Abstract
In the title molecule, C13H10N2O4, the dihedral angle between the mean planes of the benzene and phenolate rings is 21.6 (4)°. The nitro O atoms are twisted slightly out of the plane of the ring to which the nitro group is attached [dihedral angle 8.4 (3)°]. The amine group forms an intramolecular hydrogen bond with both nearby O atoms. An extended π delocalization throughout the entire molecule exists producing a zwitterionic effect in this region of the molecule. The shortened C—O bond [1.2997 (15) Å] in concert with the slightly longer C—OH bond [1.3310 (16) Å] provide evidence for this effect. The crystal packing is influenced by strong intermolecular O—H⋯O hydrogen bonding. As a result, molecules are linked into an infinite zigzag chain running along the b axis. A MOPAC PM3 calculation provides support to these observations.
Related literature
For related structures, see: Ersanlı et al. (2003 ▶); Odabaşoğlu et al. (2006 ▶); Jasinski et al. (2007 ▶); Elerman et al. (1995 ▶); Hijji et al. (2008 ▶, 2009 ▶). For the application of Schiff bases in organic synthesis, see: Barba et al. (2001 ▶); Rodriguez et al. (2005 ▶). For details of the MOPAC PM3 calculation, see: Schmidt & Polik (2007 ▶).
Experimental
Crystal data
C13H10N2O4
M r = 258.23
Monoclinic,
a = 7.3949 (3) Å
b = 9.1058 (4) Å
c = 17.2734 (6) Å
β = 96.387 (4)°
V = 1155.91 (8) Å3
Z = 4
Mo Kα radiation
μ = 0.11 mm−1
T = 296 (2) K
0.45 × 0.36 × 0.21 mm
Data collection
Oxford Diffraction Gemini R diffractometer
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007 ▶) T min = 0.950, T max = 0.977
16362 measured reflections
3889 independent reflections
2071 reflections with I > 2σ(I)
R int = 0.045
Refinement
R[F 2 > 2σ(F 2)] = 0.052
wR(F 2) = 0.161
S = 1.01
3889 reflections
173 parameters
H-atom parameters constrained
Δρmax = 0.36 e Å−3
Δρmin = −0.23 e Å−3
Data collection: CrysAlisPro (Oxford Diffraction, 2007 ▶); cell refinement: CrysAlisPro; data reduction: CrysAlisRed (Oxford Diffraction, 2007 ▶); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: SHELXTL (Sheldrick, 2008 ▶); software used to prepare material for publication: SHELXTL.
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809001007/bt2849sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809001007/bt2849Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O1—H1O⋯O4i | 0.82 | 1.72 | 2.5407 (13) | 175 |
| N2—H2B⋯O4 | 0.86 | 1.91 | 2.5973 (15) | 135 |
| N2—H2B⋯O1 | 0.86 | 2.34 | 2.6532 (14) | 102 |
| C2—H2A⋯O4i | 0.93 | 2.60 | 3.2233 (18) | 125 |
| C13—H13A⋯O2ii | 0.93 | 2.65 | 3.5555 (19) | 163 |
Symmetry codes: (i)
; (ii)
.
Acknowledgments
Support to YMH and BB was provided by DOE-CETBR grant No. DE—FG02–03ER63580 and NSF–RISE Award No. HRD-0627276. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.
supplementary crystallographic information
Comment
Schiff bases have extensive application in industry. Much interest in these compounds and their complexes is due to their anti-tumor activities. The boronate complex derivative of the title compound (Barba et al. 2001) displays it in the phenol-imine form, which can undergo an imine Diels-Alder reaction to produce a 3,4-dihydroquinoline (Rodriguez et al., 2005). Compounds of this type can also be used as anion sensors in acetonitrile (Hijji et al., 2008) and tend to exist in the keto-amine form, which is generally favored over the phenol-imine form in the solid state. While the keto-amine tautomer is commonly produced in these complexes (Ersanlı et al., 2003; Odabaşoğlu et al., 2006; Elerman et al., 1995; Jasinski et al., 2007), the title compound adapts a phenol-iminio tautomer as the stable form which is confirmed by the X-ray data and in agreement with that found via NMR data in DMSO solution. The stability of this form may be enhanced by the electronic effect of the nitro group. The dark color in the solid state is generally an indication of increased conjugation, while the yellow colored solutions, as in acetonitrile or anhydrous DMSO, may be due to conversion to the phenol-iminio tautomer.
The title molecule, C13H10N2O4, consists of a 2-hydroxy-5-nitrophenyliminio group and a phenolate group bonded to a methylene carbon atom with both of the planar six-membered rings twisted from the plane of the molecule. The dihedral angle between the mean planes of the phenyl and phenolate rings measures 21.6 (4)°. The nitro oxygen atoms are twisted slightly out of the plane of the molecule [torsion angles = 170.80 (13) (O2—N1—C4—C5); -7.5 (2)° (O3—N1—C4—C5); -5.8 (2)° (O2—N1—C4—C3); 175.92 (14)° (O3—N1—C4—C3)]. The phenolate (O4) and hydroxy (O1) oxygen atoms are essentially in the plane of the molecule [torsion angles = -179.51 (13)° (O4—C9—C10—C11); -3.2 (2)° (O4—C9—C8—C7); -178.63 (14)° (O1—C1—C2—C3); 178.83 (12)° (O1—C1—C6—C5)]. The iminio group forms an intramolecular hydrogen bond with each of the nearby oxygen atoms (O1 and O4) (see Fig. 1 and Table 1). There appears to be an extended π delocalization effect throughout the entire molecule producing a zwitterionic effect in this region of the molecule similar to that seen in a close structurally related dinitro compound (Hijji et al., 2009). The shortened C9—O4 bond (1.2997 (15) Å in concert with the slightly longer C1—O1 bond (1.3310 (16) Å) provide structural evidence of this effect in a similar fashion.
Crystal packing is influenced by extensive strong intermolecular O—H···O hydrogen bonding between the phenolate and hydroxy oxygen atoms (O4 & O1) and their respective hydrogen atoms within the π delocalized region (O1—H10···O4; 2.540 (7) Å) of the molecule. Additional weak intermolecular C—H···O hydrogen bond interactions occur involving the phenyl (C2) and phenolate (C13) groups, respectively. All of the hydrogen bond interactions are summarized in Table 1. A s a result the molecules are linked into an infinite polymeric chain diagonally along the [101] plane of the unit cell in an alternate inverted pattern (Fig. 2). In addition, weak Cg2–Cg2 (3.895 (2) Å; slippage = 1.09 (2)°; -x, 2 - y, -z) π-π stacking ring interactions and N1–O2···Cg2 π-ring interactions (3.648 (4) Å; x, -1 + y, z) also occur where Cg2 = center of gravity of the C8–C13 ring.
After a MOPAC PM3 calculation [Parameterized Model 3 approximation together with the Hartree-Fock closed-shell (restricted) wavefunction was used and minimizations were teminnated at an r.m.s. gradient of less than 0.01 kJ mol-1 Å-1] of the zwitterionic form with WebMO Pro (Schmidt & Polik, 2007), the mean planes between the phenyl and phenolate rings changes to 3.7 (7)°, producing a significantly less twisted, nearly planar, molecule than that observed in the crystalline environment. It is apparent that the extensive hydrogen bonding, π-π stacking and π-ring intermolecular interactions significantly influence crystal packing with this molecule.
Experimental
2-Amino-4-nitrophenol (0.15 g, 1 mmol) and salicylaldehyde (0.12 g, 1 mmol) were mixed neat in a loosely capped vial, forming a light orange solid. The mixture was heated at full power in a conventional spacemaker II microwave oven for two minutes forming a deep orange product. The reaction mixture was recrystallized from a 1:1 mixture (v:v) of methanol and diethyl ether affording 0.18 g, 67% yield of the title compound as dark purple crystals. The physical data is in agreement with literature (Barba et al., 2001), mp 505–508 K, GC/MS, m/z: 258 (M+), 211,165, 77, 51. 1H-NMR (400 MHz, DMSO-d6) δ (p.p.m.): 13.21(s, 1H), 11.41(s, 1H), 9.10(s, 1H), 8.28(d, J = 2.7 Hz, 1H), 8.07 (dd, J = 8.87, 2.7 Hz, 1H), 7.70 (dd, J = 7.65, 1.3 Hz, 1H), 7.44 (dt, J = 7.6,1.5 Hz, 1H), 7.14 (d, J = 9.03 Hz, 1H), 6.98 (t, J = 7.7, H), 6.96 (d, J = 8.5 Hz, 1H). 13C-NMR (100 MHz, DMSO-d6) δ (p.p.m.): 164.4 (CH), 160.5 (C), 157.6 (C), 139.9 (C), 135.7 (C), 133.5 (CH), 132.7 (CH), 123.7 (CH), 119.4 (CH), 117.2 (CH), 116.7 (CH), 116.3 (CH), 115.3 (CH).
Refinement
All H atoms could be seen in a difference fourier map. Nevertheless, they were placed in their calculated positions and then refined using the riding model with O—H = 0.82, N—H = 0.86 and C—H = 0.93 Å, and with Uiso(H) = 1.18–1.20Ueq(C, N, O).
Figures
Fig. 1.
The molecular structure of C13H10N2O4, showing the atom numbering scheme and 50% probability displacement ellipsoids. Dashed lines indicate intramolecular N–H···O hydrogen bonds.
Fig. 2.
The molecular packing for C13H10N2O4 viewed down the b axis. Dashed lines indicate intermolecular O–H···O, C–H···O and intramolecular N–H···O hydrogen bonds.
Crystal data
| C13H10N2O4 | F(000) = 536 |
| Mr = 258.23 | Dx = 1.484 Mg m−3 |
| Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -P 2ybc | Cell parameters from 5321 reflections |
| a = 7.3949 (3) Å | θ = 4.6–32.6° |
| b = 9.1058 (4) Å | µ = 0.11 mm−1 |
| c = 17.2734 (6) Å | T = 296 K |
| β = 96.387 (4)° | Prism, yellow |
| V = 1155.91 (8) Å3 | 0.45 × 0.36 × 0.21 mm |
| Z = 4 |
Data collection
| Oxford Diffraction Gemini R diffractometer | 3889 independent reflections |
| Radiation source: fine-focus sealed tube | 2071 reflections with I > 2σ(I) |
| graphite | Rint = 0.045 |
| Detector resolution: 10.5081 pixels mm-1 | θmax = 32.5°, θmin = 4.6° |
| φ and ω scans | h = −10→11 |
| Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) | k = −12→13 |
| Tmin = 0.950, Tmax = 0.977 | l = −25→24 |
| 16362 measured reflections |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.052 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.161 | H-atom parameters constrained |
| S = 1.01 | w = 1/[σ2(Fo2) + (0.0893P)2] where P = (Fo2 + 2Fc2)/3 |
| 3889 reflections | (Δ/σ)max < 0.001 |
| 173 parameters | Δρmax = 0.36 e Å−3 |
| 0 restraints | Δρmin = −0.23 e Å−3 |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| O1 | 0.07674 (16) | 0.78106 (11) | 0.74658 (6) | 0.0506 (3) | |
| H1O | 0.0213 | 0.8253 | 0.7779 | 0.061* | |
| O2 | 0.56661 (19) | 1.27359 (14) | 0.63179 (8) | 0.0696 (4) | |
| O3 | 0.64896 (19) | 1.09097 (16) | 0.56567 (8) | 0.0797 (5) | |
| O4 | 0.10989 (15) | 0.42056 (11) | 0.66269 (5) | 0.0475 (3) | |
| N1 | 0.56076 (17) | 1.14379 (16) | 0.61491 (7) | 0.0494 (3) | |
| N2 | 0.25299 (15) | 0.67241 (13) | 0.63378 (6) | 0.0367 (3) | |
| H2B | 0.2098 | 0.6146 | 0.6665 | 0.044* | |
| C7 | 0.27637 (17) | 0.61689 (15) | 0.56560 (7) | 0.0353 (3) | |
| H7A | 0.3301 | 0.6755 | 0.5304 | 0.042* | |
| C1 | 0.19513 (18) | 0.87143 (15) | 0.71860 (7) | 0.0372 (3) | |
| C2 | 0.2271 (2) | 1.01473 (16) | 0.74472 (8) | 0.0433 (4) | |
| H2A | 0.1653 | 1.0508 | 0.7847 | 0.052* | |
| C3 | 0.3485 (2) | 1.10366 (16) | 0.71228 (8) | 0.0430 (4) | |
| H3A | 0.3688 | 1.1995 | 0.7297 | 0.052* | |
| C4 | 0.44018 (19) | 1.04784 (16) | 0.65308 (8) | 0.0383 (3) | |
| C5 | 0.41405 (19) | 0.90591 (15) | 0.62591 (8) | 0.0382 (3) | |
| H5A | 0.4778 | 0.8706 | 0.5863 | 0.046* | |
| C6 | 0.29168 (18) | 0.81772 (15) | 0.65867 (7) | 0.0346 (3) | |
| C8 | 0.22475 (18) | 0.47420 (15) | 0.54298 (7) | 0.0330 (3) | |
| C9 | 0.13664 (18) | 0.37863 (15) | 0.59295 (7) | 0.0357 (3) | |
| C10 | 0.0795 (2) | 0.23976 (16) | 0.56283 (8) | 0.0430 (4) | |
| H10A | 0.0199 | 0.1758 | 0.5934 | 0.052* | |
| C11 | 0.1105 (2) | 0.19794 (16) | 0.48953 (9) | 0.0464 (4) | |
| H11A | 0.0724 | 0.1056 | 0.4714 | 0.056* | |
| C12 | 0.1984 (2) | 0.29107 (17) | 0.44103 (8) | 0.0443 (4) | |
| H12A | 0.2196 | 0.2601 | 0.3915 | 0.053* | |
| C13 | 0.25243 (19) | 0.42681 (15) | 0.46681 (8) | 0.0380 (3) | |
| H13A | 0.3082 | 0.4895 | 0.4342 | 0.046* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| O1 | 0.0648 (7) | 0.0424 (6) | 0.0510 (6) | −0.0085 (5) | 0.0346 (5) | −0.0106 (5) |
| O2 | 0.0823 (9) | 0.0445 (8) | 0.0842 (9) | −0.0225 (7) | 0.0183 (7) | −0.0007 (6) |
| O3 | 0.0888 (10) | 0.0751 (10) | 0.0847 (9) | −0.0308 (8) | 0.0520 (8) | −0.0116 (7) |
| O4 | 0.0642 (7) | 0.0413 (6) | 0.0418 (5) | −0.0029 (5) | 0.0272 (5) | 0.0021 (4) |
| N1 | 0.0507 (8) | 0.0468 (8) | 0.0520 (7) | −0.0143 (6) | 0.0115 (6) | 0.0001 (6) |
| N2 | 0.0446 (6) | 0.0301 (6) | 0.0385 (6) | −0.0019 (5) | 0.0180 (5) | −0.0009 (5) |
| C7 | 0.0367 (7) | 0.0335 (7) | 0.0383 (7) | −0.0011 (6) | 0.0153 (5) | 0.0007 (5) |
| C1 | 0.0465 (8) | 0.0325 (7) | 0.0348 (6) | −0.0015 (6) | 0.0140 (6) | 0.0004 (5) |
| C2 | 0.0530 (9) | 0.0387 (8) | 0.0407 (7) | 0.0013 (7) | 0.0159 (6) | −0.0064 (6) |
| C3 | 0.0518 (9) | 0.0337 (8) | 0.0439 (7) | −0.0056 (6) | 0.0068 (6) | −0.0033 (6) |
| C4 | 0.0412 (7) | 0.0361 (8) | 0.0383 (7) | −0.0059 (6) | 0.0075 (6) | 0.0018 (6) |
| C5 | 0.0422 (8) | 0.0354 (8) | 0.0390 (7) | −0.0021 (6) | 0.0138 (6) | −0.0021 (6) |
| C6 | 0.0407 (7) | 0.0298 (7) | 0.0346 (6) | 0.0003 (6) | 0.0091 (5) | −0.0021 (5) |
| C8 | 0.0347 (6) | 0.0303 (7) | 0.0360 (6) | 0.0010 (5) | 0.0133 (5) | 0.0007 (5) |
| C9 | 0.0378 (7) | 0.0324 (7) | 0.0390 (7) | 0.0034 (6) | 0.0138 (5) | 0.0035 (5) |
| C10 | 0.0466 (8) | 0.0327 (8) | 0.0509 (8) | −0.0040 (6) | 0.0109 (6) | 0.0070 (6) |
| C11 | 0.0552 (9) | 0.0316 (8) | 0.0522 (8) | −0.0028 (7) | 0.0050 (7) | −0.0038 (6) |
| C12 | 0.0551 (9) | 0.0401 (9) | 0.0390 (7) | 0.0018 (7) | 0.0113 (6) | −0.0043 (6) |
| C13 | 0.0434 (7) | 0.0347 (8) | 0.0382 (7) | 0.0007 (6) | 0.0156 (6) | 0.0002 (5) |
Geometric parameters (Å, °)
| O1—C1 | 1.3310 (16) | C3—C4 | 1.3847 (19) |
| O1—H1O | 0.8200 | C3—H3A | 0.9300 |
| O2—N1 | 1.2170 (18) | C4—C5 | 1.3813 (19) |
| O3—N1 | 1.2262 (16) | C5—C6 | 1.3776 (19) |
| O4—C9 | 1.2997 (15) | C5—H5A | 0.9300 |
| N1—C4 | 1.4574 (18) | C8—C13 | 1.4210 (17) |
| N2—C7 | 1.3105 (16) | C8—C9 | 1.4325 (18) |
| N2—C6 | 1.4107 (17) | C9—C10 | 1.414 (2) |
| N2—H2B | 0.8600 | C10—C11 | 1.366 (2) |
| C7—C8 | 1.3977 (19) | C10—H10A | 0.9300 |
| C7—H7A | 0.9300 | C11—C12 | 1.402 (2) |
| C1—C2 | 1.392 (2) | C11—H11A | 0.9300 |
| C1—C6 | 1.4089 (18) | C12—C13 | 1.359 (2) |
| C2—C3 | 1.374 (2) | C12—H12A | 0.9300 |
| C2—H2A | 0.9300 | C13—H13A | 0.9300 |
| C1—O1—H1O | 109.5 | C6—C5—H5A | 120.7 |
| O2—N1—O3 | 122.66 (14) | C4—C5—H5A | 120.7 |
| O2—N1—C4 | 118.75 (13) | C5—C6—C1 | 120.61 (12) |
| O3—N1—C4 | 118.56 (14) | C5—C6—N2 | 122.80 (12) |
| C7—N2—C6 | 126.38 (12) | C1—C6—N2 | 116.58 (12) |
| C7—N2—H2B | 116.8 | C7—C8—C13 | 118.57 (12) |
| C6—N2—H2B | 116.8 | C7—C8—C9 | 121.65 (11) |
| N2—C7—C8 | 123.41 (12) | C13—C8—C9 | 119.70 (12) |
| N2—C7—H7A | 118.3 | O4—C9—C10 | 122.26 (12) |
| C8—C7—H7A | 118.3 | O4—C9—C8 | 120.42 (12) |
| O1—C1—C2 | 123.82 (12) | C10—C9—C8 | 117.32 (12) |
| O1—C1—C6 | 117.37 (12) | C11—C10—C9 | 121.09 (13) |
| C2—C1—C6 | 118.80 (12) | C11—C10—H10A | 119.5 |
| C3—C2—C1 | 121.01 (13) | C9—C10—H10A | 119.5 |
| C3—C2—H2A | 119.5 | C10—C11—C12 | 121.48 (14) |
| C1—C2—H2A | 119.5 | C10—C11—H11A | 119.3 |
| C2—C3—C4 | 118.72 (14) | C12—C11—H11A | 119.3 |
| C2—C3—H3A | 120.6 | C13—C12—C11 | 119.57 (13) |
| C4—C3—H3A | 120.6 | C13—C12—H12A | 120.2 |
| C5—C4—C3 | 122.21 (13) | C11—C12—H12A | 120.2 |
| C5—C4—N1 | 118.47 (13) | C12—C13—C8 | 120.82 (13) |
| C3—C4—N1 | 119.23 (13) | C12—C13—H13A | 119.6 |
| C6—C5—C4 | 118.64 (12) | C8—C13—H13A | 119.6 |
| C6—N2—C7—C8 | −175.95 (12) | C2—C1—C6—N2 | −179.38 (12) |
| O1—C1—C2—C3 | −178.63 (14) | C7—N2—C6—C5 | −22.8 (2) |
| C6—C1—C2—C3 | 0.9 (2) | C7—N2—C6—C1 | 155.85 (13) |
| C1—C2—C3—C4 | −0.4 (2) | N2—C7—C8—C13 | 178.40 (13) |
| C2—C3—C4—C5 | −0.3 (2) | N2—C7—C8—C9 | 1.8 (2) |
| C2—C3—C4—N1 | 176.22 (13) | C7—C8—C9—O4 | −3.2 (2) |
| O2—N1—C4—C5 | 170.80 (13) | C13—C8—C9—O4 | −179.81 (12) |
| O3—N1—C4—C5 | −7.5 (2) | C7—C8—C9—C10 | 176.10 (12) |
| O2—N1—C4—C3 | −5.8 (2) | C13—C8—C9—C10 | −0.49 (19) |
| O3—N1—C4—C3 | 175.92 (14) | O4—C9—C10—C11 | −179.51 (13) |
| C3—C4—C5—C6 | 0.4 (2) | C8—C9—C10—C11 | 1.2 (2) |
| N1—C4—C5—C6 | −176.08 (12) | C9—C10—C11—C12 | −0.6 (2) |
| C4—C5—C6—C1 | 0.1 (2) | C10—C11—C12—C13 | −0.8 (2) |
| C4—C5—C6—N2 | 178.66 (12) | C11—C12—C13—C8 | 1.5 (2) |
| O1—C1—C6—C5 | 178.83 (12) | C7—C8—C13—C12 | −177.54 (13) |
| C2—C1—C6—C5 | −0.7 (2) | C9—C8—C13—C12 | −0.8 (2) |
| O1—C1—C6—N2 | 0.15 (19) |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O1—H1O···O4i | 0.82 | 1.72 | 2.5407 (13) | 175 |
| N2—H2B···O4 | 0.86 | 1.91 | 2.5973 (15) | 135 |
| N2—H2B···O1 | 0.86 | 2.34 | 2.6532 (14) | 102 |
| C2—H2A···O4i | 0.93 | 2.60 | 3.2233 (18) | 125 |
| C13—H13A···O2ii | 0.93 | 2.65 | 3.5555 (19) | 163 |
Symmetry codes: (i) −x, y+1/2, −z+3/2; (ii) −x+1, −y+2, −z+1.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2849).
References
- Barba, V., Cuahutle, D., Santillan, R. & Farfan, N. (2001). Can. J. Chem.79, 1229–1237.
- Elerman, Y., Elmali, A., Atakol, O. & Svoboda, I. (1995). Acta Cryst. C51, 2344–2346.
- Ersanlı, C. C., Albayrak, Ç., Odabaşoǧlu, M. & Erdönmez, A. (2003). Acta Cryst. C59, o601–o602. [DOI] [PubMed]
- Hijji, Y. M., Barare, B., Butcher, R. J. & Jasinski, J. P. (2009). Acta Cryst. E65, o291–o292. [DOI] [PMC free article] [PubMed]
- Hijji, Y. M., Barare, B., Kennedy, A. P. & Butcher, R. (2008). Sensors Actuators B Chem doi:10.1016/j.SnB2008.11.045.
- Jasinski, J. P., Butcher, R. J., Narayana, B., Swamy, M. T. & Yathirajan, H. S. (2007). Acta Cryst. E63, o4566–o4567.
- Odabaşoğlu, M., Albayrak, C. & Büyükgüngör, O. (2006). Acta Cryst. E62, o1094–o1096. [DOI] [PubMed]
- Oxford Diffraction (2007). CrysAlisPro and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
- Rodriguez, M., Ocha, M. E., Santillan, R., Farfan, N. & Barba, V. (2005). J. Organomet. Chem., 690, 2975–2988.
- Schmidt, J. R. & Polik, W. F. (2007). WebMO Pro WebMO, LLC, Holland, MI, USA, available from http://www.webmo.net.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809001007/bt2849sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809001007/bt2849Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


