Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Feb 11;65(Pt 3):i14. doi: 10.1107/S160053680900395X

Neptunium(III) copper(I) diselenide

Daniel M Wells a, S Skanthakumar b, L Soderholm b, James A Ibers a,*
PMCID: PMC2968520  PMID: 21582032

Abstract

The title compound, NpCuSe2, is the first ternary neptunium transition-metal chalcogenide. It was synthesized from the elements at 873 K in an evacuated fused-silica tube. Single crystals were grown by vapor transport with I2. NpCuSe2 crystallizes in the LaCuS2 structure type and can be viewed as a stacking of layers of CuSe4 tetra­hedra and of double layers of NpSe7 monocapped trigonal prisms along [100]. Because there are no Se—Se bonds in the structure, the formal oxidation states of Np/Cu/Se may be assigned as +III/+I/−II, respectively.

Related literature

For discussion of the LaCuS2 structure type, see: Julien-Pouzol et al. (1981); Ijjaali et al. (2004). For other compounds with Cu—Se bonds, see: Daoudi et al. (1996); Strobel & Schleid (2004); Ijjaali et al. (2004). For other neptunium selenides, see: Wastin et al. (1995); Wojakowski (1985). For computational details, see Gelato & Parthé (1987).

Experimental

Crystal data

  • NpCuSe2

  • M r = 458.46

  • Monoclinic, Inline graphic

  • a = 6.6796 (5) Å

  • b = 7.4384 (6) Å

  • c = 7.1066 (5) Å

  • β = 97.156 (1)°

  • V = 350.34 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 56.06 mm−1

  • T = 100 (2) K

  • 0.08 × 0.05 × 0.04 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: numerical (face indexed; SADABS; Sheldrick, 2006) T min = 0.045, T max = 0.212

  • 6189 measured reflections

  • 1376 independent reflections

  • 1309 reflections with I > 2σ(I)

  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028

  • wR(F 2) = 0.068

  • S = 1.35

  • 1376 reflections

  • 37 parameters

  • Δρmax = 2.43 e Å−3

  • Δρmin = −4.48 e Å−3

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (Palmer, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680900395X/wm2219sup1.cif

e-65-00i14-sup1.cif (13.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680900395X/wm2219Isup2.hkl

e-65-00i14-Isup2.hkl (67.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Cu1—Se2i 2.4409 (9)
Cu1—Se1ii 2.4490 (9)
Cu1—Se1iii 2.5066 (9)
Cu1—Se1 2.5899 (9)
Np1—Se2iv 2.9330 (6)
Np1—Se2v 2.9540 (6)
Np1—Se2 2.9743 (6)
Np1—Se1vi 2.9784 (6)
Np1—Se2vii 2.9785 (6)
Np1—Se1 2.9950 (6)
Np1—Se1viii 3.1419 (6)
Se2i—Cu1—Se1ii 116.52 (4)
Se2i—Cu1—Se1iii 102.85 (3)
Se1ii—Cu1—Se1iii 112.76 (4)
Se2i—Cu1—Se1 103.94 (3)
Se1ii—Cu1—Se1 103.44 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic.

Acknowledgments

The research was supported at Northwestern University by the US Department of Energy, Basic Energy Sciences grant ER-15522, and at Argonne National Laboratory by the US Department of Energy, OBES, Chemical Sciences Division, under contract DEAC02–06CH11357. We are indebted to Dr Richard G. Haire of Oak Ridge National Laboratory for the gift of Np metal.

supplementary crystallographic information

Comment

In keeping with earlier descriptions of the LaCuS2 structure type (Julien-Pouzol et al., 1981; Ijjaali et al., 2004) the structure of NpCuSe2 can be viewed as a stacking of layers of CuSe4 tetrahedra and double layers of NpSe7 monocapped trigonal prisms along [100]. Figure 1 provides a view nearly down [010] of the unit cell. It displays the stacking of layers along [100] where atom Se1 is contained within the Cu layer and atom Se2 is contained within the Np double layer. The Cu—Se bond distances are reasonable for a Cu(I) compound; they range from 2.4409 (9) to 2.5899 (9) Å compared to 2.458 (2) to 2.490 (4) Å in SrCuCeSe3 (Strobel & Schleid, 2004) and 2.450 (1) to 2.607 (1) Å in the Ce analogue CeCuSe2 (Ijjaali et al., 2004). The Np—Se bond distances range from 2.9330 (6) to 3.1419 (6) Å. Comparisons are limited but can be made with the Np—Se distance of 2.903 (1) Å in NpSe (Wastin et al., 1995) and those of 2.932 and 3.086 Å in NpAsSe (Wojakowski, 1985). There are no Se—Se bonds in NpCuSe2, so formal oxidation states may be assigned for Np/Cu/Se of +III/+I/-II.

The chemistry of Np is transitional between that of U and Pu. All three elements exhibit multiple oxidation states in their compounds. NpCuSe2 is the first example of a neptunium chalcogenide compound analogous to a lanthanide(III) structure rather than to a transition-metal or uranium(IV) structure. The Pu analogue is unknown, although arguments based on the stability of various Pu oxidation states suggest it should be stable.

Experimental

NpCuSe2was formed in an attempted synthesis of the Np analogue of U3Cu2Se7 (Daoudi et al., 1996). Caution! 237Np is an α-emitting radioisotope and as such is considered a health risk. Its use requires appropriate infrastructure and personnel trained in the handling of radioactive materials. The following reagents were used as obtained from the manufacturer: Cu (Aldrich, 99.5%) and Se (Aldrich, 99%). Resublimed I2 was utilized as a transport reagent. 237Np chunks were crushed and used as provided from Oak Ridge National Laboratory. A reaction mixture of 20.2 mg Np (0.085 mmol), 3.58 mg Cu (0.056 mmol), and 15.55 mg Se (0.197 mmol) was loaded into a fused-silica ampoule in an Ar-filled dry box that was then evacuated to 10 -4 Torr and sealed. The sample was placed in a computer controlled furnace, heated to 873 K in 8 h, kept at 873 K for 72 h, cooled at 5 K/h to 373 K, and finally air cooled in the oven to 298 K. The resultant black powder was reloaded into a fused-silica ampoule with 4 mg I2. The ampoule was evacuated to 10 -4 Torr and sealed. The sample was placed in a computer controlled furnace, heated to 873 K in 8 h, kept at 873 K for 336 h, cooled at 6.94 K/h to 373 K, before finally being air cooled to 298 K. Black rectangular plates and blocks of NpCuSe2 were obtained in low yield. The crystals used in characterization were manually extracted from the product mixture.

Refinement

The program STRUCTURE TIDY (Gelato & Parthé, 1987) was employed to standardize the atomic coordinates of the structure. The highest peak is 1.71 Å and the deepest hole is 0.08 Å from atom Np1.

Figures

Fig. 1.

Fig. 1.

A view nearly down [010] of the unit cell of NpCuSe2, with displacement ellipsoids at the 99% probability level.

Crystal data

NpCuSe2 F(000) = 760
Mr = 458.46 Dx = 8.692 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4110 reflections
a = 6.6796 (5) Å θ = 4.0–33.7°
b = 7.4384 (6) Å µ = 56.06 mm1
c = 7.1066 (5) Å T = 100 K
β = 97.156 (1)° Block, black
V = 350.34 (5) Å3 0.08 × 0.05 × 0.04 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 1376 independent reflections
Radiation source: fine-focus sealed tube 1309 reflections with I > 2σ(I)
graphite Rint = 0.036
φ and ω scans θmax = 33.9°, θmin = 3.1°
Absorption correction: numerical (face indexed; SADABS; Sheldrick, 2006) h = −10→10
Tmin = 0.045, Tmax = 0.212 k = −11→11
6189 measured reflections l = −11→11

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Primary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.028 Secondary atom site location: difference Fourier map
wR(F2) = 0.068 w = [1/[σ2(Fo2) + (0.0312)Fo2]2
S = 1.35 (Δ/σ)max < 0.001
1376 reflections Δρmax = 2.43 e Å3
37 parameters Δρmin = −4.48 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.07000 (11) 0.66155 (10) 0.04945 (11) 0.00850 (14)
Np1 0.30684 (3) 0.04823 (3) 0.19759 (3) 0.00478 (8)
Se1 0.09977 (8) 0.39107 (7) 0.28075 (8) 0.00539 (11)
Se2 0.58173 (9) 0.27585 (7) 0.00026 (8) 0.00520 (11)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0082 (3) 0.0081 (3) 0.0091 (3) −0.0008 (2) 0.0009 (2) −0.0017 (2)
Np1 0.00560 (11) 0.00354 (11) 0.00509 (11) −0.00032 (6) 0.00021 (8) −0.00020 (6)
Se1 0.0063 (2) 0.0041 (2) 0.0056 (2) 0.00028 (16) −0.00019 (18) −0.00004 (17)
Se2 0.0058 (2) 0.0044 (2) 0.0051 (2) 0.00028 (17) −0.00027 (18) 0.00013 (17)

Geometric parameters (Å, °)

Cu1—Se2i 2.4409 (9) Np1—Se1 2.9950 (6)
Cu1—Se1ii 2.4490 (9) Np1—Se1v 3.1419 (6)
Cu1—Se1iii 2.5066 (9) Np1—Cu1viii 3.3772 (8)
Cu1—Se1 2.5899 (9) Np1—Cu1x 3.3866 (8)
Cu1—Cu1iii 2.6421 (15) Np1—Cu1vii 3.4894 (8)
Cu1—Np1ii 3.3772 (8) Se1—Cu1viii 2.4490 (9)
Cu1—Np1iv 3.3866 (8) Se1—Cu1iii 2.5066 (9)
Cu1—Np1v 3.4894 (8) Se1—Np1ii 2.9784 (6)
Np1—Se2vi 2.9330 (6) Se1—Np1vii 3.1419 (6)
Np1—Se2vii 2.9540 (6) Se2—Cu1i 2.4409 (9)
Np1—Se2 2.9743 (6) Se2—Np1vi 2.9330 (6)
Np1—Se1viii 2.9784 (6) Se2—Np1v 2.9540 (6)
Np1—Se2ix 2.9785 (6) Se2—Np1xi 2.9785 (6)
Se2i—Cu1—Se1ii 116.52 (4) Se2vi—Np1—Cu1viii 135.297 (18)
Se2i—Cu1—Se1iii 102.85 (3) Se2vii—Np1—Cu1viii 86.489 (18)
Se1ii—Cu1—Se1iii 112.76 (4) Se2—Np1—Cu1viii 130.824 (18)
Se2i—Cu1—Se1 103.94 (3) Se1viii—Np1—Cu1viii 47.587 (17)
Se1ii—Cu1—Se1 103.44 (3) Se2ix—Np1—Cu1viii 85.522 (17)
Se1iii—Cu1—Se1 117.57 (3) Se1—Np1—Cu1viii 44.705 (16)
Se2i—Cu1—Cu1iii 116.56 (4) Se1v—Np1—Cu1viii 101.316 (18)
Se1ii—Cu1—Cu1iii 126.51 (5) Se2vi—Np1—Cu1x 44.728 (17)
Se1iii—Cu1—Cu1iii 60.33 (3) Se2vii—Np1—Cu1x 145.739 (18)
Se1—Cu1—Cu1iii 57.24 (3) Se2—Np1—Cu1x 128.963 (18)
Se2i—Cu1—Np1ii 155.73 (3) Se1viii—Np1—Cu1x 44.687 (17)
Se1ii—Cu1—Np1ii 59.35 (2) Se2ix—Np1—Cu1x 73.231 (18)
Se1iii—Cu1—Np1ii 100.32 (3) Se1—Np1—Cu1x 125.113 (18)
Se1—Cu1—Np1ii 58.107 (19) Se1v—Np1—Cu1x 72.255 (17)
Cu1iii—Cu1—Np1ii 69.64 (3) Cu1viii—Np1—Cu1x 91.556 (15)
Se2i—Cu1—Np1iv 57.74 (2) Se2vi—Np1—Cu1vii 98.092 (18)
Se1ii—Cu1—Np1iv 58.79 (2) Se2vii—Np1—Cu1vii 88.423 (18)
Se1iii—Cu1—Np1iv 124.26 (3) Se2—Np1—Cu1vii 162.568 (18)
Se1—Cu1—Np1iv 117.81 (3) Se1viii—Np1—Cu1vii 44.741 (17)
Cu1iii—Cu1—Np1iv 172.48 (5) Se2ix—Np1—Cu1vii 43.454 (17)
Np1ii—Cu1—Np1iv 113.38 (2) Se1—Np1—Cu1vii 88.717 (17)
Se2i—Cu1—Np1v 57.06 (2) Se1v—Np1—Cu1vii 123.660 (17)
Se1ii—Cu1—Np1v 160.72 (3) Cu1viii—Np1—Cu1vii 45.22 (2)
Se1iii—Cu1—Np1v 56.76 (2) Cu1x—Np1—Cu1vii 66.861 (13)
Se1—Cu1—Np1v 95.83 (3) Cu1viii—Se1—Cu1iii 99.74 (3)
Cu1iii—Cu1—Np1v 65.14 (3) Cu1viii—Se1—Cu1 148.28 (3)
Np1ii—Cu1—Np1v 134.78 (2) Cu1iii—Se1—Cu1 62.43 (3)
Np1iv—Cu1—Np1v 111.51 (2) Cu1viii—Se1—Np1ii 76.53 (2)
Se2vi—Np1—Se2vii 122.772 (13) Cu1iii—Se1—Np1ii 78.50 (2)
Se2vi—Np1—Se2 91.915 (16) Cu1—Se1—Np1ii 74.31 (2)
Se2vii—Np1—Se2 74.152 (12) Cu1viii—Se1—Np1 75.95 (2)
Se2vi—Np1—Se1viii 89.408 (17) Cu1iii—Se1—Np1 81.29 (2)
Se2vii—Np1—Se1viii 128.634 (17) Cu1—Se1—Np1 122.48 (3)
Se2—Np1—Se1viii 150.258 (17) Np1ii—Se1—Np1 142.27 (2)
Se2vi—Np1—Se2ix 74.394 (9) Cu1viii—Se1—Np1vii 79.17 (2)
Se2vii—Np1—Se2ix 72.516 (18) Cu1iii—Se1—Np1vii 178.90 (3)
Se2—Np1—Se2ix 127.853 (11) Cu1—Se1—Np1vii 118.47 (3)
Se1viii—Np1—Se2ix 80.988 (16) Np1ii—Se1—Np1vii 101.074 (17)
Se2vi—Np1—Se1 160.988 (17) Np1—Se1—Np1vii 98.541 (17)
Se2vii—Np1—Se1 74.905 (16) Cu1i—Se2—Np1vi 77.53 (2)
Se2—Np1—Se1 86.315 (17) Cu1i—Se2—Np1v 109.10 (3)
Se1viii—Np1—Se1 82.962 (10) Np1vi—Se2—Np1v 100.770 (17)
Se2ix—Np1—Se1 121.133 (17) Cu1i—Se2—Np1 146.34 (3)
Se2vi—Np1—Se1v 76.958 (16) Np1vi—Se2—Np1 88.085 (16)
Se2vii—Np1—Se1v 141.588 (16) Np1v—Se2—Np1 103.371 (19)
Se2—Np1—Se1v 72.469 (16) Cu1i—Se2—Np1xi 79.48 (2)
Se1viii—Np1—Se1v 78.926 (17) Np1vi—Se2—Np1xi 148.12 (2)
Se2ix—Np1—Se1v 144.944 (16) Np1v—Se2—Np1xi 107.484 (18)
Se1—Np1—Se1v 84.479 (14) Np1—Se2—Np1xi 99.254 (17)

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x, y+1/2, −z+1/2; (iii) −x, −y+1, −z; (iv) x, y+1, z; (v) x, −y+1/2, z−1/2; (vi) −x+1, −y, −z; (vii) x, −y+1/2, z+1/2; (viii) −x, y−1/2, −z+1/2; (ix) −x+1, y−1/2, −z+1/2; (x) x, y−1, z; (xi) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2219).

References

  1. Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Daoudi, A., Lamire, M., Levet, J. C. & Noël, H. (1996). J. Solid State Chem.123, 331–336.
  3. Gelato, L. M. & Parthé, E. (1987). J. Appl. Cryst.20, 139–143.
  4. Ijjaali, I., Mitchell, K. & Ibers, J. A. (2004). J. Solid State Chem.177, 760–764.
  5. Julien-Pouzol, M., Jaulmes, S., Mazurier, A. & Guittard, M. (1981). Acta Cryst. B37, 1901–1903.
  6. Palmer, D. (2008). CrystalMaker. CrystalMaker Software Ltd, Yarnton, Oxfordshire, England.
  7. Sheldrick, G. M. (2006). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Strobel, S. & Schleid, T. (2004). Z Naturforsch. Teil B., 59, 985–991.
  10. Wastin, F., Spirlet, J. C. & Rebizant, J. (1995). J. Alloys Compd, 219, 232–237.
  11. Wojakowski, A. (1985). J. Less Common Met.107, 155–158.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680900395X/wm2219sup1.cif

e-65-00i14-sup1.cif (13.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680900395X/wm2219Isup2.hkl

e-65-00i14-Isup2.hkl (67.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES