Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1990 Oct;86(4):1222–1233. doi: 10.1172/JCI114828

Enhanced utilization of exogenous glucose improves cardiac function in hypoxic rabbit ventricle without increasing total glycolytic flux.

E M Runnman 1, S T Lamp 1, J N Weiss 1
PMCID: PMC296852  PMID: 2170448

Abstract

The effects of elevated glucose on cardiac function during hypoxia were investigated in isolated arterially perfused rabbit interventricular septa. Rest tension, developed tension, intracellular potential, 42K+ efflux, lactate production, exogenous glucose utilization, and tissue high-energy phosphate levels were measured during a 50-min period of hypoxia with 4, 5, or 50 mM glucose present (isosmotically balanced with sucrose) and during reoxygenation for 60 min with perfusate containing 5 mM glucose/45 mM sucrose. At physiologic (4 or 5 mM) and supraphysiologic glucose (50 mM), lactate production and high-energy phosphate levels during hypoxia were equally well maintained, yet cardiac dysfunction was markedly attenuated by 50 mM glucose. Despite identical rates of total glycolytic flux, exogenous glucose utilization was enhanced by 50 mM glucose so that tissue glycogen levels remained normal during hypoxia, whereas glycogen became depleted with 4 or 5 mM glucose present during hypoxia. Most of the beneficial effects of 50 mM glucose occurred during the first 25 min of hypoxia. Prior glycogen depletion had no deleterious effects during hypoxia with 50 mM glucose present, but exacerbated cardiac dysfunction during hypoxia with 5 mM glucose present. These findings indicate that enhanced utilization of exogenous glucose improved cardiac function during hypoxia without increasing total glycolytic flux or tissue high-energy phosphate levels, suggesting a novel cardioprotective mechanism.

Full text

PDF
1222

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed S. S., Lee C. H., Oldewurtel H. A., Regan T. J. Sustained effect of glucose-insulin-potassium on myocardial performance during regional ischemia. Role of free fatty acid and osmolality. J Clin Invest. 1978 May;61(5):1123–1135. doi: 10.1172/JCI109027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson G. L., Morris R. G. Role of glycolysis in the relaxation process in mammalian cardiac muscle: comparison of the influence of glucose and 2-deoxyglucose on maintenance of resting tension. Life Sci. 1978 Jul 3;23(1):23–31. doi: 10.1016/0024-3205(78)90320-x. [DOI] [PubMed] [Google Scholar]
  3. Apstein C. S., Gravino F. N., Haudenschild C. C. Determinants of a protective effect of glucose and insulin on the ischemic myocardium. Effects on contractile function, diastolic compliance, metabolism, and ultrastructure during ischemia and reperfusion. Circ Res. 1983 May;52(5):515–526. doi: 10.1161/01.res.52.5.515. [DOI] [PubMed] [Google Scholar]
  4. Bittl J. A., Shine K. I. Protection of ischemic rabbit myocardium by glutamic acid. Am J Physiol. 1983 Sep;245(3):H406–H412. doi: 10.1152/ajpheart.1983.245.3.H406. [DOI] [PubMed] [Google Scholar]
  5. Bricknell O. L., Opie L. H. Effects of substrates on tissue metabolic changes in the isolated rat heart during underperfusion and on release of lactate dehydrogenase and arrhythmias during reperfusion. Circ Res. 1978 Jul;43(1):102–115. doi: 10.1161/01.res.43.1.102. [DOI] [PubMed] [Google Scholar]
  6. Burke W. M., Asokan S. K., Moschos C. B., Oldewurtel H. A., Regan T. J. Effects of glucose and nonglucose infusions on myocardial potassium ion transfers and arrhythmias during ischemia. Am J Cardiol. 1969 Nov;24(5):713–722. doi: 10.1016/0002-9149(69)90459-7. [DOI] [PubMed] [Google Scholar]
  7. Carlsson L. A crucial role of ongoing anaerobic glycolysis in attenuating acute ischemia-induced release of myocardial noradrenaline. J Mol Cell Cardiol. 1988 Mar;20(3):247–253. doi: 10.1016/s0022-2828(88)80057-9. [DOI] [PubMed] [Google Scholar]
  8. Chiong M. A., West R., Parker J. O. The protective effect of glucose-insulin-potassium on the response to atrial pacing. Circulation. 1976 Jul;54(1):37–46. doi: 10.1161/01.cir.54.1.37. [DOI] [PubMed] [Google Scholar]
  9. Conrad C. H., Mark R. G., Bing O. H. Outward current and repolarization in hypoxic rat myocardium. Am J Physiol. 1983 Mar;244(3):H341–H350. doi: 10.1152/ajpheart.1983.244.3.H341. [DOI] [PubMed] [Google Scholar]
  10. Dubyak G. R., Scarpa A. Phosphorus-31 nuclear magnetic resonance studies of single muscle cells isolated from barnacle depressor muscle. Biochemistry. 1983 Jul 5;22(14):3531–3536. doi: 10.1021/bi00283a035. [DOI] [PubMed] [Google Scholar]
  11. Entam M. L., Kanike K., Goldstein M. A., Nelson T. E., Bornet E. P., Futch T. W., Schwartz A. Association of gylcogenolysis with cardiac sarcoplasmic reticulum. J Biol Chem. 1976 May 25;251(10):3140–3146. [PubMed] [Google Scholar]
  12. Gelli M. G., Enhörning G., Hultman E., Bergström J. Glucose infusion in the pregnant rabbit and its effect on glycogen content and activity of foetal heart under anoxia. Acta Paediatr Scand. 1968 May;57(3):209–214. doi: 10.1111/j.1651-2227.1968.tb04680.x. [DOI] [PubMed] [Google Scholar]
  13. Goldhaber J. I., Ji S., Lamp S. T., Weiss J. N. Effects of exogenous free radicals on electromechanical function and metabolism in isolated rabbit and guinea pig ventricle. Implications for ischemia and reperfusion injury. J Clin Invest. 1989 Jun;83(6):1800–1809. doi: 10.1172/JCI114085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hasin Y., Barry W. H. Myocardial metabolic inhibition and membrane potential, contraction, and potassium uptake. Am J Physiol. 1984 Aug;247(2 Pt 2):H322–H329. doi: 10.1152/ajpheart.1984.247.2.H322. [DOI] [PubMed] [Google Scholar]
  15. Hasin Y., Doorey A., Barry W. H. Electrophysiologic and mechanical effects of metabolic inhibition of high-energy phosphate production in cultured chick embryo ventricular cells. J Mol Cell Cardiol. 1984 Nov;16(11):1009–1021. doi: 10.1016/s0022-2828(84)80014-0. [DOI] [PubMed] [Google Scholar]
  16. Hearse D. J., Chain E. B. The role of glucose in the survival and 'recovery' of the anoxic isolated perfused rat heart. Biochem J. 1972 Aug;128(5):1125–1133. doi: 10.1042/bj1281125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Henry P. D., Sobel B. E., Braunwald E. Protection of hypoxic guinea pig hearts with glucose and insulin. Am J Physiol. 1974 Feb;226(2):309–313. doi: 10.1152/ajplegacy.1974.226.2.309. [DOI] [PubMed] [Google Scholar]
  18. Hess M. L., Manson N. H. Molecular oxygen: friend and foe. The role of the oxygen free radical system in the calcium paradox, the oxygen paradox and ischemia/reperfusion injury. J Mol Cell Cardiol. 1984 Nov;16(11):969–985. doi: 10.1016/s0022-2828(84)80011-5. [DOI] [PubMed] [Google Scholar]
  19. Hess M. L., Okabe E., Poland J., Warner M., Stewart J. R., Greenfield L. J. Glucose, insulin, potassium protection during the course of hypothermic global ischemia and reperfusion: a new proposed mechanism by the scavenging of free radicals. J Cardiovasc Pharmacol. 1983 Jan-Feb;5(1):35–43. doi: 10.1097/00005344-198301000-00005. [DOI] [PubMed] [Google Scholar]
  20. Higgins T. J., Allsopp D., Bailey P. J., D'Souza E. D. The relationship between glycolysis, fatty acid metabolism and membrane integrity in neonatal myocytes. J Mol Cell Cardiol. 1981 Jun;13(6):599–615. doi: 10.1016/0022-2828(81)90330-8. [DOI] [PubMed] [Google Scholar]
  21. Higgins T. J., Bailey P. J., Allsopp D. Interrelationship between cellular metabolic status and susceptibility of heart cells to attack by phospholipase. J Mol Cell Cardiol. 1982 Nov;14(11):645–654. doi: 10.1016/0022-2828(82)90162-6. [DOI] [PubMed] [Google Scholar]
  22. Higgins T. J., Bailey P. J. The effects of cyanide and iodoacetate intoxication and ischaemia on enzyme release from the perfused rat heart. Biochim Biophys Acta. 1983 Feb 16;762(1):67–75. doi: 10.1016/0167-4889(83)90118-0. [DOI] [PubMed] [Google Scholar]
  23. Humphrey S. M., Holliss D. G., Seelye R. N. Myocardial adenine pool depletion and recovery of mechanical function following ischemia. Am J Physiol. 1985 May;248(5 Pt 2):H644–H651. doi: 10.1152/ajpheart.1985.248.5.H644. [DOI] [PubMed] [Google Scholar]
  24. Kléber A. G. Extracellular potassium accumulation in acute myocardial ischemia. J Mol Cell Cardiol. 1984 May;16(5):389–394. doi: 10.1016/s0022-2828(84)80610-0. [DOI] [PubMed] [Google Scholar]
  25. Lagerstrom C. F., Walker W. E., Taegtmeyer H. Failure of glycogen depletion to improve left ventricular function of the rabbit heart after hypothermic ischemic arrest. Circ Res. 1988 Jul;63(1):81–86. doi: 10.1161/01.res.63.1.81. [DOI] [PubMed] [Google Scholar]
  26. Leaf A. Cell swelling. A factor in ischemic tissue injury. Circulation. 1973 Sep;48(3):455–458. doi: 10.1161/01.cir.48.3.455. [DOI] [PubMed] [Google Scholar]
  27. Lesch M., Teichholz L. E., Soeldner J. S., Gorlin R. Ineffectiveness of glucose, potassium, and insulin infusion during pacing stress in chronic ischemic heart disease. Circulation. 1974 Jun;49(6):1028–1037. doi: 10.1161/01.cir.49.6.1028. [DOI] [PubMed] [Google Scholar]
  28. Liedtke A. J., Hughes H. C., Neely J. R. Effects of excess glucose and insulin on glycolytic metabolism during experimental myocardial ischemia. Am J Cardiol. 1976 Jul;38(1):17–27. doi: 10.1016/0002-9149(76)90057-6. [DOI] [PubMed] [Google Scholar]
  29. Lopaschuk G. D., Wall S. R., Olley P. M., Davies N. J. Etomoxir, a carnitine palmitoyltransferase I inhibitor, protects hearts from fatty acid-induced ischemic injury independent of changes in long chain acylcarnitine. Circ Res. 1988 Dec;63(6):1036–1043. doi: 10.1161/01.res.63.6.1036. [DOI] [PubMed] [Google Scholar]
  30. Lubbe W. F., Bricknell O. L., Podzuweit H. O. Cyclic AMP as a determinant of vulnerability to ventricular fibrillation in the isolated rat heart. Cardiovasc Res. 1976 Nov;10(6):697–702. doi: 10.1093/cvr/10.6.697. [DOI] [PubMed] [Google Scholar]
  31. Lynch R. M., Paul R. J. Compartmentation of glycolytic and glycogenolytic metabolism in vascular smooth muscle. Science. 1983 Dec 23;222(4630):1344–1346. doi: 10.1126/science.6658455. [DOI] [PubMed] [Google Scholar]
  32. MacLeod D. P., Prasad K. Influence of glucose on the transmembrane action potential of papillary muscle. Effects of concentration, phlorizin and insulin, nonmetabolizable sugars, and stimulators of glycolysis. J Gen Physiol. 1969 Jun;53(6):792–815. doi: 10.1085/jgp.53.6.792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Magnusson I., Chandramouli V., Schumann W. C., Kumaran K., Wahren J., Landau B. R. Quantitation of the pathways of hepatic glycogen formation on ingesting a glucose load. J Clin Invest. 1987 Dec;80(6):1748–1754. doi: 10.1172/JCI113267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Maroko P. R., Libby P., Sobel B. E., Bloor C. M., Sybers H. D., Shell W. E., Covell J. W., Braunwald E. Effect of glucose-insulin-potassium infusion on myocardial infarction following experimental coronary artery occlusion. Circulation. 1972 Jun;45(6):1160–1175. doi: 10.1161/01.cir.45.6.1160. [DOI] [PubMed] [Google Scholar]
  35. Marshall R. C., Nash W. W., Shine K. I., Phelps M. E., Ricchiuti N. Glucose metabolism during ischemia due to excessive oxygen demand or altered coronary flow in the isolated arterially perfused rabbit septum. Circ Res. 1981 Sep;49(3):640–648. doi: 10.1161/01.res.49.3.640. [DOI] [PubMed] [Google Scholar]
  36. Martinez E. E., Telles J. S., Martinez T. L., Portugal O. P., Guimaraes R. F., Herrmann J. L., Lamounier E. N., Caio A. A., Auriemo R. C., Ambrose J. A. The effects of glucose on myocardial substrate utilization in acute myocardial infarction or angina pectoris. Am J Cardiol. 1987 Nov 1;60(13):947–951. doi: 10.1016/0002-9149(87)90330-4. [DOI] [PubMed] [Google Scholar]
  37. McDonald T. F., MacLeod D. P. Maintenance of resting potential in anoxic guinea pig ventricular muscle: electrogenic sodium pumping. Science. 1971 May 7;172(3983):570–572. doi: 10.1126/science.172.3983.570. [DOI] [PubMed] [Google Scholar]
  38. McDonald T. F., MacLeod D. P. Metabolism and the electrical activity of anoxic ventricular muscle. J Physiol. 1973 Mar;229(3):559–582. doi: 10.1113/jphysiol.1973.sp010154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Morgan H. E., Neely J. R., Kira Y. Factors determining the utilization of glucose in isolated rat hearts. Basic Res Cardiol. 1984 May-Jun;79(3):292–299. doi: 10.1007/BF01908029. [DOI] [PubMed] [Google Scholar]
  40. Muller J. E., Mochizuki S., Koster J. K., Jr, Collins J. J., Jr, Cohn L. H., Neely J. R. Insulin therapy for depressed myocardial contractility after prolonged ischemia. Am J Cardiol. 1978 Jun;41(7):1215–1221. doi: 10.1016/0002-9149(78)90878-0. [DOI] [PubMed] [Google Scholar]
  41. Noma A. ATP-regulated K+ channels in cardiac muscle. Nature. 1983 Sep 8;305(5930):147–148. doi: 10.1038/305147a0. [DOI] [PubMed] [Google Scholar]
  42. Opie L. H., Bricknell O. L. Role of glycolytic flux in effect of glucose in decreasing fatty-acid-induced release of lactate dehydrogenase from isolated coronary ligated rat heart. Cardiovasc Res. 1979 Dec;13(12):693–702. doi: 10.1093/cvr/13.12.693. [DOI] [PubMed] [Google Scholar]
  43. Opie L. H., Bruyneel K., Owen P. Effects of glucose, insulin and potassium infusion on tissue metabolic changes within first hour of myocardial infarction in the baboon. Circulation. 1975 Jul;52(1):49–57. doi: 10.1161/01.cir.52.1.49. [DOI] [PubMed] [Google Scholar]
  44. Opie L. H. Metabolism of free fatty acids, glucose and catecholamines in acute myocardial infarction. Relation to myocardial ischemia and infarct size. Am J Cardiol. 1975 Dec;36(7):938–953. doi: 10.1016/0002-9149(75)90086-7. [DOI] [PubMed] [Google Scholar]
  45. Opie L. H., Owen P. Effect of glucose-insulin-potassium infusions on arteriovenous differences of glucose of free fatty acids and on tissue metabolic changes in dogs with developing myocardial infarction. Am J Cardiol. 1976 Sep;38(3):310–321. doi: 10.1016/0002-9149(76)90173-9. [DOI] [PubMed] [Google Scholar]
  46. Podzuweit T., Dalby A. J., Cherry G. W., Opie L. H. Cyclic AMP levels in ischaemic and non-ischaemic myocardium following coronary artery ligation: relation to ventricular fibrillation. J Mol Cell Cardiol. 1978 Jan;10(1):81–94. doi: 10.1016/0022-2828(78)90008-1. [DOI] [PubMed] [Google Scholar]
  47. Poole-Wilson P. A., Langer G. A. Effect of pH on ionic exchange and function in rat and rabbit myocardium. Am J Physiol. 1975 Sep;229(3):570–581. doi: 10.1152/ajplegacy.1975.229.3.570. [DOI] [PubMed] [Google Scholar]
  48. Rackley C. E., Russell R. O., Jr, Rogers W. J., Mantle J. A., McDaniel H. G., Papapietro S. E. Clinical experience with glucose-insulin-potassium therapy in acute myocardial infarction. Am Heart J. 1981 Dec;102(6 Pt 1):1038–1049. doi: 10.1016/0002-8703(81)90488-9. [DOI] [PubMed] [Google Scholar]
  49. Rau E. E., Langer G. A. Dissociation of energetic state and potassium loss from anoxic myocardium. Am J Physiol. 1978 Nov;235(5):H537–H543. doi: 10.1152/ajpheart.1978.235.5.H537. [DOI] [PubMed] [Google Scholar]
  50. Reimer K. A., Rasmussen M. M., Jennings R. B. Reduction by propranolol of myocardial necrosis following temporary coronary artery occlusion in dogs. Circ Res. 1973 Sep;33(3):353–363. doi: 10.1161/01.res.33.3.353. [DOI] [PubMed] [Google Scholar]
  51. Rogers W. J., Stanley A. W., Jr, Breinig J. B., Prather J. W., McDaniel H. G., Moraski R. E., Mantle J. A., Russell R. O., Jr, Rackley C. E. Reduction of hospital mortality rate of acute myocardial infarction with glucose-insulin-potassium infusion. Am Heart J. 1976 Oct;92(4):441–454. doi: 10.1016/s0002-8703(76)80043-9. [DOI] [PubMed] [Google Scholar]
  52. SODI-PALLARES D., BISTENI A., MEDRANO G. A., TESTELLI M. R., DE MICHELI A. The polarizing treatment of acute myocardial infarction. Possibility of its use in other cardiovascular conditions. Dis Chest. 1963 Apr;43:424–432. doi: 10.1378/chest.43.4.424. [DOI] [PubMed] [Google Scholar]
  53. SODI-PALLARES D., TESTELLI M. R., FISHLEDER B. L., BISTENI A., MEDRANO G. A., FRIEDLAND C., DE MICHELI A. Effects of an intravenous infusion of a potassium-glucose-insulin solution on the electrocardiographic signs of myocardial infarction. A preliminary clinical report. Am J Cardiol. 1962 Feb;9:166–181. doi: 10.1016/0002-9149(62)90035-8. [DOI] [PubMed] [Google Scholar]
  54. Scheuer J., Stezoski S. W. Protective role of increased myocardial glycogen stores in cardiac anoxia in the rat. Circ Res. 1970 Nov;27(5):835–849. doi: 10.1161/01.res.27.5.835. [DOI] [PubMed] [Google Scholar]
  55. Shelburne J. C., Serena S. D., Langer G. A. Rate-tension staircase in rabbit ventricular muscle: relation to ionic exchange. Am J Physiol. 1967 Nov;213(5):1115–1124. doi: 10.1152/ajplegacy.1967.213.5.1115. [DOI] [PubMed] [Google Scholar]
  56. Surawicz B. Evaluation of treatment of acute myocardial infarction with potassium, glucose and insulin. Prog Cardiovasc Dis. 1968 May;10(6):545–560. doi: 10.1016/0033-0620(68)90005-4. [DOI] [PubMed] [Google Scholar]
  57. Thadani U., Chiong M. A., Parker J. O. Effects of low and high glucose in a glucose-insulin-potassium infusion on hemodynamics and exercise tolerance in patients with angina pectoris. Circulation. 1980 Feb;61(2):266–276. doi: 10.1161/01.cir.61.2.266. [DOI] [PubMed] [Google Scholar]
  58. Van Handel E. Estimation of glycogen in small amounts of tissue. Anal Biochem. 1965 May;11(2):256–265. doi: 10.1016/0003-2697(65)90013-8. [DOI] [PubMed] [Google Scholar]
  59. WOODBURY J. W., BRADY A. J. Intracellular recording from moving tissues with a flexibly mounted ultramicroelectrode. Science. 1956 Jan 20;123(3186):100–101. doi: 10.1126/science.123.3186.100-a. [DOI] [PubMed] [Google Scholar]
  60. Weiss J. N., Lamp S. T. Cardiac ATP-sensitive K+ channels. Evidence for preferential regulation by glycolysis. J Gen Physiol. 1989 Nov;94(5):911–935. doi: 10.1085/jgp.94.5.911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Weiss J. N., Lamp S. T. Glycolysis preferentially inhibits ATP-sensitive K+ channels in isolated guinea pig cardiac myocytes. Science. 1987 Oct 2;238(4823):67–69. doi: 10.1126/science.2443972. [DOI] [PubMed] [Google Scholar]
  62. Weiss J., Hiltbrand B. Functional compartmentation of glycolytic versus oxidative metabolism in isolated rabbit heart. J Clin Invest. 1985 Feb;75(2):436–447. doi: 10.1172/JCI111718. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Weiss J., Shine K. I. [K+]o accumulation and electrophysiological alterations during early myocardial ischemia. Am J Physiol. 1982 Aug;243(2):H318–H327. doi: 10.1152/ajpheart.1982.243.2.H318. [DOI] [PubMed] [Google Scholar]
  64. Whitlow P. L., Rogers W. J., Smith L. R., McDaniel H. G., Papapietro S. E., Mantle J. A., Logic J. R., Russell R. O., Jr, Rackley C. E. Enhancement of left ventricular function by glucose-insulin-potassium infusion in acute myocardial infarction. Am J Cardiol. 1982 Mar;49(4):811–820. doi: 10.1016/0002-9149(82)91963-4. [DOI] [PubMed] [Google Scholar]
  65. Willerson J. T., Powell W. J., Jr, Guiney T. E., Stark J. J., Sanders C. A., Leaf A. Improvement in myocardial function and coronary blood flow in ischemic myocardium after mannitol. J Clin Invest. 1972 Dec;51(12):2989–2998. doi: 10.1172/JCI107126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Wright G. Amino acids in the treatment of ischaemic heart disease. J Mol Cell Cardiol. 1985 May;17(5):441–443. doi: 10.1016/s0022-2828(85)80048-1. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES