Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Feb 18;65(Pt 3):o543. doi: 10.1107/S1600536809004796

(4-Chloro­benzoyl)(2-eth­oxy-7-methoxy­naphthalen-1-yl)methanone

Ryosuke Mitsui a, Keiichi Noguchi b, Noriyuki Yonezawa a,*
PMCID: PMC2968497  PMID: 21582202

Abstract

In the title compound, C20H17ClO3, the naphthalene and benzene rings form an inter­planar angle of 83.30 (8)°. The conformation around the central C=O group is such that the C=O bond vector forms a larger angle to the plane of the naphthalene ring than to the plane of the benzene ring, viz. 55.8 (2)° versus 15.8 (2)°. The 4-chloro­phenyl groups form a centrosymmetric π–π inter­action, with a centroid–centroid distance of 3.829 (1) Å and a lateral offset of 1.758 Å. An inter­molecular C—H⋯O inter­action is formed between the 4-chloro­phenyl group and the O atom of a neighbouring meth­oxy group, and two very weak C—H⋯π contacts are present.

Related literature

For structures of closely related compounds, see: Mitsui, Nakaema, Noguchi, Okamoto & Yonezawa (2008); Mitsui, Nakaema, Noguchi & Yonezawa (2008).graphic file with name e-65-0o543-scheme1.jpg

Experimental

Crystal data

  • C20H17ClO3

  • M r = 340.79

  • Monoclinic, Inline graphic

  • a = 7.26434 (13) Å

  • b = 20.8849 (4) Å

  • c = 12.2094 (2) Å

  • β = 113.201 (1)°

  • V = 1702.55 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.11 mm−1

  • T = 193 K

  • 0.40 × 0.30 × 0.20 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999) T min = 0.542, T max = 0.656

  • 30947 measured reflections

  • 3104 independent reflections

  • 2544 reflections with I > 2σ(I)

  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.120

  • S = 1.10

  • 3104 reflections

  • 218 parameters

  • 23 restraints

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809004796/bi2344sup1.cif

e-65-0o543-sup1.cif (19.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809004796/bi2344Isup2.hkl

e-65-0o543-Isup2.hkl (149.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20BCg1i 0.98 3.02 3.821 (3) 140
C20—H20CCg1ii 0.98 3.01 3.477 (3) 110
C13—H13⋯O3iii 0.95 2.44 3.213 (2) 138

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic. Cg1 is the centroid of the C1–C5/C10 ring.

Acknowledgments

This work was financially supported by Seiki Kogyo Co Ltd, Tokorozawa, Saitama, Japan.

supplementary crystallographic information

Comment

Recently, we have reported the crystal structures of 1-(4-chlorobenzoyl)-2,7-dimethoxynaphthalene and (4-chlorophenyl)(2-hydroxy-7-methoxynaphthalen-1-yl)methanone (Mitsui, Nakaema, Noguchi, Okamoto & Yonezawa, 2008; Mitsui, Nakaema, Noguchi & Yonezawa, 2008). As a part of our ongoing studies on the synthesis and crystal structure analyses of aroylated naphthalene derivatives, this paper reports the crystal structure of the title compound, prepared by ethylation of (4-chlorophenyl)(2-hydroxy-7-methoxynaphthalen-1-yl)methanone with ethyl iodide.

In the molecule (Fig. 1), the interplanar angle between the benzene ring [C12–C17] and the naphthalene ring [C1–C10] is 83.30 (8)°. The C=O bond vector lies close to the mean plane of the benzene ring (angle 15.8 (2)°), but forms an angle of 55.77 (15)° to the plane of the naphthalene ring. The conformation of these groups is similar to 1-(4-chlorobenzoyl)-2,7-dimethoxynaphthalene. On the other hand, the methoxy group is arranged toward the aroyl group [C20—O3—C8—C7 torsion angle = 177.7 (2)°] while that of the aforementioned related compound is arranged toward the naphthalene ring [-7.1 (3)°]. In both compounds, the C—O bond vector of the methoxy group lies approximately in the plane of the naphthalene ring [angle 4.2 (1)° in the title compound, 5.05 (9)° in the related compound].

In the crystal structure, the naphthalene rings interact with ethyl groups [C7···H18A = 2.87 Å, C7···H18B = 2.88 Å] and methyl groups [C5···H20B = 2.75 Å] of the adjacent molecule along the a axis (Fig. 2). The neighboring inversion-related ethyl groups interact with each other [H19C···H19C = 2.39 Å] along the c axis. The C=O groups interact with benzene rings [O1···H17 = 2.66 Å] along the b axis (Fig. 3). Adjacent 4-chlorophenyl groups related by crystallographic inversion centers are exactly antiparallel and the perpendicular distance between the mean planes of these groups is 3.402 (1) Å (Fig. 4). The centroid–centroid distance between the two antiparallel phenyl rings is 3.829 (1) Å and the lateral offset is 1.758 Å, indicating the presence of a π–π interaction. Moreover, molecules are linked by C—H···π interactions. The methyl group acts as a hydrogen-bond donor and the π system of the naphthalene ring [C1/C2/C3/C4/C5/C10 ring (with centroid Cg1)] of an adjacent molecule acts as an acceptor, viz. C20—H20B···π, C20—H20C···π (Fig. 2 and Table 1). Intermolecular C—H···O hydrogen bonds between the methoxy O and an H atom of the 4-chlorophenyl group of the adjacent molecule are also found along the c axis (C13—H13···O3i; Fig. 2 and Table 1).

Experimental

(4-Chlorophenyl)(2-hydroxy-7-methoxynaphthalen-1-yl)methanone (0.13 g, 0.40 mmol) was dissolved in acetone (1.0 ml) and aqueous 0.8M NaOH (1.0 ml). EtI (0.31 g, 2.0 mmol) was added and the reaction mixture was heated at reflux for 6 h. Upon cooling to ambient temperature, the mixture was poured into H2O (5 ml) and CHCl3 (5 ml), and the aqueous layer was extracted with CHCl3 (3 × 5 ml). The combined organic layers were washed with brine (3 × 20 ml), and dried over MgSO4 overnight. The solvent was removed in vacuo and the crude material was purified by recrystallization from hexanes to give the title compound as colorless blocks (m.p. 365.5–366.0 K, yield 95 mg, 70%).

Spectroscopic Data: 1H NMR (300 MHz, CDCl3) δ 7.83 (d, 1H), 7.77 (d, 2H), 7.70 (d, 1H), 7.38 (d, 2H), 7.11 (d, 1H), 7.02 (dd, 1H), 6.86 (d, 1H), 4.05 (q, 2H), 3.74 (s, 3H), 1.10 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 196.8, 159.1, 154.8, 139.4, 137.1, 133.2, 131.3, 130.7, 129.7, 128.7, 124.5, 121.7, 117.2, 111.5, 102.3, 65.0, 55.2, 14.6; IR (KBr): 1671, 1624, 1582, 1511, 1464, 1249, 1227, 1046; HRMS (m/z): [M + H]+ calcd for C20H18ClO3, 341.0945; found, 341.0903.

Refinement

Rigid bond restraints were applied to the Uij values of the naphthalene ring (C4—C7) (5 restraints with the DELU command in SHELXL97). Further restraints were used to generate similar Uij values for the atoms of naphthalene ring (18 restraints with the SIMU command in SHELXL97). All H atoms were visible in difference maps but were subsequently placed in calculated positions and refined as riding, with C—H = 0.95 (aromatic), 0.98 (methyl) and 0.99 (methylene) Å, and with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

Molecular structure with displacement ellipsoids at 30% probability for non-H atoms.

Fig. 2.

Fig. 2.

Packing diagram viewed down the b axis. Van der Waals, C—H···π and C—H···O interactions are shown as black, red and green dashed lines, respectively.

Fig. 3.

Fig. 3.

Partial packing diagram viewed down the a axis. Van der Waals interactions are shown as dashed lines.

Fig. 4.

Fig. 4.

Side-on view of the π–π interaction.

Crystal data

C20H17ClO3 F(000) = 712
Mr = 340.79 Dx = 1.330 Mg m3
Monoclinic, P21/c Melting point = 365.5–366.0 K
Hall symbol: -P 2ybc Cu Kα radiation, λ = 1.54187 Å
a = 7.26434 (13) Å Cell parameters from 26200 reflections
b = 20.8849 (4) Å θ = 3.9–68.1°
c = 12.2094 (2) Å µ = 2.11 mm1
β = 113.201 (1)° T = 193 K
V = 1702.55 (5) Å3 Block, colorless
Z = 4 0.40 × 0.30 × 0.20 mm

Data collection

Rigaku R-AXIS RAPID diffractometer 3104 independent reflections
Radiation source: rotating anode 2544 reflections with I > 2σ(I)
graphite Rint = 0.023
Detector resolution: 10.00 pixels mm-1 θmax = 68.1°, θmin = 4.2°
ω scans h = −8→8
Absorption correction: numerical (NUMABS; Higashi, 1999) k = −25→25
Tmin = 0.542, Tmax = 0.656 l = −14→14
30947 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041 H-atom parameters constrained
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0592P)2 + 0.3688P] where P = (Fo2 + 2Fc2)/3
S = 1.10 (Δ/σ)max = 0.001
3104 reflections Δρmax = 0.27 e Å3
218 parameters Δρmin = −0.28 e Å3
23 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0020 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 1.10278 (9) 0.57118 (2) 0.30495 (5) 0.0781 (2)
O1 0.4618 (2) 0.39338 (6) 0.45026 (12) 0.0659 (4)
O2 0.3297 (2) 0.37751 (7) 0.15066 (12) 0.0756 (4)
O3 0.9489 (2) 0.19765 (7) 0.67286 (15) 0.0765 (4)
C1 0.5171 (3) 0.31905 (9) 0.31945 (17) 0.0566 (4)
C2 0.4068 (3) 0.31950 (10) 0.19824 (18) 0.0656 (5)
C3 0.3762 (3) 0.26240 (12) 0.1314 (2) 0.0767 (6)
H3 0.3019 0.2628 0.0476 0.092*
C4 0.4553 (3) 0.20662 (11) 0.1892 (2) 0.0784 (7)
H4 0.4326 0.1681 0.1443 0.094*
C5 0.5692 (3) 0.20400 (9) 0.3128 (2) 0.0671 (5)
C6 0.6600 (4) 0.14645 (10) 0.3747 (3) 0.0794 (7)
H6 0.6349 0.1072 0.3321 0.095*
C7 0.7796 (4) 0.14653 (10) 0.4912 (3) 0.0785 (6)
H7 0.8367 0.1075 0.5296 0.094*
C8 0.8208 (3) 0.20409 (9) 0.5568 (2) 0.0665 (5)
C9 0.7332 (3) 0.26027 (8) 0.50295 (18) 0.0572 (4)
H9 0.7589 0.2987 0.5482 0.069*
C10 0.6044 (3) 0.26155 (8) 0.38026 (18) 0.0579 (5)
C11 0.5461 (3) 0.38232 (8) 0.38384 (15) 0.0536 (4)
C12 0.6830 (3) 0.42954 (8) 0.36347 (15) 0.0505 (4)
C13 0.8197 (3) 0.40999 (8) 0.31679 (16) 0.0547 (4)
H13 0.8235 0.3663 0.2963 0.066*
C14 0.9509 (3) 0.45307 (9) 0.29947 (16) 0.0587 (4)
H14 1.0453 0.4393 0.2684 0.070*
C15 0.9411 (3) 0.51637 (8) 0.32839 (15) 0.0569 (4)
C16 0.8073 (3) 0.53732 (9) 0.37524 (16) 0.0599 (5)
H16 0.8032 0.5812 0.3945 0.072*
C17 0.6795 (3) 0.49384 (8) 0.39383 (16) 0.0569 (4)
H17 0.5887 0.5077 0.4275 0.068*
C18 0.2883 (4) 0.38987 (15) 0.0278 (2) 0.0872 (7)
H18A 0.1616 0.3689 −0.0242 0.105*
H18B 0.3980 0.3735 0.0067 0.105*
C19 0.2714 (5) 0.46071 (17) 0.0136 (3) 0.1199 (11)
H19A 0.2428 0.4720 −0.0695 0.144*
H19B 0.3976 0.4806 0.0658 0.144*
H19C 0.1626 0.4761 0.0350 0.144*
C20 1.0050 (3) 0.25362 (11) 0.7447 (2) 0.0754 (6)
H20A 1.0970 0.2420 0.8256 0.090*
H20B 0.8853 0.2738 0.7476 0.090*
H20C 1.0715 0.2837 0.7105 0.090*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0934 (4) 0.0670 (3) 0.0780 (4) −0.0205 (3) 0.0382 (3) 0.0047 (2)
O1 0.0784 (9) 0.0658 (8) 0.0721 (8) 0.0068 (7) 0.0496 (7) 0.0002 (6)
O2 0.0841 (10) 0.0855 (10) 0.0595 (8) −0.0073 (8) 0.0306 (7) 0.0064 (7)
O3 0.0712 (9) 0.0656 (9) 0.1016 (11) 0.0101 (7) 0.0435 (9) 0.0261 (8)
C1 0.0633 (11) 0.0567 (10) 0.0629 (11) −0.0068 (8) 0.0390 (9) −0.0048 (8)
C2 0.0665 (12) 0.0731 (13) 0.0699 (12) −0.0139 (10) 0.0406 (10) −0.0083 (10)
C3 0.0749 (14) 0.0969 (17) 0.0735 (13) −0.0280 (12) 0.0457 (11) −0.0229 (12)
C4 0.0799 (14) 0.0744 (14) 0.1077 (17) −0.0300 (12) 0.0658 (14) −0.0359 (13)
C5 0.0698 (12) 0.0585 (11) 0.0970 (15) −0.0162 (9) 0.0586 (12) −0.0188 (10)
C6 0.0850 (15) 0.0482 (11) 0.138 (2) −0.0128 (10) 0.0796 (16) −0.0187 (12)
C7 0.0798 (15) 0.0507 (11) 0.128 (2) 0.0019 (10) 0.0655 (15) 0.0056 (12)
C8 0.0659 (12) 0.0546 (11) 0.1001 (16) 0.0007 (9) 0.0554 (12) 0.0089 (10)
C9 0.0637 (11) 0.0479 (9) 0.0766 (12) 0.0002 (8) 0.0453 (10) 0.0028 (8)
C10 0.0628 (11) 0.0496 (9) 0.0820 (12) −0.0056 (8) 0.0507 (10) −0.0057 (8)
C11 0.0607 (10) 0.0541 (10) 0.0527 (9) 0.0091 (8) 0.0295 (8) 0.0040 (7)
C12 0.0617 (10) 0.0464 (9) 0.0483 (9) 0.0066 (7) 0.0270 (8) 0.0026 (7)
C13 0.0677 (11) 0.0456 (9) 0.0600 (10) 0.0003 (8) 0.0351 (9) −0.0031 (7)
C14 0.0658 (11) 0.0593 (10) 0.0589 (10) −0.0008 (8) 0.0332 (9) −0.0021 (8)
C15 0.0676 (11) 0.0525 (9) 0.0491 (9) −0.0038 (8) 0.0213 (8) 0.0060 (7)
C16 0.0758 (12) 0.0439 (9) 0.0585 (10) 0.0067 (8) 0.0247 (9) 0.0043 (7)
C17 0.0691 (11) 0.0508 (9) 0.0550 (9) 0.0120 (8) 0.0290 (9) 0.0019 (7)
C18 0.0657 (13) 0.134 (2) 0.0608 (12) −0.0117 (13) 0.0243 (10) 0.0111 (13)
C19 0.119 (2) 0.142 (3) 0.0847 (18) −0.014 (2) 0.0247 (16) 0.0474 (18)
C20 0.0702 (13) 0.0782 (14) 0.0890 (15) 0.0106 (11) 0.0434 (12) 0.0189 (12)

Geometric parameters (Å, °)

Cl1—C15 1.7426 (19) C9—H9 0.950
O1—C11 1.215 (2) C11—C12 1.490 (3)
O2—C2 1.365 (3) C12—C13 1.387 (2)
O2—C18 1.432 (3) C12—C17 1.396 (2)
O3—C8 1.361 (3) C13—C14 1.386 (3)
O3—C20 1.421 (3) C13—H13 0.950
C1—C2 1.378 (3) C14—C15 1.377 (3)
C1—C10 1.423 (3) C14—H14 0.950
C1—C11 1.509 (2) C15—C16 1.379 (3)
C2—C3 1.413 (3) C16—C17 1.380 (3)
C3—C4 1.366 (4) C16—H16 0.950
C3—H3 0.950 C17—H17 0.950
C4—C5 1.408 (3) C18—C19 1.489 (4)
C4—H4 0.950 C18—H18A 0.990
C5—C10 1.422 (3) C18—H18B 0.990
C5—C6 1.435 (3) C19—H19A 0.980
C6—C7 1.343 (3) C19—H19B 0.980
C6—H6 0.950 C19—H19C 0.980
C7—C8 1.410 (3) C20—H20A 0.980
C7—H7 0.950 C20—H20B 0.980
C8—C9 1.373 (3) C20—H20C 0.980
C9—C10 1.420 (3)
C2—O2—C18 119.19 (18) C13—C12—C11 120.47 (15)
C8—O3—C20 118.27 (16) C17—C12—C11 120.62 (16)
C2—C1—C10 121.15 (17) C14—C13—C12 121.21 (16)
C2—C1—C11 117.15 (17) C14—C13—H13 119.4
C10—C1—C11 121.68 (16) C12—C13—H13 119.4
O2—C2—C1 115.52 (17) C15—C14—C13 118.40 (17)
O2—C2—C3 124.0 (2) C15—C14—H14 120.8
C1—C2—C3 120.5 (2) C13—C14—H14 120.8
C4—C3—C2 118.9 (2) C14—C15—C16 121.81 (17)
C4—C3—H3 120.6 C14—C15—Cl1 118.81 (15)
C2—C3—H3 120.6 C16—C15—Cl1 119.38 (14)
C3—C4—C5 122.49 (19) C15—C16—C17 119.29 (17)
C3—C4—H4 118.8 C15—C16—H16 120.4
C5—C4—H4 118.8 C17—C16—H16 120.4
C4—C5—C10 118.9 (2) C16—C17—C12 120.37 (17)
C4—C5—C6 123.5 (2) C16—C17—H17 119.8
C10—C5—C6 117.6 (2) C12—C17—H17 119.8
C7—C6—C5 121.9 (2) O2—C18—C19 106.0 (2)
C7—C6—H6 119.1 O2—C18—H18A 110.5
C5—C6—H6 119.1 C19—C18—H18A 110.5
C6—C7—C8 120.4 (2) O2—C18—H18B 110.5
C6—C7—H7 119.8 C19—C18—H18B 110.5
C8—C7—H7 119.8 H18A—C18—H18B 108.7
O3—C8—C9 125.51 (19) C18—C19—H19A 109.5
O3—C8—C7 114.35 (19) C18—C19—H19B 109.5
C9—C8—C7 120.1 (2) H19A—C19—H19B 109.5
C8—C9—C10 120.65 (18) C18—C19—H19C 109.5
C8—C9—H9 119.7 H19A—C19—H19C 109.5
C10—C9—H9 119.7 H19B—C19—H19C 109.5
C9—C10—C5 119.24 (18) O3—C20—H20A 109.5
C9—C10—C1 122.64 (16) O3—C20—H20B 109.5
C5—C10—C1 118.02 (19) H20A—C20—H20B 109.5
O1—C11—C12 122.05 (16) O3—C20—H20C 109.5
O1—C11—C1 120.71 (16) H20A—C20—H20C 109.5
C12—C11—C1 117.24 (14) H20B—C20—H20C 109.5
C13—C12—C17 118.90 (16)
C18—O2—C2—C1 154.21 (17) C6—C5—C10—C1 179.21 (16)
C18—O2—C2—C3 −26.8 (3) C2—C1—C10—C9 174.41 (16)
C10—C1—C2—O2 179.52 (15) C11—C1—C10—C9 −3.8 (3)
C11—C1—C2—O2 −2.2 (2) C2—C1—C10—C5 −2.0 (3)
C10—C1—C2—C3 0.5 (3) C11—C1—C10—C5 179.83 (16)
C11—C1—C2—C3 178.82 (16) C2—C1—C11—O1 109.0 (2)
O2—C2—C3—C4 −177.90 (18) C10—C1—C11—O1 −72.7 (2)
C1—C2—C3—C4 1.0 (3) C2—C1—C11—C12 −71.7 (2)
C2—C3—C4—C5 −1.1 (3) C10—C1—C11—C12 106.57 (18)
C3—C4—C5—C10 −0.4 (3) O1—C11—C12—C13 161.18 (18)
C3—C4—C5—C6 −177.56 (19) C1—C11—C12—C13 −18.1 (2)
C4—C5—C6—C7 175.11 (19) O1—C11—C12—C17 −17.2 (3)
C10—C5—C6—C7 −2.1 (3) C1—C11—C12—C17 163.60 (16)
C5—C6—C7—C8 −0.4 (3) C17—C12—C13—C14 −0.3 (3)
C20—O3—C8—C9 −2.8 (3) C11—C12—C13—C14 −178.72 (16)
C20—O3—C8—C7 177.68 (16) C12—C13—C14—C15 −0.8 (3)
C6—C7—C8—O3 −178.08 (17) C13—C14—C15—C16 1.0 (3)
C6—C7—C8—C9 2.3 (3) C13—C14—C15—Cl1 −179.07 (14)
O3—C8—C9—C10 178.81 (16) C14—C15—C16—C17 0.0 (3)
C7—C8—C9—C10 −1.7 (3) Cl1—C15—C16—C17 −179.94 (14)
C8—C9—C10—C5 −0.9 (3) C15—C16—C17—C12 −1.2 (3)
C8—C9—C10—C1 −177.22 (16) C13—C12—C17—C16 1.4 (3)
C4—C5—C10—C9 −174.63 (16) C11—C12—C17—C16 179.72 (16)
C6—C5—C10—C9 2.7 (2) C2—O2—C18—C19 −162.1 (2)
C4—C5—C10—C1 1.9 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C20—H20B···Cg1i 0.98 3.02 3.821 (3) 140
C20—H20C···Cg1ii 0.98 3.01 3.477 (3) 110
C13—H13···O3iii 0.95 2.44 3.213 (2) 138

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x+1, −y+1/2, z+1/2; (iii) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2344).

References

  1. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst.38, 381–388.
  2. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  3. Higashi, T. (1999). NUMABS Rigaku Corporation, Tokyo, Japan.
  4. Mitsui, R., Nakaema, K., Noguchi, K., Okamoto, A. & Yonezawa, N. (2008). Acta Cryst. E64, o1278. [DOI] [PMC free article] [PubMed]
  5. Mitsui, R., Nakaema, K., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o2497. [DOI] [PMC free article] [PubMed]
  6. Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  7. Rigaku/MSC (2004). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809004796/bi2344sup1.cif

e-65-0o543-sup1.cif (19.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809004796/bi2344Isup2.hkl

e-65-0o543-Isup2.hkl (149.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES