Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Feb 21;65(Pt 3):o573. doi: 10.1107/S1600536809005650

4-[5-(4-Fluoro­phen­yl)-1H-imidazol-4-yl]pyridine

Pierre Koch a, Dieter Schollmeyer b, Stefan Laufer a,*
PMCID: PMC2968498  PMID: 21582228

Abstract

In the title compound, C14H10FN3, the imidazole ring makes dihedral angles of 28.2 (1) and 36.60 (9)° with the pyridine ring and the 4-fluoro­phenyl ring, respectively. The pyridine ring forms a dihedral angle of 44.68 (9)° with the 4-fluoro­phenyl ring. Inter­molecular N—H⋯N hydrogen bonds are observed in the crystal structure.

Related literature

For the biological activity of the title compound, see: Liverton et al. (1999). For applications of functionalized 5(4)-(4-fluoro­phen­yl)-4(5)-(pyridin-4-yl)imidazoles, see: Koch et al. (2008), Peifer et al. (2006).graphic file with name e-65-0o573-scheme1.jpg

Experimental

Crystal data

  • C14H10FN3

  • M r = 239.25

  • Orthorhombic, Inline graphic

  • a = 9.217 (2) Å

  • b = 8.1064 (5) Å

  • c = 30.665 (5) Å

  • V = 2291.1 (6) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.80 mm−1

  • T = 193 K

  • 0.54 × 0.20 × 0.13 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 2121 measured reflections

  • 2121 independent reflections

  • 1707 reflections with I > 2σ(I)

  • 3 standard reflections frequency: 60 min intensity decay: 2%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.076

  • wR(F 2) = 0.201

  • S = 1.09

  • 2121 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.54 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CORINC (Dräger & Gattow, 1971); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809005650/im2099sup1.cif

e-65-0o573-sup1.cif (16.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809005650/im2099Isup2.hkl

e-65-0o573-Isup2.hkl (104.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N15i 0.89 1.94 2.815 (3) 164

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

5(4)-(4-Fluorophenyl)-4(5)-(pyridin-4-yl)imidazole derivatives with various substitution patterns have been considered to be potential p38 MAP kinase inhibitors (Liverton et al. 1999, Koch et al. 2008, Peifer et al. 2006).

The molecular structure of compound I is shown in Figure 1. The imidazole ring realises dihedral angles of 28.2 (1)° and 36.60 (9)° with the pyridine ring and the 4-fluorophenyl ring, respectively. The pyridine ring encloses a dihedral angle of 44.68 (9)° with the 4-fluorophenyl ring.

The crystal packing (Figure 2) shows N1—H1 of the imidazole ring to form an intermolecular N–H···N hydrogen bond towards pyridine (N15) resulting in a infinite chain parallel to the a axis. The hydrogen bond measures 1.94 Å.

Experimental

1-(4-Fluorophenyl)-2-(pyridin-4-yl)ethane-1,2-dione (46 mg, 0.2 mmol), formaldehyde (15 µL, 0.2 mmol, 37% aq. solution), ammonium acetate (154 mg, 2.0 mmol) and 1 ml glacial acetic acid were combined in a reaction vial. The reaction vessel was heated in a CEM microwave reactor for 5 min at 453 K (initial power 200 W), after which a stream of compressed air cooled the reaction vessel. The reaction mixture was added dropwise to a concentrated NH4OH solution at 0 °C. The formed colorless precipitate was collected by filtration, washed with water and dried (yield: 43 mg, 90%). Crystals of compound I suitable for X-ray diffraction were obtained by slow evaporation at 298 K of a solution of n-hexane - diethyl ether (3:2).

Refinement

Hydrogen atoms attached to carbons were placed at calculated positions with C—H = 0.95 Å (aromatic C-atoms). The position of H1 was determined from the difference Fourier map. All H atoms were refined in the riding-model approximation with isotropic displacement parameters (set at 1.2 times of the Ueq of the parent atom).

Figures

Fig. 1.

Fig. 1.

View of compound I. Displacement ellipsoids are drawn at the 50% probability level. H atoms are depicted as circles of arbitrary size.

Fig. 2.

Fig. 2.

Part of the crystal packing of compound I. The hydrogen bonds are represented by dashed lines. View along b axis.

Crystal data

C14H10FN3 Dx = 1.387 Mg m3
Mr = 239.25 Melting point: 285.5 K
Orthorhombic, Pbca Cu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ac 2ab Cell parameters from 25 reflections
a = 9.217 (2) Å θ = 31–53°
b = 8.1064 (5) Å µ = 0.80 mm1
c = 30.665 (5) Å T = 193 K
V = 2291.1 (6) Å3 Needle, colourless
Z = 8 0.54 × 0.20 × 0.13 mm
F(000) = 992

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.0000
Radiation source: rotating anode θmax = 69.6°, θmin = 2.9°
graphite h = 0→11
ω/2θ scans k = 0→9
2121 measured reflections l = −36→0
2121 independent reflections 3 standard reflections every 60 min
1707 reflections with I > 2σ(I) intensity decay: 2%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.076 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.201 H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.1422P)2 + 0.0554P] where P = (Fo2 + 2Fc2)/3
2121 reflections (Δ/σ)max < 0.001
163 parameters Δρmax = 0.58 e Å3
0 restraints Δρmin = −0.54 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 0.0873 (2) 0.0708 (3) 0.21998 (6) 0.0596 (6)
N1 −0.0150 (2) 0.2988 (2) 0.42177 (7) 0.0243 (5)
H1 −0.1070 0.2883 0.4130 0.029*
C2 0.1085 (2) 0.2755 (3) 0.39720 (8) 0.0224 (5)
C3 0.2212 (3) 0.3123 (3) 0.42585 (8) 0.0227 (5)
N4 0.1672 (2) 0.3595 (3) 0.46674 (7) 0.0285 (5)
C5 0.0257 (3) 0.3479 (3) 0.46279 (9) 0.0279 (6)
H5 −0.0408 0.3708 0.4857 0.033*
C6 0.1015 (2) 0.2250 (3) 0.35030 (8) 0.0228 (5)
C7 0.1984 (3) 0.2872 (3) 0.31898 (9) 0.0286 (6)
H7 0.2682 0.3669 0.3277 0.034*
C8 0.1955 (3) 0.2353 (3) 0.27519 (9) 0.0338 (6)
H8 0.2639 0.2764 0.2547 0.041*
C9 0.0907 (3) 0.1233 (3) 0.26276 (9) 0.0365 (7)
C10 −0.0096 (3) 0.0625 (3) 0.29215 (9) 0.0353 (6)
H10 −0.0819 −0.0131 0.2828 0.042*
C11 −0.0043 (3) 0.1128 (3) 0.33599 (8) 0.0274 (6)
H11 −0.0731 0.0705 0.3562 0.033*
C12 0.3785 (3) 0.3036 (3) 0.41935 (8) 0.0216 (5)
C13 0.4700 (3) 0.4057 (3) 0.44398 (8) 0.0246 (5)
H13 0.4299 0.4814 0.4643 0.030*
C14 0.6182 (3) 0.3961 (3) 0.43855 (8) 0.0282 (6)
H14 0.6783 0.4650 0.4559 0.034*
N15 0.6824 (2) 0.2927 (3) 0.40951 (7) 0.0287 (5)
C16 0.5937 (3) 0.1937 (3) 0.38606 (9) 0.0290 (6)
H16 0.6367 0.1193 0.3659 0.035*
C17 0.4456 (3) 0.1942 (3) 0.38966 (8) 0.0264 (6)
H17 0.3885 0.1218 0.3724 0.032*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.0846 (15) 0.0588 (13) 0.0354 (10) −0.0016 (11) −0.0071 (9) −0.0100 (9)
N1 0.0210 (10) 0.0106 (9) 0.0414 (12) −0.0012 (7) 0.0000 (8) −0.0015 (8)
C2 0.0225 (11) 0.0050 (10) 0.0398 (14) 0.0003 (7) 0.0019 (9) 0.0031 (9)
C3 0.0277 (13) 0.0048 (10) 0.0355 (12) −0.0005 (8) 0.0005 (9) 0.0007 (8)
N4 0.0293 (11) 0.0182 (10) 0.0379 (12) −0.0021 (8) 0.0020 (9) −0.0029 (8)
C5 0.0273 (12) 0.0166 (11) 0.0399 (14) −0.0008 (9) 0.0058 (10) −0.0027 (10)
C6 0.0234 (11) 0.0078 (10) 0.0371 (13) 0.0037 (8) −0.0022 (9) 0.0011 (9)
C7 0.0308 (12) 0.0139 (11) 0.0410 (15) 0.0016 (9) −0.0012 (10) 0.0027 (10)
C8 0.0379 (14) 0.0257 (13) 0.0377 (15) 0.0053 (10) 0.0035 (11) 0.0069 (11)
C9 0.0499 (17) 0.0278 (14) 0.0319 (14) 0.0083 (11) −0.0085 (12) −0.0012 (11)
C10 0.0383 (14) 0.0215 (12) 0.0460 (16) −0.0033 (11) −0.0113 (12) −0.0041 (11)
C11 0.0277 (12) 0.0139 (11) 0.0407 (14) −0.0017 (9) −0.0044 (10) 0.0020 (9)
C12 0.0239 (12) 0.0070 (10) 0.0337 (13) −0.0007 (8) −0.0014 (9) 0.0044 (8)
C13 0.0282 (12) 0.0151 (11) 0.0306 (12) −0.0020 (9) −0.0004 (9) −0.0006 (9)
C14 0.0294 (13) 0.0194 (12) 0.0357 (13) −0.0036 (9) −0.0039 (10) −0.0016 (10)
N15 0.0231 (10) 0.0223 (11) 0.0408 (12) 0.0008 (8) −0.0016 (9) 0.0022 (9)
C16 0.0286 (13) 0.0156 (12) 0.0429 (15) 0.0050 (9) −0.0006 (10) −0.0024 (10)
C17 0.0273 (12) 0.0091 (10) 0.0427 (15) −0.0001 (9) −0.0044 (10) −0.0017 (9)

Geometric parameters (Å, °)

F1—C9 1.380 (3) C8—H8 0.9500
N1—C5 1.372 (3) C9—C10 1.382 (4)
N1—C2 1.378 (3) C10—C11 1.406 (4)
N1—H1 0.8936 C10—H10 0.9500
C2—C3 1.393 (3) C11—H11 0.9500
C2—C6 1.496 (3) C12—C13 1.402 (3)
C3—N4 1.402 (3) C12—C17 1.414 (3)
C3—C12 1.465 (3) C13—C14 1.379 (3)
N4—C5 1.313 (3) C13—H13 0.9500
C5—H5 0.9500 C14—N15 1.359 (3)
C6—C11 1.403 (3) C14—H14 0.9500
C6—C7 1.405 (3) N15—C16 1.353 (3)
C7—C8 1.407 (4) C16—C17 1.370 (3)
C7—H7 0.9500 C16—H16 0.9500
C8—C9 1.379 (4) C17—H17 0.9500
C5—N1—C2 108.4 (2) F1—C9—C10 119.7 (3)
C5—N1—H1 124.3 C9—C10—C11 119.8 (2)
C2—N1—H1 127.3 C9—C10—H10 120.1
N1—C2—C3 104.0 (2) C11—C10—H10 120.1
N1—C2—C6 121.9 (2) C6—C11—C10 120.7 (2)
C3—C2—C6 134.2 (2) C6—C11—H11 119.6
C2—C3—N4 111.0 (2) C10—C11—H11 119.6
C2—C3—C12 129.9 (2) C13—C12—C17 117.0 (2)
N4—C3—C12 119.0 (2) C13—C12—C3 119.6 (2)
C5—N4—C3 104.5 (2) C17—C12—C3 123.4 (2)
N4—C5—N1 112.1 (2) C14—C13—C12 119.8 (2)
N4—C5—H5 123.9 C14—C13—H13 120.1
N1—C5—H5 123.9 C12—C13—H13 120.1
C11—C6—C7 117.4 (2) N15—C14—C13 123.1 (2)
C11—C6—C2 120.5 (2) N15—C14—H14 118.5
C7—C6—C2 122.1 (2) C13—C14—H14 118.5
C6—C7—C8 122.2 (2) C16—N15—C14 116.8 (2)
C6—C7—H7 118.9 N15—C16—C17 123.9 (2)
C8—C7—H7 118.9 N15—C16—H16 118.0
C9—C8—C7 118.3 (3) C17—C16—H16 118.0
C9—C8—H8 120.9 C16—C17—C12 119.3 (2)
C7—C8—H8 120.9 C16—C17—H17 120.3
C8—C9—F1 118.8 (3) C12—C17—H17 120.3
C8—C9—C10 121.5 (3)
C5—N1—C2—C3 0.3 (2) C7—C8—C9—C10 0.0 (4)
C5—N1—C2—C6 −178.6 (2) C8—C9—C10—C11 −1.1 (4)
N1—C2—C3—N4 −0.9 (2) F1—C9—C10—C11 178.5 (2)
C6—C2—C3—N4 177.8 (2) C7—C6—C11—C10 1.6 (3)
N1—C2—C3—C12 177.2 (2) C2—C6—C11—C10 −178.8 (2)
C6—C2—C3—C12 −4.1 (4) C9—C10—C11—C6 0.2 (4)
C2—C3—N4—C5 1.2 (2) C2—C3—C12—C13 153.7 (2)
C12—C3—N4—C5 −177.14 (19) N4—C3—C12—C13 −28.4 (3)
C3—N4—C5—N1 −1.0 (3) C2—C3—C12—C17 −27.5 (4)
C2—N1—C5—N4 0.4 (3) N4—C3—C12—C17 150.5 (2)
N1—C2—C6—C11 −37.4 (3) C17—C12—C13—C14 0.0 (3)
C3—C2—C6—C11 144.1 (2) C3—C12—C13—C14 178.9 (2)
N1—C2—C6—C7 142.3 (2) C12—C13—C14—N15 1.1 (4)
C3—C2—C6—C7 −36.3 (4) C13—C14—N15—C16 −1.5 (4)
C11—C6—C7—C8 −2.7 (3) C14—N15—C16—C17 0.9 (4)
C2—C6—C7—C8 177.6 (2) N15—C16—C17—C12 0.1 (4)
C6—C7—C8—C9 2.0 (4) C13—C12—C17—C16 −0.5 (3)
C7—C8—C9—F1 −179.6 (2) C3—C12—C17—C16 −179.4 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···N15i 0.89 1.94 2.815 (3) 164

Symmetry codes: (i) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2099).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  2. Dräger, M. & Gattow, G. (1971). Acta Chem. Scand.25, 761–762.
  3. Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  4. Koch, P., Bäuerlein, C., Jank, H. & Laufer, S. (2008). J. Med. Chem.51, 5630–5640.
  5. Liverton, N. J., Butcher, J. W., Claiborne, C. F., Claremon, D. A., Libby, B. E., Nguyen, K. T., Pitzenberger, S. M., Selnick, H. G., Smith, G. R., Tebben, A., Vacca, J. P., Varga, S. L., Agarwal, L., Dancheck, K., Forsyth, A. J., Fletcher, D. S., Frantz, B., Hanlon, W. A., Harper, C. F., Hofsess, S. J., Kostura, M., Lin, J., Luell, S., O’Neill, E. A., Orevillo, C. J., Pang, M., Parsons, J., Rolando, A., Sahly, Y., Visco, D. M. & O’Keefe, S. J. (1999). J. Med. Chem.42, 2180–2190. [DOI] [PubMed]
  6. Peifer, C., Wagner, G. & Laufer, S. (2006). Curr. Top. Med. Chem.6, 113–149. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809005650/im2099sup1.cif

e-65-0o573-sup1.cif (16.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809005650/im2099Isup2.hkl

e-65-0o573-Isup2.hkl (104.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES