Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Feb 18;65(Pt 3):o531. doi: 10.1107/S1600536809004425

2,5-Dimethyl-1-phenyl­sulfonyl-1H-pyrrole-3,4-dicarbaldehyde

P R Seshadri a,*, B Balakrishnan b, K Ilangovan c, R Sureshbabu d, A K Mohanakrishnan d
PMCID: PMC2968504  PMID: 21582192

Abstract

In the title compound, C14H13NO4S, the mean planes of the pyrrole and phenyl rings form a dihedral angle of 88.7 (1)°. The aldehyde groups are slightly twisted from the pyrrole plane. In the crystal structure, mol­ecules are linked into a three-dimensional framework by C—H⋯O hydrogen bonds.

Related literature

For general background, see: Ali et al. (1989); Amal Raj et al. (2003). For bond-length data, see: Allen et al. (1987). For N-atom hybridization details, see: Beddoes et al. (1986).graphic file with name e-65-0o531-scheme1.jpg

Experimental

Crystal data

  • C14H13NO4S

  • M r = 291.31

  • Monoclinic, Inline graphic

  • a = 9.0257 (3) Å

  • b = 12.6240 (5) Å

  • c = 11.9914 (5) Å

  • β = 97.700 (2)°

  • V = 1353.99 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.20 mm

Data collection

  • Bruker Kappa APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001) T min = 0.940, T max = 0.952

  • 19609 measured reflections

  • 4736 independent reflections

  • 3164 reflections with I > 2σ(I)

  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.154

  • S = 1.00

  • 4736 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.42 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: PARST (Nardelli, 1995).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809004425/wn2307sup1.cif

e-65-0o531-sup1.cif (18.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809004425/wn2307Isup2.hkl

e-65-0o531-Isup2.hkl (227.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O3 0.93 2.46 3.077 (2) 124
C7—H7A⋯O4 0.96 2.33 3.021 (3) 128
C11—H11⋯O4i 0.93 2.53 3.456 (2) 174
C13—H13⋯O2 0.93 2.52 3.304 (2) 143
C14—H14⋯O3ii 0.93 2.57 3.383 (2) 146

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

BB and RS thank Dr Babu Varghese, SAIF, IIT Madras, India, for his help with the data collection.

supplementary crystallographic information

Comment

Heterocyclic compounds, especially five-membered rings, have occupied an important place among organic compounds because of their biological activities. The fungicidal activity of novel heterocycles has been reported by Ali et al. (1989). These are crucial intermediates for various pyrrole natural products possessing antitumour properties. They are found to have antifungal activity against various pathogens (Amal Raj et al., 2003). Against this background and in order to obtain detailed information on molecular conformation in the solid state, an X-ray crystallographic study of the title compound has been carried out and the results are presented here.

The geometric parameters are normal (Allen et al., 1987). The mean planes of the pyrrole and phenyl rings form a dihedral angle of 88.7 (1)°. The aldehyde groups are slightly twisted from the pyrrole plane, with O3 towards C2 and O4 towards C1, as evidenced by the torsion angles C2—C3—C5—O3 = 2.1 (3)° and C1—C2—C6—O4 = 5.9 (3)° (Fig. 1). The sum of the angles at N is 360.0, which is an indication of sp2 hybridization (Beddoes et al., 1986). In the crystal structure, the molecules are linked into a three-dimensional framework by C—H···O hydrogen bonds (Fig. 2 and Table 1).

Experimental

To a suspension of 3°-butoxide (4.4 g, 39.7 mmol) in dry THF (20 ml), 18-crown-6 (catalyst) and 2,5-dimethyl-1H-pyrrole-3,4-dicarbaldehyde (4 g, 26.5 mmol) in dry THF were added slowly at room temperature and the reaction mixture was stirred for 15 min. To this, PhSO2Cl (6.1 g, 34.4 mmol) in dry THF (15 ml) was added and stirred for another 4 h. The mixture was then poured over ice–water (500 ml) and the solid obtained was filtered. The product, 2,5-dimethyl-1-(phenyl sulfonyl)-1H-pyrrole-3,4-dicarbaldehyde, was recrystallized from methanol. Yield 4.9 g (64%). M.p = 395 K.

Refinement

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.96 Å and Uiso(H) = 1.5 Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound showing 30% probability displacement ellipsoids. Hydrogen atoms are represented by spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Crystal packing of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C14H13NO4S F(000) = 608
Mr = 291.31 Dx = 1.429 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 9.0257 (3) Å Cell parameters from 6814 reflections
b = 12.6240 (5) Å θ = 2.4–32.2°
c = 11.9914 (5) Å µ = 0.25 mm1
β = 97.700 (2)° T = 293 K
V = 1353.99 (9) Å3 Block, colourless
Z = 4 0.25 × 0.20 × 0.20 mm

Data collection

Bruker Kappa-APEXII area-detector diffractometer 4736 independent reflections
Radiation source: fine-focus sealed tube 3164 reflections with I > 2σ(I)
graphite Rint = 0.032
ω scans θmax = 32.2°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 2001) h = −13→10
Tmin = 0.940, Tmax = 0.952 k = −18→18
19609 measured reflections l = −16→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0787P)2 + 0.2246P] where P = (Fo2 + 2Fc2)/3
4736 reflections (Δ/σ)max < 0.001
183 parameters Δρmax = 0.19 e Å3
0 restraints Δρmin = −0.42 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.51190 (5) 0.21083 (3) 0.25629 (3) 0.05026 (14)
N 0.56878 (14) 0.29263 (9) 0.36572 (10) 0.0417 (3)
O1 0.64275 (15) 0.17150 (11) 0.21659 (11) 0.0704 (4)
O3 0.82639 (16) 0.54763 (12) 0.58440 (12) 0.0777 (4)
O2 0.40939 (17) 0.13956 (10) 0.29555 (12) 0.0743 (4)
O4 0.49857 (19) 0.36086 (17) 0.70677 (12) 0.1023 (6)
C1 0.51247 (15) 0.29778 (11) 0.46937 (11) 0.0422 (3)
C2 0.59280 (15) 0.37280 (11) 0.53213 (11) 0.0404 (3)
C3 0.69918 (14) 0.41747 (11) 0.46621 (11) 0.0383 (3)
C4 0.68371 (15) 0.36717 (11) 0.36473 (11) 0.0412 (3)
C5 0.80621 (18) 0.50177 (13) 0.49571 (14) 0.0524 (4)
H5 0.8646 0.5223 0.4412 0.063*
C6 0.57651 (19) 0.40278 (16) 0.64774 (13) 0.0579 (4)
H6 0.6327 0.4602 0.6779 0.069*
C7 0.3863 (2) 0.23246 (17) 0.50008 (16) 0.0661 (5)
H7A 0.3587 0.2571 0.5702 0.099*
H7B 0.4168 0.1597 0.5075 0.099*
H7C 0.3022 0.2386 0.4423 0.099*
C8 0.7684 (2) 0.38292 (17) 0.26769 (14) 0.0662 (5)
H8A 0.8349 0.4421 0.2825 0.099*
H8B 0.6997 0.3965 0.2009 0.099*
H8C 0.8253 0.3203 0.2571 0.099*
C9 0.41822 (17) 0.29562 (12) 0.15557 (12) 0.0455 (3)
C10 0.4612 (2) 0.29939 (16) 0.04944 (14) 0.0604 (4)
H10 0.5403 0.2583 0.0315 0.072*
C11 0.3837 (3) 0.3659 (2) −0.02973 (16) 0.0767 (6)
H11 0.4104 0.3696 −0.1019 0.092*
C12 0.2683 (3) 0.42608 (17) −0.00229 (17) 0.0780 (6)
H12 0.2176 0.4707 −0.0561 0.094*
C13 0.2260 (3) 0.42188 (16) 0.10310 (18) 0.0744 (6)
H13 0.1476 0.4638 0.1207 0.089*
C14 0.3000 (2) 0.35534 (13) 0.18281 (14) 0.0579 (4)
H14 0.2708 0.3507 0.2541 0.069*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0664 (3) 0.0385 (2) 0.0462 (2) −0.00334 (15) 0.00855 (17) −0.00739 (14)
N 0.0513 (6) 0.0408 (6) 0.0347 (5) −0.0058 (5) 0.0120 (5) −0.0013 (4)
O1 0.0800 (8) 0.0655 (8) 0.0655 (8) 0.0209 (7) 0.0084 (6) −0.0213 (6)
O3 0.0858 (9) 0.0823 (10) 0.0652 (8) −0.0240 (7) 0.0105 (7) −0.0272 (7)
O2 0.1039 (10) 0.0500 (7) 0.0681 (8) −0.0305 (7) 0.0080 (7) 0.0000 (6)
O4 0.1016 (12) 0.1637 (17) 0.0496 (8) −0.0353 (11) 0.0398 (8) −0.0136 (9)
C1 0.0459 (7) 0.0463 (7) 0.0362 (6) −0.0003 (5) 0.0121 (5) 0.0061 (5)
C2 0.0429 (6) 0.0467 (7) 0.0333 (6) 0.0049 (5) 0.0115 (5) 0.0032 (5)
C3 0.0418 (6) 0.0389 (7) 0.0347 (6) 0.0024 (5) 0.0074 (5) 0.0024 (5)
C4 0.0465 (7) 0.0430 (7) 0.0358 (6) −0.0019 (5) 0.0123 (5) 0.0015 (5)
C5 0.0560 (8) 0.0535 (9) 0.0480 (8) −0.0081 (7) 0.0078 (6) −0.0012 (7)
C6 0.0595 (9) 0.0796 (12) 0.0366 (7) 0.0025 (8) 0.0143 (6) −0.0055 (7)
C7 0.0662 (10) 0.0772 (12) 0.0595 (10) −0.0208 (9) 0.0248 (8) 0.0053 (9)
C8 0.0784 (12) 0.0817 (13) 0.0445 (9) −0.0255 (10) 0.0295 (8) −0.0068 (8)
C9 0.0551 (8) 0.0435 (7) 0.0379 (7) −0.0089 (6) 0.0067 (6) −0.0098 (5)
C10 0.0643 (10) 0.0774 (12) 0.0411 (8) −0.0095 (8) 0.0134 (7) −0.0091 (8)
C11 0.0942 (15) 0.0952 (16) 0.0402 (9) −0.0202 (12) 0.0072 (9) 0.0005 (9)
C12 0.1054 (16) 0.0665 (12) 0.0567 (11) −0.0007 (11) −0.0086 (11) 0.0022 (9)
C13 0.0900 (14) 0.0586 (11) 0.0710 (12) 0.0162 (10) −0.0029 (10) −0.0134 (9)
C14 0.0742 (11) 0.0527 (9) 0.0472 (9) 0.0036 (8) 0.0099 (8) −0.0136 (7)

Geometric parameters (Å, °)

S1—O2 1.4155 (13) C7—H7A 0.9600
S1—O1 1.4209 (13) C7—H7B 0.9600
S1—N 1.6945 (12) C7—H7C 0.9600
S1—C9 1.7452 (17) C8—H8A 0.9600
N—C4 1.4018 (17) C8—H8B 0.9600
N—C1 1.4060 (17) C8—H8C 0.9600
O3—C5 1.203 (2) C9—C10 1.380 (2)
O4—C6 1.187 (2) C9—C14 1.381 (2)
C1—C2 1.358 (2) C10—C11 1.385 (3)
C1—C7 1.492 (2) C10—H10 0.9300
C2—C3 1.4382 (18) C11—C12 1.364 (3)
C2—C6 1.463 (2) C11—H11 0.9300
C3—C4 1.3631 (19) C12—C13 1.370 (3)
C3—C5 1.449 (2) C12—H12 0.9300
C4—C8 1.4890 (19) C13—C14 1.376 (3)
C5—H5 0.9300 C13—H13 0.9300
C6—H6 0.9300 C14—H14 0.9300
O2—S1—O1 119.94 (9) H7A—C7—H7B 109.5
O2—S1—N 105.88 (7) C1—C7—H7C 109.5
O1—S1—N 107.05 (7) H7A—C7—H7C 109.5
O2—S1—C9 110.02 (8) H7B—C7—H7C 109.5
O1—S1—C9 109.26 (8) C4—C8—H8A 109.5
N—S1—C9 103.33 (7) C4—C8—H8B 109.5
C4—N—C1 109.39 (11) H8A—C8—H8B 109.5
C4—N—S1 123.39 (9) C4—C8—H8C 109.5
C1—N—S1 127.22 (10) H8A—C8—H8C 109.5
C2—C1—N 107.03 (11) H8B—C8—H8C 109.5
C2—C1—C7 128.14 (13) C10—C9—C14 121.40 (16)
N—C1—C7 124.83 (14) C10—C9—S1 119.29 (14)
C1—C2—C3 108.37 (12) C14—C9—S1 119.29 (12)
C1—C2—C6 126.27 (13) C9—C10—C11 118.31 (18)
C3—C2—C6 125.35 (14) C9—C10—H10 120.8
C4—C3—C2 108.18 (12) C11—C10—H10 120.8
C4—C3—C5 123.06 (13) C12—C11—C10 120.27 (18)
C2—C3—C5 128.76 (13) C12—C11—H11 119.9
C3—C4—N 107.02 (11) C10—C11—H11 119.9
C3—C4—C8 129.31 (14) C11—C12—C13 121.2 (2)
N—C4—C8 123.67 (13) C11—C12—H12 119.4
O3—C5—C3 125.90 (15) C13—C12—H12 119.4
O3—C5—H5 117.1 C12—C13—C14 119.66 (19)
C3—C5—H5 117.1 C12—C13—H13 120.2
O4—C6—C2 126.33 (18) C14—C13—H13 120.2
O4—C6—H6 116.8 C13—C14—C9 119.18 (16)
C2—C6—H6 116.8 C13—C14—H14 120.4
C1—C7—H7A 109.5 C9—C14—H14 120.4
C1—C7—H7B 109.5
O2—S1—N—C4 172.55 (12) C1—N—C4—C3 0.29 (16)
O1—S1—N—C4 43.51 (14) S1—N—C4—C3 −179.53 (10)
C9—S1—N—C4 −71.78 (13) C1—N—C4—C8 179.88 (15)
O2—S1—N—C1 −7.23 (15) S1—N—C4—C8 0.1 (2)
O1—S1—N—C1 −136.28 (13) C4—C3—C5—O3 −178.68 (17)
C9—S1—N—C1 108.43 (13) C2—C3—C5—O3 2.1 (3)
C4—N—C1—C2 −1.03 (16) C1—C2—C6—O4 5.9 (3)
S1—N—C1—C2 178.78 (10) C3—C2—C6—O4 −173.12 (19)
C4—N—C1—C7 178.16 (15) O2—S1—C9—C10 −122.33 (14)
S1—N—C1—C7 −2.0 (2) O1—S1—C9—C10 11.30 (15)
N—C1—C2—C3 1.33 (16) N—S1—C9—C10 125.00 (13)
C7—C1—C2—C3 −177.83 (16) O2—S1—C9—C14 55.92 (14)
N—C1—C2—C6 −177.86 (14) O1—S1—C9—C14 −170.46 (12)
C7—C1—C2—C6 3.0 (3) N—S1—C9—C14 −56.75 (13)
C1—C2—C3—C4 −1.18 (16) C14—C9—C10—C11 0.7 (3)
C6—C2—C3—C4 178.02 (14) S1—C9—C10—C11 178.93 (14)
C1—C2—C3—C5 178.14 (14) C9—C10—C11—C12 0.3 (3)
C6—C2—C3—C5 −2.7 (2) C10—C11—C12—C13 −0.4 (3)
C2—C3—C4—N 0.53 (15) C11—C12—C13—C14 −0.5 (3)
C5—C3—C4—N −178.84 (13) C12—C13—C14—C9 1.4 (3)
C2—C3—C4—C8 −179.04 (17) C10—C9—C14—C13 −1.6 (2)
C5—C3—C4—C8 1.6 (3) S1—C9—C14—C13 −179.77 (14)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C6—H6···O3 0.93 2.46 3.077 (2) 124
C7—H7A···O4 0.96 2.33 3.021 (3) 128
C11—H11···O4i 0.93 2.53 3.456 (2) 174
C13—H13···O2i 0.93 2.52 3.304 (2) 143
C14—H14···O3ii 0.93 2.57 3.383 (2) 146

Symmetry codes: (i) x, y, z−1; i; (ii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2307).

References

  1. Ali, R., Misra, B. & Nizamuddin (1989). Indian J. Chem. Sect. B, 28, 526–528.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Amal Raj, A., Raghunathan, R., Sridevikumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem.11, 407–419. [DOI] [PubMed]
  4. Beddoes, R. L., Dalton, L., Joule, J. A., Mills, O. S., Street, J. O. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.
  5. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  7. Nardelli, M. (1995). J. Appl. Cryst.28, 659.
  8. Sheldrick, G. M. (2001). SADABS University of Göttingen, Germany.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809004425/wn2307sup1.cif

e-65-0o531-sup1.cif (18.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809004425/wn2307Isup2.hkl

e-65-0o531-Isup2.hkl (227.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES