Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Feb 4;65(Pt 3):o452–o453. doi: 10.1107/S1600536809003511

4-Bromo-N-(di-n-propyl­carbamothioyl)­benzamide

Gün Binzet a, Ulrich Flörke b, Nevzat Külcü a, Hakan Arslan c,d,*
PMCID: PMC2968555  PMID: 21582125

Abstract

The synthesis of the title compound, C14H19BrN2OS, involves the reaction of 4-bromo­benzoyl chloride with potassium thio­cyanate in acetone followed by condensation of the resulting 4-bromo­benzoyl isothio­cyanate with di-n-propyl­amine. Typical thio­urea carbonyl and thio­carbonyl double bonds, as well as shortened C—N bonds, are observed in the title compound. The short C—N bond lengths in the centre of the mol­ecule reveal the effects of resonance in this part of the mol­ecule. The asymmetric unit of the title compound contains two crystallographically independent mol­ecules, A and B. There is very little difference between the bond lengths and angles of these mol­ecules. In mol­ecule B, one di-n-propyl group is twisted in a −anti­periplanar conformation with C—C—C—H = −179.1 (3)° and the other adopts a −synclinal conformation with C—C—C—H = −56.7 (4)°; in mol­ecule A the two di-n-propyl groups are twisted in + and −anti­periplanar conformations, with C—C—C—H = −179.9 (3) and 178.2 (3)°, respectively. In the crystal, the mol­ecules are linked into dimeric pairs via pairs of N—H⋯S hydrogen bonds.

Related literature

For synthesis, see: Özer et al. (2009); Mansuroğlu et al. (2008); Uğur et al. (2006); Arslan et al. (2003b , 2006), and references therein. For general background, see: Koch (2001); El Aamrani et al. (1998, 1999); Arslan et al. (2006, 2007a ,b ). For related compounds, see: Khawar Rauf et al. (2009a ,b ,c ,d ); Arslan et al. (2003a , 2004). For bond-length data, see: Allen et al. (1987).graphic file with name e-65-0o452-scheme1.jpg

Experimental

Crystal data

  • C14H19BrN2OS

  • M r = 343.28

  • Monoclinic, Inline graphic

  • a = 21.104 (3) Å

  • b = 9.6940 (12) Å

  • c = 16.208 (2) Å

  • β = 108.956 (3)°

  • V = 3135.9 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.75 mm−1

  • T = 120 (2) K

  • 0.48 × 0.18 × 0.17 mm

Data collection

  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004) T min = 0.352, T max = 0.652

  • 27091 measured reflections

  • 7470 independent reflections

  • 4686 reflections with I > 2σ(I)

  • R int = 0.074

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.094

  • S = 0.97

  • 7470 reflections

  • 340 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.70 e Å−3

  • Δρmin = −0.71 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809003511/at2717sup1.cif

e-65-0o452-sup1.cif (26.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809003511/at2717Isup2.hkl

e-65-0o452-Isup2.hkl (365.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H1⋯S2 0.896 (15) 2.600 (19) 3.460 (3) 161 (3)
N21—H2⋯S1 0.899 (14) 2.566 (17) 3.452 (3) 169 (2)

Acknowledgments

This work was supported by Mersin University Research Fund [Project Nos. BAP-ECZ-F-TBB-(HA) 2004-3 and BAP-FEF-KB-(NK) 2006-3]. This study is part of the PhD thesis of GB.

supplementary crystallographic information

Comment

Thiourea derivative ligands and their metal complexes have been one of the highlights in coordination chemistry. The thiourea ligands which contain carbonyl and thiocarbonyl groups are used as reactant for extraction of some transition metal ions (Koch, 2001; El Aamrani et al., 1998, 1999). The structures of thiourea derivatives and its metal complexes have been determined during the last years. The title compound derivative acts as a bidentate ligand coordinating through the S atom and the O atom.

The similar structures of these derivatives palladium, nickel, cobalt, and copper complexes and ligands have been determined in previous studies (Özer et al., 2009; Arslan et al., 2003b, 2006; Mansuroğlu et al., 2008; Uğur et al., 2006). The title compound, 4-bromo-N-(di-n-propylcarbamothioyl)benzamide, (I), is another example of our newly synthesized thiourea derivatives that contains both aryl and alkyl groups.

The molecular structure of the title compound is depicted in Fig. 1. The asymmetric unit of the title compound contains two crystallographically independent molecules A (atom numbering 1xx) and B (2xx). There is very little difference between the bond lengths and angles of these molecules.

The typical thiourea carbonyl and thiocarbonyl double bonds as well as shortened C—N bond lengths are observed in the title compound. These bond lengths in the title compound are comparable to those of related structures; 1-(4-chlorobenzoyl)-3-(2,4,6-trichlorophenyl)thiourea (Khawar Rauf et al., 2009b), 1-(3-chlorophenyl)-3-(2,6-dichlorobenzoyl)thiourea (Khawar Rauf et al., 2009d), 1-(3-chlorobenzoyl)-3-(2,3-dimethylphenyl)thiourea (Khawar Rauf et al., 2009c), 1-(2,6-dichlorobenzoyl)-3-(2,3,5,6-tetrachlorophenyl)thiourea (Khawar Rauf et al., 2009a), N'-(4-chlorobenzoyl)-N,N-diphenylthiourea (Arslan et al., 2003a), 1-(2-chloro-benzoyl)-3-p-tolyl-thiourea (Arslan et al., 2004), N,N-dimethyl-N-(2-chlorobenzoyl)thiourea (Arslan et al., 2006), o-ethylbenzoylthiocarbamate (Arslan et al., 2007a), 2-chloro-N-(diethylcarbamothioyl)benzamide (Arslan et al., 2007b). The other bond lengths in (I) show normal values (Allen et al., 1987).

The conformation of the title molecule with respect to the thiocarbonyl and carbonyl moieties is twisted, as reflected by the C101—N11—C108—O1, C108—N11—C101—S1, C108—N11—C101—N12, C201—N21—C208—O2, C208—N21—C201—S2, and C208—N21—C201—N22 torsion angles of 11.9 (5), 110.7 (3), -69.6 (4), -13.6 (5), -109.6 (3), and 70.5 (4)°, respectively. In addition, the difference in the torsion angles can be attributed to the different conformations of the two independent molecules.

The two di-n-propyl groups in independent molecules A (atom numbering 1xx) are twisted in a + and - antiperiplanar conformation with -179.9 (3)° and 178.2 (3)°. In the independent molecule B (atom numbering 2xx), one di-n-propyl group is twisted in a - antiperiplanar conformation with -179.1 (3)° and the other di-n-propyl group adopts a - synclinal conformation with -56.7 (4)°.

The phenyl rings and central thiourea S1—N11—N12—C101 [largest dev. 0.002 (3) Å for C101] and S2—N21—N22—C201 [largest dev. -0.001 (3) Å for C201] fragments are each essentially planar. The dihedral angle between the 4-bromophenyl ring and the plane S1/N11/N12/C101 is 84.88 (15)°, and the dihedral angle between the 4-bromophenyl ring and the plane S2/N21/N22/C201 is 82.53 (16)°.

The molecules of title compound are linked by paired N—H···S hydrogen bonds into centrosymmetric dimers. Details of the symmetry codes and hydrogen bonding are given in Table 1 and Fig. 2.

Experimental

The title compound was prepared with a procedure similar to that reported in the literature (Arslan et al., 2003b; Özer et al., 2009). A solution of 4-bromobenzoyl chloride (0.01 mol) in acetone (50 ml) was added dropwise to a suspension of potassium thiocyanate (0.01 mol) in acetone (30 ml) (Fig. 3). The reaction mixture was heated under reflux for 30 min, and then cooled to room temperature. A solution of di-n-propylamine (0.01 mol) in acetone (10 ml) was added and the resulting mixture was stirred for 2 h. Hydrochloric acid (0.1 N, 300 ml) was added to the solution, which was then filtered. The solid product was washed with water and purifed by recrystallization from an ethanol–dichloromethane mixture (1:2). Anal. Calcd. for C14H19N2OSBr: C, 48.9; H, 5.6; N, 8.2. Found: C, 48.7; H, 5.4; N, 8.4%.

Refinement

H atoms were clearly identified in difference syntheses. H atoms attached to nitrogens were located from a difference Fourier map and refined freely. The rest H atoms refined at idealized positions riding on the C atoms with C—H = 0.95–0.99 Å, and Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

All CH3 H atoms were allowed to rotate but not to tip. For C203 and C204 neither anisotropic refinement nor split model provided successful results, so an isotropic model was used that gave sensible geometries but some electron density residuals nearby.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A packing diagram for (I). Hydrogen bonds are shown as dashed lines.

Fig. 3.

Fig. 3.

The formation of the title compound.

Crystal data

C14H19BrN2OS F(000) = 1408
Mr = 343.28 Dx = 1.454 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 948 reflections
a = 21.104 (3) Å θ = 2.5–26.5°
b = 9.6940 (12) Å µ = 2.75 mm1
c = 16.208 (2) Å T = 120 K
β = 108.956 (3)° Needle, colourless
V = 3135.9 (7) Å3 0.48 × 0.18 × 0.17 mm
Z = 8

Data collection

Bruker SMART APEX diffractometer 7470 independent reflections
Radiation source: sealed tube 4686 reflections with I > 2σ(I)
graphite Rint = 0.074
φ and ω scans θmax = 27.9°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) h = −27→27
Tmin = 0.352, Tmax = 0.652 k = −12→12
27091 measured reflections l = −21→21

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: difference Fourier map
wR(F2) = 0.094 H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.0334P)2] where P = (Fo2 + 2Fc2)/3
7470 reflections (Δ/σ)max = 0.001
340 parameters Δρmax = 1.70 e Å3
2 restraints Δρmin = −0.71 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.721214 (18) 1.21378 (4) 0.60004 (2) 0.03477 (11)
S1 0.83552 (4) 0.37951 (8) 0.86296 (5) 0.02170 (19)
O1 0.93367 (10) 0.7028 (2) 0.81254 (14) 0.0262 (5)
N11 0.84288 (12) 0.5668 (3) 0.74656 (17) 0.0183 (6)
H1 0.7986 (4) 0.576 (3) 0.735 (2) 0.028 (7)*
N12 0.92646 (12) 0.4005 (3) 0.78106 (16) 0.0204 (6)
C101 0.87200 (14) 0.4481 (3) 0.79479 (19) 0.0184 (7)
C102 0.94737 (15) 0.4434 (3) 0.7063 (2) 0.0236 (7)
H10A 0.9965 0.4320 0.7216 0.028*
H10B 0.9368 0.5423 0.6940 0.028*
C103 0.91272 (16) 0.3599 (4) 0.6251 (2) 0.0277 (8)
H10C 0.9227 0.2608 0.6378 0.033*
H10D 0.8637 0.3724 0.6093 0.033*
C104 0.93463 (18) 0.4015 (4) 0.5486 (2) 0.0384 (10)
H10E 0.9111 0.3449 0.4978 0.058*
H10F 0.9831 0.3877 0.5635 0.058*
H10G 0.9239 0.4990 0.5349 0.058*
C105 0.96618 (15) 0.2880 (3) 0.8356 (2) 0.0263 (8)
H10H 0.9928 0.2415 0.8034 0.032*
H10I 0.9353 0.2190 0.8467 0.032*
C106 1.01386 (16) 0.3413 (4) 0.9236 (2) 0.0321 (9)
H10J 0.9868 0.3788 0.9581 0.039*
H10K 1.0402 0.2627 0.9564 0.039*
C107 1.06118 (17) 0.4506 (4) 0.9145 (2) 0.0366 (9)
H10L 1.0897 0.4801 0.9726 0.055*
H10M 1.0356 0.5298 0.8831 0.055*
H10N 1.0893 0.4136 0.8820 0.055*
C108 0.87557 (15) 0.6931 (3) 0.76526 (19) 0.0190 (7)
C109 0.83589 (14) 0.8153 (3) 0.7228 (2) 0.0177 (7)
C110 0.85099 (15) 0.9410 (3) 0.7660 (2) 0.0206 (7)
H11A 0.8851 0.9452 0.8212 0.025*
C111 0.81746 (15) 1.0591 (3) 0.7303 (2) 0.0235 (7)
H11B 0.8271 1.1444 0.7606 0.028*
C112 0.76883 (16) 1.0505 (3) 0.6482 (2) 0.0231 (7)
C113 0.75382 (16) 0.9288 (3) 0.6034 (2) 0.0242 (7)
H11C 0.7211 0.9258 0.5471 0.029*
C114 0.78710 (15) 0.8097 (3) 0.6416 (2) 0.0217 (7)
H11D 0.7764 0.7240 0.6118 0.026*
Br2 0.784401 (18) −0.25845 (4) 0.91522 (2) 0.03427 (11)
S2 0.67033 (4) 0.57023 (9) 0.65301 (5) 0.02282 (19)
O2 0.57058 (10) 0.2585 (2) 0.71095 (15) 0.0286 (5)
N21 0.66312 (12) 0.3906 (3) 0.77447 (17) 0.0205 (6)
H2 0.7080 (3) 0.387 (3) 0.7894 (19) 0.028 (7)*
N22 0.58075 (12) 0.5590 (3) 0.73746 (17) 0.0211 (6)
C201 0.63477 (15) 0.5074 (3) 0.7239 (2) 0.0198 (7)
C202 0.53743 (15) 0.6593 (4) 0.6759 (2) 0.0269 (8)
H20A 0.5640 0.7136 0.6470 0.032*
H20B 0.5167 0.7236 0.7072 0.032*
C203 0.4815 (2) 0.5730 (5) 0.6062 (3) 0.0590 (12)*
H20C 0.5028 0.5082 0.5760 0.071*
H20D 0.4557 0.5184 0.6359 0.071*
C204 0.4363 (2) 0.6658 (5) 0.5424 (3) 0.0759 (15)*
H20E 0.4023 0.6114 0.4990 0.114*
H20F 0.4620 0.7201 0.5133 0.114*
H20G 0.4143 0.7280 0.5723 0.114*
C205 0.55988 (16) 0.5263 (3) 0.8138 (2) 0.0265 (8)
H20H 0.5752 0.4323 0.8348 0.032*
H20I 0.5104 0.5281 0.7965 0.032*
C206 0.58920 (17) 0.6295 (4) 0.8863 (2) 0.0324 (9)
H20J 0.5752 0.7236 0.8643 0.039*
H20K 0.6387 0.6253 0.9045 0.039*
C207 0.56663 (19) 0.6012 (4) 0.9654 (2) 0.0459 (11)
H20L 0.5861 0.6705 1.0105 0.069*
H20M 0.5817 0.5092 0.9885 0.069*
H20N 0.5176 0.6059 0.9477 0.069*
C208 0.62915 (15) 0.2660 (3) 0.7571 (2) 0.0211 (7)
C209 0.66820 (15) 0.1411 (3) 0.7984 (2) 0.0204 (7)
C210 0.65274 (16) 0.0172 (3) 0.7536 (2) 0.0224 (7)
H21A 0.6184 0.0143 0.6985 0.027*
C211 0.68704 (16) −0.1023 (3) 0.7884 (2) 0.0238 (7)
H21B 0.6773 −0.1870 0.7574 0.029*
C212 0.73567 (16) −0.0953 (3) 0.8693 (2) 0.0243 (8)
C213 0.75084 (16) 0.0257 (3) 0.9163 (2) 0.0253 (8)
H21C 0.7836 0.0272 0.9727 0.030*
C214 0.71721 (15) 0.1455 (3) 0.8796 (2) 0.0234 (7)
H21D 0.7278 0.2304 0.9102 0.028*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0403 (2) 0.0273 (2) 0.0392 (2) 0.01111 (16) 0.01621 (18) 0.01217 (16)
S1 0.0196 (4) 0.0208 (5) 0.0249 (4) −0.0010 (3) 0.0076 (4) 0.0011 (3)
O1 0.0162 (12) 0.0206 (13) 0.0367 (14) −0.0004 (9) 0.0017 (11) −0.0033 (10)
N11 0.0116 (13) 0.0164 (15) 0.0267 (15) −0.0002 (11) 0.0060 (12) 0.0009 (12)
N12 0.0174 (14) 0.0166 (15) 0.0272 (15) 0.0022 (11) 0.0073 (12) 0.0000 (12)
C101 0.0158 (16) 0.0162 (17) 0.0204 (16) −0.0021 (13) 0.0017 (13) −0.0050 (13)
C102 0.0209 (17) 0.0221 (19) 0.0317 (19) 0.0003 (14) 0.0137 (15) −0.0016 (15)
C103 0.0283 (19) 0.025 (2) 0.0284 (19) −0.0011 (15) 0.0067 (16) −0.0041 (15)
C104 0.039 (2) 0.048 (3) 0.029 (2) −0.0021 (18) 0.0125 (18) −0.0080 (18)
C105 0.0205 (17) 0.022 (2) 0.035 (2) 0.0064 (14) 0.0067 (15) 0.0009 (15)
C106 0.0219 (18) 0.033 (2) 0.038 (2) 0.0077 (16) 0.0042 (17) 0.0048 (17)
C107 0.0246 (19) 0.040 (2) 0.042 (2) 0.0011 (17) 0.0066 (17) −0.0095 (18)
C108 0.0212 (18) 0.0187 (18) 0.0202 (17) −0.0016 (14) 0.0112 (15) −0.0038 (13)
C109 0.0157 (16) 0.0189 (18) 0.0224 (17) −0.0002 (13) 0.0118 (14) 0.0021 (13)
C110 0.0195 (17) 0.0199 (19) 0.0227 (17) −0.0040 (14) 0.0074 (14) −0.0020 (14)
C111 0.0244 (18) 0.0206 (19) 0.0284 (18) 0.0001 (14) 0.0126 (15) −0.0041 (15)
C112 0.0275 (18) 0.0176 (19) 0.0282 (19) 0.0062 (14) 0.0147 (16) 0.0082 (14)
C113 0.0221 (18) 0.029 (2) 0.0201 (17) 0.0004 (15) 0.0053 (14) 0.0002 (15)
C114 0.0231 (18) 0.0190 (19) 0.0259 (18) −0.0035 (13) 0.0119 (15) −0.0024 (14)
Br2 0.0420 (2) 0.0286 (2) 0.0375 (2) 0.01163 (17) 0.02020 (18) 0.01355 (17)
S2 0.0195 (4) 0.0242 (5) 0.0263 (4) 0.0003 (3) 0.0095 (4) −0.0001 (4)
O2 0.0177 (12) 0.0221 (14) 0.0438 (14) −0.0028 (10) 0.0068 (11) −0.0020 (11)
N21 0.0155 (14) 0.0159 (15) 0.0304 (16) 0.0008 (11) 0.0076 (13) −0.0001 (12)
N22 0.0177 (14) 0.0178 (15) 0.0284 (15) 0.0032 (11) 0.0085 (12) −0.0002 (12)
C201 0.0156 (16) 0.0183 (18) 0.0231 (17) −0.0028 (13) 0.0030 (14) −0.0053 (14)
C202 0.0212 (18) 0.033 (2) 0.0246 (19) 0.0117 (15) 0.0048 (15) 0.0006 (15)
C205 0.0226 (18) 0.026 (2) 0.037 (2) 0.0044 (14) 0.0175 (16) 0.0030 (16)
C206 0.031 (2) 0.040 (2) 0.0271 (19) −0.0021 (17) 0.0097 (16) −0.0020 (17)
C207 0.044 (2) 0.062 (3) 0.036 (2) 0.002 (2) 0.020 (2) −0.001 (2)
C208 0.0196 (17) 0.0200 (19) 0.0270 (17) 0.0001 (14) 0.0121 (15) −0.0032 (14)
C209 0.0196 (17) 0.0163 (18) 0.0287 (18) −0.0016 (13) 0.0123 (15) −0.0001 (14)
C210 0.0209 (18) 0.024 (2) 0.0232 (17) −0.0030 (14) 0.0080 (15) −0.0005 (14)
C211 0.0298 (19) 0.0175 (19) 0.0277 (19) 0.0000 (14) 0.0140 (16) −0.0014 (14)
C212 0.0262 (18) 0.021 (2) 0.0311 (19) 0.0042 (15) 0.0171 (16) 0.0084 (15)
C213 0.0262 (19) 0.025 (2) 0.0249 (18) −0.0016 (15) 0.0079 (15) 0.0005 (15)
C214 0.0271 (19) 0.0182 (19) 0.0278 (19) −0.0034 (14) 0.0130 (16) −0.0031 (15)

Geometric parameters (Å, °)

Br1—C112 1.901 (3) Br2—C212 1.902 (3)
S1—C101 1.676 (3) S2—C201 1.678 (3)
O1—C108 1.220 (3) O2—C208 1.221 (3)
N11—C108 1.389 (4) N21—C208 1.386 (4)
N11—C101 1.415 (4) N21—C201 1.412 (4)
N11—H1 0.896 (15) N21—H2 0.899 (14)
N12—C101 1.323 (4) N22—C201 1.327 (4)
N12—C102 1.478 (4) N22—C205 1.476 (4)
N12—C105 1.481 (4) N22—C202 1.477 (4)
C102—C103 1.515 (4) C202—C203 1.582 (5)
C102—H10A 0.9900 C202—H20A 0.9900
C102—H10B 0.9900 C202—H20B 0.9900
C103—C104 1.512 (4) C203—C204 1.465 (6)
C103—H10C 0.9900 C203—H20C 0.9900
C103—H10D 0.9900 C203—H20D 0.9900
C104—H10E 0.9800 C204—H20E 0.9800
C104—H10F 0.9800 C204—H20F 0.9800
C104—H10G 0.9800 C204—H20G 0.9800
C105—C106 1.543 (4) C205—C206 1.515 (4)
C105—H10H 0.9900 C205—H20H 0.9900
C105—H10I 0.9900 C205—H20I 0.9900
C106—C107 1.495 (5) C206—C207 1.529 (4)
C106—H10J 0.9900 C206—H20J 0.9900
C106—H10K 0.9900 C206—H20K 0.9900
C107—H10L 0.9800 C207—H20L 0.9800
C107—H10M 0.9800 C207—H20M 0.9800
C107—H10N 0.9800 C207—H20N 0.9800
C108—C109 1.484 (4) C208—C209 1.495 (4)
C109—C114 1.384 (4) C209—C214 1.385 (4)
C109—C110 1.390 (4) C209—C210 1.387 (4)
C110—C111 1.371 (4) C210—C211 1.386 (4)
C110—H11A 0.9500 C210—H21A 0.9500
C111—C112 1.394 (4) C211—C212 1.380 (4)
C111—H11B 0.9500 C211—H21B 0.9500
C112—C113 1.367 (4) C212—C213 1.379 (4)
C113—C114 1.388 (4) C213—C214 1.390 (4)
C113—H11C 0.9500 C213—H21C 0.9500
C114—H11D 0.9500 C214—H21D 0.9500
C108—N11—C101 120.0 (2) C208—N21—C201 119.2 (3)
C108—N11—H1 112 (2) C208—N21—H2 117 (2)
C101—N11—H1 116 (2) C201—N21—H2 114 (2)
C101—N12—C102 123.2 (3) C201—N22—C205 124.3 (3)
C101—N12—C105 120.7 (3) C201—N22—C202 120.9 (3)
C102—N12—C105 115.8 (2) C205—N22—C202 114.8 (2)
N12—C101—N11 115.8 (3) N22—C201—N21 115.6 (3)
N12—C101—S1 125.7 (2) N22—C201—S2 125.2 (2)
N11—C101—S1 118.5 (2) N21—C201—S2 119.3 (2)
N12—C102—C103 111.9 (2) N22—C202—C203 106.8 (3)
N12—C102—H10A 109.2 N22—C202—H20A 110.4
C103—C102—H10A 109.2 C203—C202—H20A 110.4
N12—C102—H10B 109.2 N22—C202—H20B 110.4
C103—C102—H10B 109.2 C203—C202—H20B 110.4
H10A—C102—H10B 107.9 H20A—C202—H20B 108.6
C104—C103—C102 112.3 (3) C204—C203—C202 110.1 (4)
C104—C103—H10C 109.1 C204—C203—H20C 109.6
C102—C103—H10C 109.1 C202—C203—H20C 109.6
C104—C103—H10D 109.1 C204—C203—H20D 109.6
C102—C103—H10D 109.1 C202—C203—H20D 109.6
H10C—C103—H10D 107.9 H20C—C203—H20D 108.2
C103—C104—H10E 109.5 C203—C204—H20E 109.5
C103—C104—H10F 109.5 C203—C204—H20F 109.5
H10E—C104—H10F 109.5 H20E—C204—H20F 109.5
C103—C104—H10G 109.5 C203—C204—H20G 109.5
H10E—C104—H10G 109.5 H20E—C204—H20G 109.5
H10F—C104—H10G 109.5 H20F—C204—H20G 109.5
N12—C105—C106 112.2 (3) N22—C205—C206 110.5 (3)
N12—C105—H10H 109.2 N22—C205—H20H 109.5
C106—C105—H10H 109.2 C206—C205—H20H 109.5
N12—C105—H10I 109.2 N22—C205—H20I 109.5
C106—C105—H10I 109.2 C206—C205—H20I 109.5
H10H—C105—H10I 107.9 H20H—C205—H20I 108.1
C107—C106—C105 113.8 (3) C205—C206—C207 111.9 (3)
C107—C106—H10J 108.8 C205—C206—H20J 109.2
C105—C106—H10J 108.8 C207—C206—H20J 109.2
C107—C106—H10K 108.8 C205—C206—H20K 109.2
C105—C106—H10K 108.8 C207—C206—H20K 109.2
H10J—C106—H10K 107.7 H20J—C206—H20K 107.9
C106—C107—H10L 109.5 C206—C207—H20L 109.5
C106—C107—H10M 109.5 C206—C207—H20M 109.5
H10L—C107—H10M 109.5 H20L—C207—H20M 109.5
C106—C107—H10N 109.5 C206—C207—H20N 109.5
H10L—C107—H10N 109.5 H20L—C207—H20N 109.5
H10M—C107—H10N 109.5 H20M—C207—H20N 109.5
O1—C108—N11 122.1 (3) O2—C208—N21 122.1 (3)
O1—C108—C109 122.0 (3) O2—C208—C209 121.8 (3)
N11—C108—C109 115.9 (3) N21—C208—C209 116.2 (3)
C114—C109—C110 119.4 (3) C214—C209—C210 120.0 (3)
C114—C109—C108 122.9 (3) C214—C209—C208 122.3 (3)
C110—C109—C108 117.6 (3) C210—C209—C208 117.7 (3)
C111—C110—C109 121.1 (3) C211—C210—C209 120.5 (3)
C111—C110—H11A 119.4 C211—C210—H21A 119.7
C109—C110—H11A 119.4 C209—C210—H21A 119.7
C110—C111—C112 118.2 (3) C212—C211—C210 118.4 (3)
C110—C111—H11B 120.9 C212—C211—H21B 120.8
C112—C111—H11B 120.9 C210—C211—H21B 120.8
C113—C112—C111 122.0 (3) C213—C212—C211 122.3 (3)
C113—C112—Br1 120.0 (2) C213—C212—Br2 119.5 (3)
C111—C112—Br1 117.9 (2) C211—C212—Br2 118.1 (2)
C112—C113—C114 119.0 (3) C212—C213—C214 118.7 (3)
C112—C113—H11C 120.5 C212—C213—H21C 120.7
C114—C113—H11C 120.5 C214—C213—H21C 120.7
C109—C114—C113 120.2 (3) C209—C214—C213 120.1 (3)
C109—C114—H11D 119.9 C209—C214—H21D 120.0
C113—C114—H11D 119.9 C213—C214—H21D 120.0
C102—N12—C101—N11 −14.7 (4) C205—N22—C201—N21 15.9 (4)
C105—N12—C101—N11 172.2 (3) C202—N22—C201—N21 −165.8 (3)
C102—N12—C101—S1 165.0 (2) C205—N22—C201—S2 −164.0 (2)
C105—N12—C101—S1 −8.1 (4) C202—N22—C201—S2 14.2 (4)
C108—N11—C101—N12 −69.6 (4) C208—N21—C201—N22 70.4 (4)
C108—N11—C101—S1 110.7 (3) C208—N21—C201—S2 −109.6 (3)
C101—N12—C102—C103 −84.6 (4) C201—N22—C202—C203 91.1 (3)
C105—N12—C102—C103 88.8 (3) C205—N22—C202—C203 −90.5 (3)
N12—C102—C103—C104 −179.1 (3) N22—C202—C203—C204 −179.9 (3)
C101—N12—C105—C106 −81.1 (4) C201—N22—C205—C206 91.7 (4)
C102—N12—C105—C106 105.3 (3) C202—N22—C205—C206 −86.6 (3)
N12—C105—C106—C107 −56.6 (4) N22—C205—C206—C207 178.1 (3)
C101—N11—C108—O1 11.9 (4) C201—N21—C208—O2 −13.6 (4)
C101—N11—C108—C109 −169.3 (2) C201—N21—C208—C209 166.7 (3)
O1—C108—C109—C114 147.1 (3) O2—C208—C209—C214 −146.2 (3)
N11—C108—C109—C114 −31.8 (4) N21—C208—C209—C214 33.6 (4)
O1—C108—C109—C110 −30.3 (4) O2—C208—C209—C210 32.2 (4)
N11—C108—C109—C110 150.9 (3) N21—C208—C209—C210 −148.1 (3)
C114—C109—C110—C111 1.3 (4) C214—C209—C210—C211 −1.5 (4)
C108—C109—C110—C111 178.7 (3) C208—C209—C210—C211 −179.9 (3)
C109—C110—C111—C112 −1.6 (4) C209—C210—C211—C212 1.4 (4)
C110—C111—C112—C113 0.4 (5) C210—C211—C212—C213 0.3 (5)
C110—C111—C112—Br1 178.7 (2) C210—C211—C212—Br2 −178.1 (2)
C111—C112—C113—C114 1.2 (5) C211—C212—C213—C214 −1.9 (5)
Br1—C112—C113—C114 −177.1 (2) Br2—C212—C213—C214 176.5 (2)
C110—C109—C114—C113 0.3 (4) C210—C209—C214—C213 −0.1 (4)
C108—C109—C114—C113 −177.0 (3) C208—C209—C214—C213 178.2 (3)
C112—C113—C114—C109 −1.6 (4) C212—C213—C214—C209 1.8 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N11—H1···S2 0.90 (2) 2.60 (2) 3.460 (3) 161 (3)
N21—H2···S1 0.90 (1) 2.57 (2) 3.452 (3) 169 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2717).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Arslan, H., Flörke, U. & Külcü, N. (2003a). Acta Cryst. E59, o641–o642.
  3. Arslan, H., Flörke, U. & Külcü, N. (2004). Turk. J. Chem.28, 673–678.
  4. Arslan, H., Flörke, U. & Külcü, N. (2007a). Spectrochim. Acta A, 67, 936–943. [DOI] [PubMed]
  5. Arslan, H., Flörke, U., Külcü, N. & Binzet, G. (2007b). Spectrochim. Acta A, 68, 1347–1355. [DOI] [PubMed]
  6. Arslan, H., Külcü, N. & Flörke, U. (2003b). Transition Met. Chem.28, 816–819.
  7. Arslan, H., Külcü, N. & Flörke, U. (2006). Spectrochim. Acta A, 64, 1065–1071. [DOI] [PubMed]
  8. Bruker (2002). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  9. El Aamrani, F. Z., Kumar, A., Beyer, L., Cortina, J. L. & Sastre, A. M. (1998). Solvent Extr. Ion Exch.16, 1389–1406.
  10. El Aamrani, F. Z., Kumar, A., Cortina, J. L. & Sastre, A. M. (1999). Anal. Chim. Acta, 382, 205–231.
  11. Khawar Rauf, M., Bolte, M. & Anwar, S. (2009a). Acta Cryst. E65, o249. [DOI] [PMC free article] [PubMed]
  12. Khawar Rauf, M., Bolte, M. & Badshah, A. (2009b). Acta Cryst. E65, o143. [DOI] [PMC free article] [PubMed]
  13. Khawar Rauf, M., Bolte, M. & Badshah, A. (2009c). Acta Cryst. E65, o240. [DOI] [PMC free article] [PubMed]
  14. Khawar Rauf, M., Bolte, M. & Rauf, A. (2009d). Acta Cryst. E65, o234. [DOI] [PMC free article] [PubMed]
  15. Koch, K. R. (2001). Coord. Chem. Rev.216, 473–488.
  16. Mansuroğlu, D. S., Arslan, H., Flörke, U. & Külcü, N. (2008). J. Coord. Chem.61, 3134–3146.
  17. Özer, C. K., Arslan, H., VanDerveer, D. & Binzet, G. (2009). J. Coord. Chem.62, 266–276.
  18. Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  19. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  20. Uğur, D., Arslan, H. & Külcü, N. (2006). Russ. J. Coord. Chem.32, 669–675.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809003511/at2717sup1.cif

e-65-0o452-sup1.cif (26.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809003511/at2717Isup2.hkl

e-65-0o452-Isup2.hkl (365.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES