Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Feb 18;65(Pt 3):m283–m284. doi: 10.1107/S1600536809004760

Construction of a dinuclear silver(I) coordination complex with a Schiff base containing 4-amino-1,2,4-triazole ligands

Qiaozhen Sun a,*, Feng Zheng a, Xiaodan Sun a, Wei Wang a
PMCID: PMC2968493  PMID: 21582069

Abstract

The new ligand 1-(1,2,4-triazol-4-ylimino­meth­yl)-2-naphthol (L) and the title silver(I) complex, namely bis­[μ-1-(1,2,4-triazol-4-ylimino­meth­yl)-2-naphthol]bis­{[1-(1,2,4-triazol-4-yl­imino­meth­yl)-2-naphthol]silver(I)} dinitrate monohydrate, [Ag2(C13H10N4O)4](NO3)2·H2O, were synthesized. Each silver center in the dimeric complex (related by an inversion centre) is coordinated by two bridging L ligands and one additional L ligand in a monodentate fashion, exhibiting a distorted trigonal-planar coordination. The discrete dimers are further linked through O—H⋯O hydrogen bonds and weak π–π stacking inter­actions [the shortest atom–atom separation is ca 3.46 Å between the parallel stacking pairs]. Intramolecular O—H⋯N hydrogen bonds are also present.

Related literature

For the structures of other triazole Schiff base compounds, see: Beckmann & Brooker (2003); Drabent et al. (2003, 2004); Garcia et al. (1997); Klingele & Brooker (2003); Liu et al. (2003, 2006); Wang et al. (2006); Yi et al. (2004); Zhai et al. (2006). For related literature, see: Han et al. (2004).graphic file with name e-65-0m283-scheme1.jpg

Experimental

Crystal data

  • [Ag2(C13H10N4O)4](NO3)2·H2O

  • M r = 1310.78

  • Triclinic, Inline graphic

  • a = 9.8594 (15) Å

  • b = 10.7081 (15) Å

  • c = 12.8567 (19) Å

  • α = 82.391 (2)°

  • β = 81.155 (2)°

  • γ = 77.626 (2)°

  • V = 1303.1 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.83 mm−1

  • T = 293 K

  • 0.20 × 0.18 × 0.16 mm

Data collection

  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.826, T max = 0.887

  • 6610 measured reflections

  • 4536 independent reflections

  • 3137 reflections with I > 2σ(I)

  • R int = 0.118

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055

  • wR(F 2) = 0.133

  • S = 1.00

  • 4536 reflections

  • 379 parameters

  • H-atom parameters constrained

  • Δρmax = 0.85 e Å−3

  • Δρmin = −0.84 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809004760/wk2097sup1.cif

e-65-0m283-sup1.cif (25.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809004760/wk2097Isup2.hkl

e-65-0m283-Isup2.hkl (222.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1 0.82 1.83 2.548 (4) 145
O2—H2B⋯N5 0.82 1.87 2.588 (5) 145
O1W—H1WA⋯O3i 0.85 1.85 2.594 (15) 145

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors acknowledge the financial support from the Innovation Program for College Students of Central South University (grant No. 081053308).

supplementary crystallographic information

Comment

1,2,4-triazoles and their derivatives are interesting bridging ligands. 1,2,4-triazoles can coordinate with metals by bridging two adjacent nitrogen atoms (N1 and N2) or via the 4-positioned one (N4). It is also a readily available and inexpensive resource. In the past two decades, a variety of coordination compounds containing 1,2,4-triazoles, N4 substituted 1,2,4-triazoles and their derivatives as ligands coordinated to metal ions have been reported (Beckmann & Brooker, 2003; Garcia et al., 1997; Klingele & Brooker, 2003; Liu et al., 2006; Liu et al., 2003; Yi et al., 2004; Zhai et al., 2006). Relatively few structurally characterized compounds based on 4-amido-1,2,4-triazoles Schiff base ligands have been reported (Drabent et al., 2004 and 2003; Wang et al., 2006). Here we describe the synthesis of the Ag(I) metal complex with a Schiff-base containing triazole ligand.

The molecular structure of complex 1 is shown in Figure 1. It consists of a discrete binuclear complex of Ag(I) bridged by two N1,N2-coordinated triazole ligands and an additional triazole ligand is bound to the Ag(I) ion in a monodentate fashion. This coordination mode results in a trigonal planar coordination environment (the sum of the angles around Ag metal atom is equal to 360 °). The Ag—Ag distance is equal to 3.81 Å, which is over the summed van der Waals radii of two Ag(I) atoms (3.44 Å) (Han et al., 2004). The Ag—N bond distances are in the range of 2.18–2.33 Å. The six-membered Ag-[N—N]2-Ag rings remain almost planar (the mean plane deviation is 0.06 Å) from planarity, which is similar withdinuclear Cu(I) complex (Drabent et al., 2004). The Ag—N—N—Ag dihedral angle is 15.1 °.

In this complex all the ligands L are coordinated in almost planar E configuration and the resulting binuclear units can be described as X-shaped dimers. Sheets formed through C-H···O hydrogen bonds are further aggregated into three-dimensions by weak π-π stacking interactions between the naphthyl rings of the neighbouring dimers in different sheets and the shortest atom···atom separation is ca 3.46 Å between the parallel stacking pairs. The anions and water molecules interact with one another through O—H···N, O—H···O hydrogen bonds.

Experimental

Preparation of complex 1: The ligand L (0.1 mmol, 0.024 g) and AgNO3 (0.1 mmol, 0.017 g) were mixed in acetonitrile and stirred at room temperature for one hour, the yellow solution was filtered and evaporated at room temperature. A few days later orange block crystals were obtained.

Preparation of the ligand L: An ethanolic solution (20 ml) of 2-hydroxy-1-napthaldehyde (1.72 g, 10 mmol) was added to a warm ethanolic solution (10 ml) of 4-amino- 1,2,4-triazole (0.84 g, 10 mmol) and the resulting solution was refluxed for four hours. The reaction mixture was then cooled to room temperature. Upon standing overnight the resultant yellow solid was filtered off, washed with diethyl ether and dried under vacuum. Yield: 90%. 1H NMR (500 MHz, DMSO, 298 K): 9.66 (s, 1H), 9.34 (s, 2H), 8.84–8.86 (d, 1H), 8.05–8.07 (d, 1H), 7.90–7.92 (d, 1H), 7.61–7.64 (t, 1H), 7.43–7.46 (t, 1H), 7.28–7.30 (d, 1H).

Refinement

All of the non-hydrogen atoms were refined with anisotropic thermal displacement coefficients. The positions of hydrogen atoms were fixed geometrically at calculated distances and allowed to ride on the parent non-hydrogen atoms. The water molecule was refined as disordered with the s.o.f. being fixed at 0.5 and its hydrogen atoms located in the difference Fourier maps and fixed at calculated distances from the parent oxygen atom.

Figures

Fig. 1.

Fig. 1.

A perspective view of the molecular structure showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [symmetry code: (A) 2 - x, -y, 2 - z.]

Fig. 2.

Fig. 2.

A packing diagram for the crystal along b axis, the NO3-, H2O and hydrogen atoms are omitted for clarity.

Crystal data

[Ag2(C13H10N4O)4](NO3)2·H2O Z = 1
Mr = 1310.78 F(000) = 662
Triclinic, P1 Dx = 1.670 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.8594 (15) Å Cell parameters from 2250 reflections
b = 10.7081 (15) Å θ = 2.4–25.4°
c = 12.8567 (19) Å µ = 0.83 mm1
α = 82.391 (2)° T = 293 K
β = 81.155 (2)° Block, orange
γ = 77.626 (2)° 0.2 × 0.18 × 0.16 mm
V = 1303.1 (3) Å3

Data collection

Bruker APEX CCD area-detector diffractometer 4536 independent reflections
Radiation source: fine-focus sealed tube 3137 reflections with I > 2σ(I)
graphite Rint = 0.118
φ and ω scans θmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −10→11
Tmin = 0.826, Tmax = 0.887 k = −12→8
6610 measured reflections l = −15→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055 Hydrogen site location: geom, H2O from difmap
wR(F2) = 0.133 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0601P)2] where P = (Fo2 + 2Fc2)/3
4536 reflections (Δ/σ)max = 0.001
379 parameters Δρmax = 0.85 e Å3
0 restraints Δρmin = −0.84 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Ag1 0.84563 (4) 0.12190 (4) 0.95202 (3) 0.0613 (2)
O1 0.3147 (4) 0.5935 (3) 0.5781 (2) 0.0564 (9)
H1A 0.3862 0.5514 0.6002 0.085*
O2 1.2327 (4) 0.0054 (4) 0.4026 (3) 0.0701 (11)
H2B 1.2018 0.0029 0.4656 0.105*
N1 0.4657 (4) 0.4732 (4) 0.7179 (3) 0.0488 (10)
N2 0.5888 (4) 0.3908 (4) 0.7472 (3) 0.0447 (10)
N3 0.7966 (4) 0.2720 (4) 0.7236 (3) 0.0590 (12)
N4 0.7427 (4) 0.2564 (4) 0.8288 (3) 0.0554 (11)
N5 1.2436 (4) −0.0497 (4) 0.6037 (3) 0.0453 (9)
N6 1.1907 (4) −0.0406 (3) 0.7095 (3) 0.0412 (9)
N7 1.0373 (4) 0.0221 (4) 0.8420 (3) 0.0489 (10)
N8 1.1554 (4) −0.0524 (4) 0.8806 (3) 0.0447 (10)
C1 0.1290 (5) 0.6319 (4) 0.8481 (4) 0.0423 (11)
C2 0.1404 (6) 0.6048 (5) 0.9573 (4) 0.0530 (13)
H2A 0.2232 0.5561 0.9789 0.064*
C3 0.0338 (6) 0.6481 (6) 1.0306 (4) 0.0633 (15)
H3A 0.0449 0.6287 1.1019 0.076*
C4 −0.0937 (6) 0.7218 (6) 1.0028 (4) 0.0663 (15)
H4A −0.1664 0.7506 1.0545 0.080*
C5 −0.1082 (6) 0.7501 (5) 0.8987 (5) 0.0650 (15)
H5A −0.1922 0.7993 0.8794 0.078*
C6 −0.0002 (5) 0.7072 (5) 0.8189 (4) 0.0514 (12)
C7 −0.0158 (6) 0.7374 (5) 0.7109 (4) 0.0582 (14)
H7A −0.1003 0.7859 0.6921 0.070*
C8 0.0863 (6) 0.6988 (5) 0.6352 (4) 0.0552 (14)
H8A 0.0722 0.7200 0.5646 0.066*
C9 0.2163 (5) 0.6255 (4) 0.6608 (4) 0.0442 (11)
C10 0.2382 (5) 0.5910 (4) 0.7651 (4) 0.0404 (11)
C11 0.3702 (5) 0.5102 (4) 0.7907 (4) 0.0419 (11)
H11A 0.3840 0.4858 0.8611 0.050*
C12 0.6178 (5) 0.3277 (5) 0.8406 (4) 0.0515 (13)
H12A 0.5582 0.3338 0.9040 0.062*
C13 0.7004 (5) 0.3530 (5) 0.6776 (4) 0.0548 (14)
H13A 0.7082 0.3809 0.6057 0.066*
C14 1.5717 (5) −0.2019 (5) 0.4532 (4) 0.0459 (11)
C15 1.6506 (5) −0.2714 (5) 0.5336 (4) 0.0570 (13)
H15A 1.6110 −0.2711 0.6041 0.068*
C16 1.7841 (6) −0.3386 (6) 0.5089 (5) 0.0684 (16)
H16A 1.8327 −0.3846 0.5629 0.082*
C17 1.8483 (7) −0.3395 (6) 0.4050 (6) 0.083 (2)
H17A 1.9405 −0.3821 0.3897 0.099*
C18 1.7744 (7) −0.2771 (6) 0.3256 (5) 0.0719 (17)
H18A 1.8153 −0.2810 0.2556 0.086*
C19 1.6372 (6) −0.2068 (5) 0.3479 (4) 0.0577 (14)
C20 1.5622 (7) −0.1409 (6) 0.2656 (4) 0.0679 (17)
H20A 1.6040 −0.1457 0.1959 0.082*
C21 1.4303 (7) −0.0703 (6) 0.2851 (4) 0.0673 (17)
H21A 1.3840 −0.0259 0.2294 0.081*
C22 1.3641 (6) −0.0650 (5) 0.3907 (4) 0.0526 (13)
C23 1.4329 (5) −0.1275 (4) 0.4742 (3) 0.0435 (11)
C24 1.3675 (5) −0.1161 (5) 0.5824 (3) 0.0441 (11)
H24A 1.4163 −0.1578 0.6377 0.053*
C25 1.0619 (5) 0.0279 (5) 0.7388 (4) 0.0477 (12)
H25A 1.0000 0.0725 0.6926 0.057*
C26 1.2458 (5) −0.0883 (4) 0.7999 (3) 0.0432 (11)
H26A 1.3346 −0.1390 0.8039 0.052*
N9 0.5609 (6) 0.7008 (7) 0.8823 (5) 0.0847 (17)
O3 0.5165 (10) 0.7921 (8) 0.9419 (6) 0.183 (4)
O4 0.5557 (6) 0.7361 (6) 0.7950 (4) 0.125 (2)
O5 0.5869 (6) 0.5986 (5) 0.9295 (5) 0.116 (2)
O1W 0.6044 (13) −0.0162 (13) 0.9945 (10) 0.143 (5) 0.50
H1WA 0.6068 −0.0783 0.9589 0.171* 0.50
H1WB 0.5600 −0.0207 1.0566 0.171* 0.50

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ag1 0.0486 (3) 0.0810 (4) 0.0381 (2) 0.0158 (2) −0.00257 (16) 0.00200 (18)
O1 0.053 (2) 0.067 (2) 0.0399 (17) 0.0063 (18) −0.0092 (16) 0.0002 (16)
O2 0.076 (3) 0.077 (3) 0.0453 (19) 0.013 (2) −0.0091 (18) −0.0055 (18)
N1 0.041 (2) 0.054 (3) 0.046 (2) 0.005 (2) −0.0109 (19) −0.0009 (19)
N2 0.037 (2) 0.051 (2) 0.039 (2) 0.0072 (18) −0.0074 (17) −0.0035 (17)
N3 0.046 (3) 0.076 (3) 0.041 (2) 0.011 (2) −0.0012 (19) −0.001 (2)
N4 0.048 (3) 0.073 (3) 0.037 (2) 0.009 (2) −0.0116 (19) −0.001 (2)
N5 0.047 (2) 0.046 (2) 0.0352 (19) 0.0018 (19) 0.0022 (17) −0.0045 (16)
N6 0.038 (2) 0.041 (2) 0.0361 (19) 0.0033 (18) 0.0052 (16) −0.0051 (16)
N7 0.038 (2) 0.054 (3) 0.043 (2) 0.0105 (19) −0.0008 (17) −0.0038 (18)
N8 0.037 (2) 0.053 (3) 0.036 (2) 0.0062 (18) −0.0033 (17) −0.0029 (17)
C1 0.036 (3) 0.039 (3) 0.051 (3) −0.003 (2) −0.010 (2) −0.004 (2)
C2 0.045 (3) 0.061 (3) 0.052 (3) −0.008 (3) −0.011 (2) −0.003 (2)
C3 0.058 (4) 0.087 (4) 0.044 (3) −0.017 (3) 0.006 (2) −0.013 (3)
C4 0.049 (3) 0.082 (4) 0.063 (3) −0.004 (3) 0.009 (3) −0.022 (3)
C5 0.041 (3) 0.060 (4) 0.089 (4) 0.001 (3) −0.005 (3) −0.012 (3)
C6 0.035 (3) 0.051 (3) 0.066 (3) −0.002 (2) −0.009 (2) −0.008 (2)
C7 0.043 (3) 0.058 (3) 0.070 (4) 0.005 (3) −0.024 (3) −0.001 (3)
C8 0.056 (3) 0.056 (3) 0.049 (3) 0.006 (3) −0.022 (3) 0.000 (2)
C9 0.046 (3) 0.041 (3) 0.045 (3) −0.003 (2) −0.011 (2) −0.001 (2)
C10 0.034 (3) 0.036 (3) 0.051 (3) −0.003 (2) −0.011 (2) −0.005 (2)
C11 0.037 (3) 0.046 (3) 0.039 (2) 0.000 (2) −0.007 (2) −0.005 (2)
C12 0.042 (3) 0.067 (3) 0.035 (2) 0.014 (2) −0.008 (2) −0.006 (2)
C13 0.045 (3) 0.071 (4) 0.036 (2) 0.009 (3) −0.001 (2) 0.002 (2)
C14 0.048 (3) 0.043 (3) 0.048 (3) −0.014 (2) 0.005 (2) −0.014 (2)
C15 0.048 (3) 0.058 (3) 0.062 (3) −0.004 (3) 0.006 (3) −0.019 (3)
C16 0.041 (3) 0.076 (4) 0.086 (4) −0.004 (3) −0.001 (3) −0.022 (3)
C17 0.053 (4) 0.079 (5) 0.109 (5) −0.007 (3) 0.025 (4) −0.040 (4)
C18 0.068 (4) 0.076 (4) 0.069 (4) −0.024 (3) 0.031 (3) −0.029 (3)
C19 0.062 (4) 0.056 (3) 0.055 (3) −0.022 (3) 0.018 (3) −0.020 (3)
C20 0.085 (5) 0.074 (4) 0.042 (3) −0.027 (4) 0.022 (3) −0.014 (3)
C21 0.097 (5) 0.068 (4) 0.033 (3) −0.014 (4) −0.002 (3) −0.002 (2)
C22 0.063 (4) 0.048 (3) 0.043 (3) −0.008 (3) 0.003 (2) −0.008 (2)
C23 0.049 (3) 0.040 (3) 0.039 (2) −0.010 (2) 0.005 (2) −0.008 (2)
C24 0.042 (3) 0.048 (3) 0.039 (2) −0.006 (2) 0.003 (2) −0.003 (2)
C25 0.038 (3) 0.055 (3) 0.039 (2) 0.007 (2) −0.002 (2) 0.001 (2)
C26 0.041 (3) 0.047 (3) 0.036 (2) 0.002 (2) −0.005 (2) −0.004 (2)
N9 0.076 (4) 0.099 (5) 0.081 (4) −0.028 (4) −0.029 (3) 0.021 (4)
O3 0.216 (9) 0.163 (7) 0.149 (6) −0.041 (6) 0.080 (6) −0.057 (6)
O4 0.101 (4) 0.177 (6) 0.076 (3) −0.002 (4) −0.015 (3) 0.031 (4)
O5 0.132 (5) 0.090 (4) 0.118 (4) −0.007 (3) −0.041 (4) 0.027 (3)
O1W 0.115 (10) 0.181 (12) 0.125 (9) −0.003 (9) 0.005 (8) −0.057 (8)

Geometric parameters (Å, °)

Ag1—N8i 2.182 (3) C7—H7A 0.9300
Ag1—N4 2.209 (4) C8—C9 1.413 (6)
Ag1—N7 2.329 (4) C8—H8A 0.9300
O1—C9 1.351 (6) C9—C10 1.381 (6)
O1—H1A 0.8200 C10—C11 1.458 (6)
O2—C22 1.349 (7) C11—H11A 0.9300
O2—H2B 0.8200 C12—H12A 0.9300
N1—C11 1.259 (6) C13—H13A 0.9300
N1—N2 1.410 (5) C14—C19 1.410 (6)
N2—C13 1.333 (6) C14—C15 1.422 (7)
N2—C12 1.338 (5) C14—C23 1.434 (7)
N3—C13 1.298 (6) C15—C16 1.370 (8)
N3—N4 1.377 (5) C15—H15A 0.9300
N4—C12 1.300 (6) C16—C17 1.388 (9)
N5—C24 1.284 (6) C16—H16A 0.9300
N5—N6 1.389 (5) C17—C18 1.363 (9)
N6—C25 1.349 (6) C17—H17A 0.9300
N6—C26 1.351 (5) C18—C19 1.407 (8)
N7—C25 1.307 (6) C18—H18A 0.9300
N7—N8 1.383 (5) C19—C20 1.409 (8)
N8—C26 1.301 (6) C20—C21 1.362 (9)
N8—Ag1i 2.182 (3) C20—H20A 0.9300
C1—C2 1.412 (6) C21—C22 1.416 (7)
C1—C6 1.428 (6) C21—H21A 0.9300
C1—C10 1.435 (6) C22—C23 1.378 (7)
C2—C3 1.346 (8) C23—C24 1.450 (6)
C2—H2A 0.9300 C24—H24A 0.9300
C3—C4 1.403 (8) C25—H25A 0.9300
C3—H3A 0.9300 C26—H26A 0.9300
C4—C5 1.355 (8) N9—O4 1.141 (6)
C4—H4A 0.9300 N9—O5 1.176 (7)
C5—C6 1.406 (7) N9—O3 1.284 (9)
C5—H5A 0.9300 O1W—H1WA 0.8499
C6—C7 1.408 (7) O1W—H1WB 0.8500
C7—C8 1.326 (8)
N8i—Ag1—N4 147.87 (16) N1—C11—C10 120.2 (4)
N8i—Ag1—N7 114.48 (13) N1—C11—H11A 119.9
N4—Ag1—N7 97.64 (14) C10—C11—H11A 119.9
C9—O1—H1A 109.5 N4—C12—N2 109.3 (4)
C22—O2—H2B 109.5 N4—C12—H12A 125.4
C11—N1—N2 117.8 (4) N2—C12—H12A 125.4
C13—N2—C12 106.0 (4) N3—C13—N2 111.0 (4)
C13—N2—N1 123.0 (4) N3—C13—H13A 124.5
C12—N2—N1 130.8 (4) N2—C13—H13A 124.5
C13—N3—N4 105.8 (4) C19—C14—C15 116.7 (5)
C12—N4—N3 108.0 (4) C19—C14—C23 119.6 (5)
C12—N4—Ag1 126.5 (3) C15—C14—C23 123.7 (4)
N3—N4—Ag1 125.4 (3) C16—C15—C14 121.1 (5)
C24—N5—N6 117.6 (4) C16—C15—H15A 119.5
C25—N6—C26 106.3 (4) C14—C15—H15A 119.5
C25—N6—N5 121.5 (4) C15—C16—C17 121.4 (6)
C26—N6—N5 132.2 (4) C15—C16—H16A 119.3
C25—N7—N8 106.9 (4) C17—C16—H16A 119.3
C25—N7—Ag1 130.5 (3) C18—C17—C16 119.1 (6)
N8—N7—Ag1 122.5 (3) C18—C17—H17A 120.4
C26—N8—N7 107.8 (3) C16—C17—H17A 120.4
C26—N8—Ag1i 129.5 (3) C17—C18—C19 121.0 (6)
N7—N8—Ag1i 121.5 (3) C17—C18—H18A 119.5
C2—C1—C6 117.2 (4) C19—C18—H18A 119.5
C2—C1—C10 124.7 (4) C18—C19—C20 120.7 (5)
C6—C1—C10 118.1 (4) C18—C19—C14 120.6 (6)
C3—C2—C1 121.2 (5) C20—C19—C14 118.7 (5)
C3—C2—H2A 119.4 C21—C20—C19 121.9 (5)
C1—C2—H2A 119.4 C21—C20—H20A 119.1
C2—C3—C4 121.9 (5) C19—C20—H20A 119.1
C2—C3—H3A 119.0 C20—C21—C22 119.6 (5)
C4—C3—H3A 119.0 C20—C21—H21A 120.2
C5—C4—C3 118.5 (5) C22—C21—H21A 120.2
C5—C4—H4A 120.8 O2—C22—C23 123.6 (5)
C3—C4—H4A 120.8 O2—C22—C21 115.6 (5)
C4—C5—C6 121.9 (5) C23—C22—C21 120.8 (5)
C4—C5—H5A 119.0 C22—C23—C14 119.4 (4)
C6—C5—H5A 119.0 C22—C23—C24 120.6 (5)
C5—C6—C7 121.6 (5) C14—C23—C24 120.0 (4)
C5—C6—C1 119.2 (5) N5—C24—C23 121.5 (4)
C7—C6—C1 119.2 (5) N5—C24—H24A 119.3
C8—C7—C6 121.9 (5) C23—C24—H24A 119.3
C8—C7—H7A 119.0 N7—C25—N6 109.7 (4)
C6—C7—H7A 119.0 N7—C25—H25A 125.2
C7—C8—C9 120.6 (4) N6—C25—H25A 125.2
C7—C8—H8A 119.7 N8—C26—N6 109.3 (4)
C9—C8—H8A 119.7 N8—C26—H26A 125.3
O1—C9—C10 123.3 (4) N6—C26—H26A 125.3
O1—C9—C8 116.2 (4) O4—N9—O5 134.0 (9)
C10—C9—C8 120.5 (5) O4—N9—O3 112.1 (8)
C9—C10—C1 119.7 (4) O5—N9—O3 113.6 (7)
C9—C10—C11 120.1 (4) H1WA—O1W—H1WB 115.9
C1—C10—C11 120.2 (4)
C11—N1—N2—C13 −175.1 (5) C1—C10—C11—N1 179.3 (4)
C11—N1—N2—C12 10.7 (8) N3—N4—C12—N2 −0.9 (6)
C13—N3—N4—C12 0.2 (6) Ag1—N4—C12—N2 −176.5 (3)
C13—N3—N4—Ag1 175.9 (4) C13—N2—C12—N4 1.1 (6)
N8i—Ag1—N4—C12 −11.8 (6) N1—N2—C12—N4 176.1 (5)
N7—Ag1—N4—C12 170.0 (5) N4—N3—C13—N2 0.5 (6)
N8i—Ag1—N4—N3 173.4 (3) C12—N2—C13—N3 −1.0 (6)
N7—Ag1—N4—N3 −4.9 (4) N1—N2—C13—N3 −176.5 (4)
C24—N5—N6—C25 179.6 (4) C19—C14—C15—C16 0.5 (8)
C24—N5—N6—C26 1.0 (7) C23—C14—C15—C16 −178.6 (5)
N8i—Ag1—N7—C25 170.2 (4) C14—C15—C16—C17 1.3 (9)
N4—Ag1—N7—C25 −10.8 (5) C15—C16—C17—C18 −3.2 (10)
N8i—Ag1—N7—N8 −14.1 (4) C16—C17—C18—C19 3.3 (9)
N4—Ag1—N7—N8 164.8 (3) C17—C18—C19—C20 179.0 (6)
C25—N7—N8—C26 0.0 (5) C17—C18—C19—C14 −1.5 (9)
Ag1—N7—N8—C26 −176.6 (3) C15—C14—C19—C18 −0.3 (7)
C25—N7—N8—Ag1i −168.3 (3) C23—C14—C19—C18 178.7 (5)
Ag1—N7—N8—Ag1i 15.1 (5) C15—C14—C19—C20 179.1 (5)
C6—C1—C2—C3 0.0 (7) C23—C14—C19—C20 −1.8 (7)
C10—C1—C2—C3 179.0 (5) C18—C19—C20—C21 −178.8 (6)
C1—C2—C3—C4 0.1 (9) C14—C19—C20—C21 1.7 (9)
C2—C3—C4—C5 −0.4 (9) C19—C20—C21—C22 −1.7 (9)
C3—C4—C5—C6 0.4 (9) C20—C21—C22—O2 −178.9 (5)
C4—C5—C6—C7 −179.7 (5) C20—C21—C22—C23 1.8 (9)
C4—C5—C6—C1 −0.2 (8) O2—C22—C23—C14 178.8 (5)
C2—C1—C6—C5 0.0 (7) C21—C22—C23—C14 −1.9 (8)
C10—C1—C6—C5 −179.1 (5) O2—C22—C23—C24 −2.5 (8)
C2—C1—C6—C7 179.5 (5) C21—C22—C23—C24 176.7 (5)
C10—C1—C6—C7 0.5 (7) C19—C14—C23—C22 2.0 (7)
C5—C6—C7—C8 179.1 (5) C15—C14—C23—C22 −179.0 (5)
C1—C6—C7—C8 −0.5 (8) C19—C14—C23—C24 −176.7 (4)
C6—C7—C8—C9 −0.3 (9) C15—C14—C23—C24 2.3 (7)
C7—C8—C9—O1 −178.4 (5) N6—N5—C24—C23 −178.0 (4)
C7—C8—C9—C10 1.2 (8) C22—C23—C24—N5 1.1 (7)
O1—C9—C10—C1 178.4 (4) C14—C23—C24—N5 179.7 (5)
C8—C9—C10—C1 −1.2 (7) N8—N7—C25—N6 0.4 (6)
O1—C9—C10—C11 −3.4 (7) Ag1—N7—C25—N6 176.6 (3)
C8—C9—C10—C11 177.0 (4) C26—N6—C25—N7 −0.7 (6)
C2—C1—C10—C9 −178.6 (5) N5—N6—C25—N7 −179.5 (4)
C6—C1—C10—C9 0.3 (7) N7—N8—C26—N6 −0.4 (5)
C2—C1—C10—C11 3.2 (7) Ag1i—N8—C26—N6 166.7 (3)
C6—C1—C10—C11 −177.8 (4) C25—N6—C26—N8 0.7 (6)
N2—N1—C11—C10 −177.4 (4) N5—N6—C26—N8 179.4 (4)
C9—C10—C11—N1 1.2 (7)

Symmetry codes: (i) −x+2, −y, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1A···N1 0.82 1.83 2.548 (4) 145
O2—H2B···N5 0.82 1.87 2.588 (5) 145
O1W—H1WA···O3ii 0.85 1.85 2.594 (15) 145

Symmetry codes: (ii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WK2097).

References

  1. Beckmann, U. & Brooker, S. (2003). Coord. Chem. Rev.245, 17–29.
  2. Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Drabent, K., Białońska, A. & Ciunik, Z. (2004). Inorg. Chem. Commun.7, 224–227.
  4. Drabent, K., Ciunik, Z. & Chmielewski, P. J. (2003). Eur. J. Inorg. Chem. pp. 1548–1554.
  5. Garcia, Y., van Koningsbruggen, P. J., Bravic, G., Guionneau, P., Chasseau, D., Cascarano, G. L., Moscovici, J., Lambert, K., Michalowicz, A. & Kahn, O. (1997). Inorg. Chem.36, 6357–6365.
  6. Han, W., Yi, L., Liu, Z.-Q., Gu, W., Yan, S.-P., Cheng, P., Liao, D.-Z. & Jiang, Z.-H. (2004). Eur. J. Inorg. Chem. pp. 2130–2136.
  7. Klingele, M. H. & Brooker, S. (2003). Coord. Chem. Rev.241, 119–132.
  8. Liu, J. C., Guo, G. C., Huang, J. S. & You, X. Z. (2003). Inorg. Chem.42, 235–243. [DOI] [PubMed]
  9. Liu, B., Xu, L., Guo, G.-C. & Huang, J.-S. (2006). Inorg. Chem. Commun.9, 687–690.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Wang, Y., Yi, L., Yang, X., Ding, B., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2006). Inorg. Chem.45, 5822–5829. [DOI] [PubMed]
  12. Yi, L., Ding, B., Zhao, B., Cheng, P., Liao, D.-Z., Yan, S.-P. & Jiang, Z.-H. (2004). Inorg. Chem.43, 33–43. [DOI] [PubMed]
  13. Zhai, Q.-G., Wu, X.-Y., Chen, S.-M., Lu, C.-Z. & Yang, W.-B. (2006). Cryst. Growth Des.6, 2126–2135.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809004760/wk2097sup1.cif

e-65-0m283-sup1.cif (25.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809004760/wk2097Isup2.hkl

e-65-0m283-Isup2.hkl (222.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES