (3) C23—C22—H22 120.5
C7—C8—C9 120.6 (3) C22—C23—H23 119.9
C1—C9—C8 121.7 (3) C24—C23—H23 119.9
C1—C9—C10 119.5 (3) O4—C26—H26A 109.5
C8—C9—C10 118.8 (3) O4—C26—H26B 109.5
C4—C10—C5 121.5 (3) O4—C26—H26C 109.5
C4—C10—C9 119.0 (3) H26A—C26—H26B 109.5
C5—C10—C9 119.4 (3) H26A—C26—H26C 109.5
N1—C11—C12 125.4 (2) H26B—C26—H26C 109.5
C11—C12—C13 116.4 (2) Cl1—C28—H28A 109.2
C11—C12—C17 123.0 (3) Cl1—C28—H28B 109.2
C13—C12—C17 120.5 (3) Cl2—C28—H28A 109.2
C12—C13—C14 120.9 (3) Cl2—C28—H28B 109.2
C13—C14—C15 119.8 (3) H28A—C28—H28B 107.9
C14—C15—C16 120.2 (3) O5—C29—H29A 109.5
O3—C16—C15 124.3 (3) O5—C29—H29B 109.5
O3—C16—C17 113.7 (2) C30—C29—H29A 109.5
C15—C16—C17 122.0 (3) C30—C29—H29B 109.5
O1—C17—C12 124.8 (3) H29A—C29—H29B 108.1
O1—C17—C16 118.7 (2) C29—C30—H30A 109.5
C12—C17—C16 116.5 (3) C29—C30—H30B 109.5
N2—C19—C20 126.4 (3) C29—C30—H30C 109.5
C19—C20—C21 116.3 (2) H30A—C30—H30B 109.5
C19—C20—C25 123.9 (3) H30A—C30—H30C 109.5
C21—C20—C25 119.8 (2) H30B—C30—H30C 109.5
C20—C21—C22 121.9 (3) O5—C31—H31A 109.8
C21—C22—C23 119.1 (3) O5—C31—H31B 109.8
C22—C23—C24 120.3 (3) C32—C31—H31A 109.8
O4—C24—C23 124.5 (3) C32—C31—H31B 109.8
O4—C24—C25 113.2 (2) H31A—C31—H31B 108.2
C23—C24—C25 122.2 (3) C31—C32—H32A 109.5
O2—C25—C20 125.2 (2) C31—C32—H32B 109.5
O2—C25—C24 118.0 (2) C31—C32—H32C 109.5
C20—C25—C24 116.7 (3) H32A—C32—H32B 109.5
S1—C27—N3 178.9 (3) H32A—C32—H32C 109.5
Cl1—C28—Cl2 112.0 (2) H32B—C32—H32C 109.5
O5—C29—C30 110.6 (3)
O1—Co1—O2—C25 142.7 (2) N1—C2—C3—N2 −2.6 (4)
O2—Co1—O1—C17 −178.3 (2) N1—C2—C3—C4 179.5 (2)
O1—Co1—N1—C2 −166.2 (2) C1—C2—C3—N2 176.7 (2)
O1—Co1—N1—C11 5.6 (2) C1—C2—C3—C4 −1.2 (4)
N1—Co1—O1—C17 −15.8 (2) N2—C3—C4—C10 −177.8 (3)
O1—Co1—N2—C3 88.5 (2) C2—C3—C4—C10 −0.1 (3)
O1—Co1—N2—C19 −89.0 (3) C3—C4—C10—C5 −179.7 (3)
N2—Co1—O1—C17 −82.8 (3) C3—C4—C10—C9 0.7 (4)
N3—Co1—O1—C17 79.3 (2) C6—C5—C10—C4 179.7 (3)
O2—Co1—N1—C2 −71.0 (4) C6—C5—C10—C9 −0.7 (5)
O2—Co1—N1—C11 100.8 (4) C10—C5—C6—C7 0.2 (5)
N1—Co1—O2—C25 48.4 (4) C5—C6—C7—C8 1.0 (5)
O2—Co1—N2—C3 −175.0 (2) C6—C7—C8—C9 −1.6 (5)
O2—Co1—N2—C19 7.6 (2) C7—C8—C9—C1 −179.2 (3)
N2—Co1—O2—C25 −1.3 (2) C7—C8—C9—C10 1.1 (5)
N3—Co1—O2—C25 −107.6 (2) C1—C9—C10—C4 0.0 (4)
N1—Co1—N2—C3 18.6 (2) C1—C9—C10—C5 −179.6 (3)
N1—Co1—N2—C19 −158.9 (2) C8—C9—C10—C4 179.7 (3)
N2—Co1—N1—C2 −19.8 (2) C8—C9—C10—C5 0.1 (3)
N2—Co1—N1—C11 152.0 (3) N1—C11—C12—C13 168.5 (3)
N3—Co1—N1—C2 85.4 (2) N1—C11—C12—C17 −12.5 (5)
N3—Co1—N1—C11 −102.9 (2) C11—C12—C13—C14 −179.7 (3)
N3—Co1—N2—C3 −74.0 (2) C11—C12—C17—O1 1.8 (5)
N3—Co1—N2—C19 108.6 (2) C11—C12—C17—C16 −177.1 (3)
Co1—O1—C17—C12 14.8 (4) C13—C12—C17—O1 −179.1 (3)
Co1—O1—C17—C16 −166.3 (2) C13—C12—C17—C16 1.9 (4)
Co1—O2—C25—C20 −3.5 (4) C17—C12—C13—C14 1.2 (5)
Co1—O2—C25—C24 178.4 (2) C12—C13—C14—C15 −2.6 (5)
C18—O3—C16—C15 4.5 (4) C13—C14—C15—C16 0.8 (5)
C18—O3—C16—C17 −177.5 (2) C14—C15—C16—O3 −179.7 (3)
C26—O4—C24—C23 8.5 (4) C14—C15—C16—C17 2.5 (5)
C26—O4—C24—C25 −171.8 (2) O3—C16—C17—O1 −0.8 (4)
C29—O5—C31—C32 178.8 (2) O3—C16—C17—C12 178.3 (2)
C31—O5—C29—C30 −172.5 (3) C15—C16—C17—O1 177.2 (3)
Co1—N1—C2—C1 −161.2 (2) C15—C16—C17—C12 −3.7 (5)
Co1—N1—C2—C3 18.0 (3) N2—C19—C20—C21 −174.3 (3)
Co1—N1—C11—C12 6.0 (4) N2—C19—C20—C25 3.3 (5)
C2—N1—C11—C12 177.2 (3) C19—C20—C21—C22 177.8 (3)
C11—N1—C2—C1 26.4 (4) C19—C20—C25—O2 3.9 (5)
C11—N1—C2—C3 −154.4 (3) C19—C20—C25—C24 −178.0 (3)
Co1—N2—C3—C2 −14.6 (3) C21—C20—C25—O2 −178.6 (3)
Co1—N2—C3—C4 163.2 (2) C21—C20—C25—C24 −0.5 (4)
Co1—N2—C19—C20 −9.6 (4) C25—C20—C21—C22 0.1 (3)
C3—N2—C19—C20 173.2 (3) C21—C22—C23—C24 0.4 (5)
C19—N2—C3—C2 163.0 (2) C22—C23—C24—O4 178.8 (3)
C19—N2—C3—C4 −19.2 (4) C22—C23—C24—C25 −0.8 (5)
C2—C1—C9—C8 178.9 (3) O4—C24—C25—O2 −0.6 (4)
C2—C1—C9—C10 −1.4 (4) O4—C24—C25—C20 −178.8 (2)
C9—C1—C2—N1 −178.8 (3) C23—C24—C25—O2 179.1 (3)
C9—C1—C2—C3 2.0 (4) C23—C24—C25—C20 0.9 (4)

Symmetry codes: (i) −x+2, −y, −z; (ii) −x+3/2, y+1/2, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C1—H1···N3i 0.95 2.64 3.579 (4) 172
C28—H28A···O2 0.99 2.42 3.352 (4) 157
C29—H29B···O4 0.99 2.94 3.424 (4) 111
C30—H30B···O3 0.98 2.96 3.607 (5) 125
C32—H32B···O2 0.98 2.80 3.453 (4) 124
C32—H32C···O1 0.98 2.80 3.423 (4) 122

Symmetry codes: (i) −x+2, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2372).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  2. Álvarez, R., Cabrera, A., Espinosa-Pérez, G., Hernández-Ortega, S., Velasco, L. & Esquivel, B. (2002). Transition Met. Chem.27, 213–217.
  3. De Angelis, S., Solari, E., Gallo, E., Floriani, C., Chiesi-Villa, A. & Rizzoli, C. (1996). Inorg. Chem.35, 5995–6003.
  4. Desiraju, G. & Steiner, T. (1999). The Weak Hydrogen Bond: Applications to Structural Chemistry and Biology New York: Oxford University Press.
  5. Di Bella, S., Fragala, I., Ledoux, I. & Marks, I. J. (1995). J. Am. Chem. Soc.117, 9481–9485.
  6. Ito, Y. N. & Katsuki, T. (1999). Bull. Chem. Soc. Jpn, 72, 603–619.
  7. Jacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.
  8. Kennedy, B. J., Fallon, G. D., Gatehouse, B. M. K. C. & Murray, K. S. (1984). Inorg. Chem.23, 580–588.
  9. Marzilli, L. G., Summers, M. F., Bresciani-Pahor, N., Zangrando, E., Charland, J. P. & Randaccio, L. (1985). J. Am. Chem. Soc.107, 6880–6888.
  10. Nabei, A., Kuroda-Sowa, T., Okubo, T., Maekawa, M. & Munakata, M. (2008). Inorg. Chim. Acta, 361, 3489–3493.
  11. Rigaku (2001). CrystalClear Rigaku Corporation, Tokyo, Japan.
  12. Rigaku/MSC (2007). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  13. Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem.100, 7384–7391.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Wezenberg, S. J. & Kleij, A. W. (2008). Angew. Chem. Int. Ed.47, 2354–2364. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809000841/is2372sup1.cif

e-65-0m257-sup1.cif (30KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809000841/is2372Isup2.hkl

e-65-0m257-Isup2.hkl (354.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES