Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Feb 21;65(Pt 3):o579. doi: 10.1107/S1600536809005558

1,2-Di­hydro­spiro­[carbazole-3(4H),2′-[1,3]dioxolane]

Janni Vester Bjerrum a, Trond Ulven a, Andrew D Bond a,*
PMCID: PMC2968561  PMID: 21582234

Abstract

In the title compound, C14H15NO2, the hydrogenated six-membered ring of the carbazole unit adopts a half-chair conformation and the dioxolane ring points to one side of the carbazole plane. Neighbouring mol­ecules form edge-to-face inter­actions in which the NH group is directed towards an adjacent carbazole unit, with a shortest H⋯C contact of 2.72 Å. These inter­actions arrange the mol­ecules into one-dimensional herringbone-type motifs, which pack so that the methyl­ene groups of the dioxolane ring lie over the face of a neighbouring carbazole unit with a shortest H⋯C contact of 2.85 Å.

Related literature

For background literature and synthesis details, see: Ulven & Kostenis (2006); Urrutia & Rodriguez (1999).graphic file with name e-65-0o579-scheme1.jpg

Experimental

Crystal data

  • C14H15NO2

  • M r = 229.27

  • Monoclinic, Inline graphic

  • a = 9.3781 (6) Å

  • b = 6.1467 (4) Å

  • c = 10.5740 (7) Å

  • β = 115.232 (2)°

  • V = 551.38 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 180 K

  • 0.50 × 0.50 × 0.40 mm

Data collection

  • Bruker–Nonius X8 APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003) T min = 0.812, T max = 0.964

  • 7776 measured reflections

  • 1485 independent reflections

  • 1427 reflections with I > 2σ(I)

  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.080

  • S = 1.05

  • 1485 reflections

  • 154 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809005558/ya2088sup1.cif

e-65-0o579-sup1.cif (17.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809005558/ya2088Isup2.hkl

e-65-0o579-Isup2.hkl (73.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯C1i 0.88 2.72 3.527 (2) 154
C14—H14A⋯C12ii 0.99 2.85 3.518 (3) 126

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We are grateful to the Danish Natural Sciences Research Council and the Carlsberg Foundation for provision of the X-ray equipment.

supplementary crystallographic information

Comment

The title compound is useful as an intermediate in the synthesis of antagonists of the prostaglandin D2 receptor CRTH2 (DP2) (Ulven & Kostenis, 2006).

Experimental

The compound was synthesized as described in Urrutia & Rodriguez (1999).

Refinement

H atoms bound to C atoms were placed in idealized positions with C—H = 0.95 or 0.99 Å and refined as riding with Uiso(H) = 1.2Ueq(C). The methyl group was allowed to rotate about its local threefold axis. The H atom of the NH group was visible in a difference Fourier map but was placed geometrically and refined as riding for the final cycles of refinement with N—H = 0.88 Å and Uiso(H) = 1.2Ueq(N). In the absence of significant anomalous scattering, 1128 Friedel pairs were merged as equivalent data.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound with displacement ellipsoids shown at 50% probability for non-H atoms.

Fig. 2.

Fig. 2.

Projection along b showing interactions between carbazole units (e.g. about the origin), and between dioxolane rings and carbazole units (e.g. at the centre of the unit cell). H atoms are omitted.

Crystal data

C14H15NO2 F(000) = 244
Mr = 229.27 Dx = 1.381 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 5883 reflections
a = 9.3781 (6) Å θ = 2.4–28.4°
b = 6.1467 (4) Å µ = 0.09 mm1
c = 10.5740 (7) Å T = 180 K
β = 115.232 (2)° Block, colourless
V = 551.38 (6) Å3 0.50 × 0.50 × 0.40 mm
Z = 2

Data collection

Bruker–Nonius X8 APEXII CCD diffractometer 1485 independent reflections
Radiation source: fine-focus sealed tube 1427 reflections with I > 2σ(I)
graphite Rint = 0.017
Thin–slice ω and φ scans θmax = 28.4°, θmin = 3.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) h = −12→12
Tmin = 0.812, Tmax = 0.964 k = −8→8
7776 measured reflections l = −11→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0581P)2 + 0.0517P] where P = (Fo2 + 2Fc2)/3
1485 reflections (Δ/σ)max < 0.001
154 parameters Δρmax = 0.33 e Å3
1 restraint Δρmin = −0.16 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.23032 (12) 0.56670 (18) 0.55448 (11) 0.0256 (2)
O2 0.36610 (11) 0.26085 (18) 0.56040 (10) 0.0238 (2)
N1 0.10724 (14) −0.0286 (2) 0.12685 (12) 0.0259 (3)
H1A 0.0579 −0.1545 0.1083 0.031*
C1 0.17592 (15) 0.0682 (3) 0.04893 (14) 0.0240 (3)
C2 0.18695 (18) −0.0023 (3) −0.07194 (15) 0.0321 (3)
H2A 0.1415 −0.1362 −0.1153 0.038*
C3 0.2665 (2) 0.1299 (4) −0.12652 (16) 0.0373 (4)
H3A 0.2752 0.0863 −0.2092 0.045*
C4 0.3344 (2) 0.3267 (3) −0.06233 (18) 0.0368 (4)
H4A 0.3891 0.4134 −0.1017 0.044*
C5 0.32330 (18) 0.3972 (3) 0.05741 (15) 0.0296 (3)
H5A 0.3694 0.5312 0.1000 0.036*
C6 0.24301 (15) 0.2675 (3) 0.11475 (13) 0.0223 (3)
C7 0.21109 (15) 0.2855 (2) 0.23567 (13) 0.0206 (3)
C8 0.25187 (17) 0.4636 (2) 0.34150 (14) 0.0229 (3)
H8A 0.1820 0.5900 0.3001 0.027*
H8B 0.3620 0.5107 0.3687 0.027*
C9 0.23321 (15) 0.3857 (2) 0.47164 (14) 0.0202 (3)
C10 0.08364 (15) 0.2549 (3) 0.43550 (14) 0.0235 (3)
H10A −0.0086 0.3484 0.3823 0.028*
H10B 0.0775 0.2110 0.5231 0.028*
C11 0.07498 (17) 0.0513 (2) 0.34942 (15) 0.0249 (3)
H11A 0.1428 −0.0641 0.4112 0.030*
H11B −0.0347 −0.0034 0.3056 0.030*
C12 0.12847 (15) 0.1046 (2) 0.23882 (13) 0.0217 (3)
C13 0.39081 (17) 0.6225 (3) 0.63924 (16) 0.0275 (3)
H13A 0.4055 0.6671 0.7340 0.033*
H13B 0.4255 0.7426 0.5965 0.033*
C14 0.48246 (17) 0.4138 (3) 0.64530 (17) 0.0303 (3)
H14A 0.5615 0.4393 0.6079 0.036*
H14B 0.5372 0.3606 0.7427 0.036*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0236 (5) 0.0230 (5) 0.0319 (5) 0.0007 (4) 0.0134 (4) −0.0055 (4)
O2 0.0198 (4) 0.0193 (5) 0.0280 (5) 0.0008 (4) 0.0061 (4) 0.0010 (4)
N1 0.0248 (6) 0.0226 (6) 0.0263 (6) −0.0051 (5) 0.0071 (5) −0.0031 (5)
C1 0.0195 (6) 0.0260 (7) 0.0206 (6) 0.0007 (5) 0.0029 (5) 0.0009 (5)
C2 0.0297 (7) 0.0371 (9) 0.0223 (6) 0.0005 (7) 0.0042 (5) −0.0049 (6)
C3 0.0367 (8) 0.0505 (11) 0.0229 (6) 0.0035 (8) 0.0110 (6) 0.0002 (7)
C4 0.0379 (8) 0.0461 (10) 0.0293 (7) −0.0009 (8) 0.0171 (7) 0.0055 (7)
C5 0.0315 (7) 0.0307 (7) 0.0266 (6) −0.0033 (7) 0.0123 (6) 0.0037 (6)
C6 0.0200 (5) 0.0221 (6) 0.0209 (6) 0.0013 (5) 0.0049 (5) 0.0021 (5)
C7 0.0188 (5) 0.0195 (6) 0.0217 (6) 0.0003 (5) 0.0069 (5) 0.0024 (5)
C8 0.0271 (6) 0.0168 (6) 0.0263 (6) −0.0022 (5) 0.0130 (5) 0.0012 (5)
C9 0.0192 (5) 0.0169 (6) 0.0251 (6) 0.0009 (5) 0.0100 (5) −0.0009 (5)
C10 0.0191 (6) 0.0245 (7) 0.0283 (6) −0.0021 (5) 0.0113 (5) 0.0002 (6)
C11 0.0246 (6) 0.0212 (7) 0.0303 (7) −0.0056 (5) 0.0128 (5) −0.0005 (5)
C12 0.0186 (5) 0.0195 (6) 0.0239 (6) −0.0004 (5) 0.0062 (5) 0.0009 (5)
C13 0.0284 (7) 0.0233 (7) 0.0283 (6) −0.0032 (6) 0.0099 (6) −0.0020 (5)
C14 0.0227 (6) 0.0304 (8) 0.0323 (7) −0.0011 (6) 0.0065 (6) −0.0065 (6)

Geometric parameters (Å, °)

O1—C9 1.4234 (17) C7—C12 1.3639 (19)
O1—C13 1.4270 (17) C7—C8 1.4936 (19)
O2—C9 1.4233 (16) C8—C9 1.5358 (18)
O2—C14 1.4303 (18) C8—H8A 0.990
N1—C1 1.3785 (19) C8—H8B 0.990
N1—C12 1.3822 (18) C9—C10 1.5177 (18)
N1—H1A 0.880 C10—C11 1.529 (2)
C1—C2 1.395 (2) C10—H10A 0.990
C1—C6 1.417 (2) C10—H10B 0.990
C2—C3 1.384 (3) C11—C12 1.4922 (18)
C2—H2A 0.950 C11—H11A 0.990
C3—C4 1.400 (3) C11—H11B 0.990
C3—H3A 0.950 C13—C14 1.530 (2)
C4—C5 1.383 (2) C13—H13A 0.990
C4—H4A 0.950 C13—H13B 0.990
C5—C6 1.400 (2) C14—H14A 0.990
C5—H5A 0.950 C14—H14B 0.990
C6—C7 1.4364 (18)
C9—O1—C13 106.42 (10) O2—C9—C10 109.62 (11)
C9—O2—C14 106.18 (11) O1—C9—C10 108.13 (11)
C1—N1—C12 108.84 (12) O2—C9—C8 110.90 (10)
C1—N1—H1A 125.6 O1—C9—C8 110.32 (11)
C12—N1—H1A 125.6 C10—C9—C8 112.68 (11)
N1—C1—C2 130.52 (15) C9—C10—C11 113.10 (11)
N1—C1—C6 107.60 (12) C9—C10—H10A 109.0
C2—C1—C6 121.87 (14) C11—C10—H10A 109.0
C3—C2—C1 117.59 (16) C9—C10—H10B 109.0
C3—C2—H2A 121.2 C11—C10—H10B 109.0
C1—C2—H2A 121.2 H10A—C10—H10B 107.8
C2—C3—C4 121.30 (15) C12—C11—C10 109.68 (12)
C2—C3—H3A 119.3 C12—C11—H11A 109.7
C4—C3—H3A 119.3 C10—C11—H11A 109.7
C5—C4—C3 121.20 (16) C12—C11—H11B 109.7
C5—C4—H4A 119.4 C10—C11—H11B 109.7
C3—C4—H4A 119.4 H11A—C11—H11B 108.2
C4—C5—C6 118.84 (16) C7—C12—N1 109.75 (12)
C4—C5—H5A 120.6 C7—C12—C11 125.61 (13)
C6—C5—H5A 120.6 N1—C12—C11 124.58 (13)
C5—C6—C1 119.19 (13) O1—C13—C14 104.37 (12)
C5—C6—C7 134.15 (14) O1—C13—H13A 110.9
C1—C6—C7 106.65 (12) C14—C13—H13A 110.9
C12—C7—C6 107.16 (13) O1—C13—H13B 110.9
C12—C7—C8 123.08 (12) C14—C13—H13B 110.9
C6—C7—C8 129.75 (12) H13A—C13—H13B 108.9
C7—C8—C9 110.64 (11) O2—C14—C13 105.08 (11)
C7—C8—H8A 109.5 O2—C14—H14A 110.7
C9—C8—H8A 109.5 C13—C14—H14A 110.7
C7—C8—H8B 109.5 O2—C14—H14B 110.7
C9—C8—H8B 109.5 C13—C14—H14B 110.7
H8A—C8—H8B 108.1 H14A—C14—H14B 108.8
O2—C9—O1 104.87 (11)
C12—N1—C1—C2 179.41 (15) C13—O1—C9—O2 36.02 (13)
C12—N1—C1—C6 0.36 (15) C13—O1—C9—C10 152.93 (12)
N1—C1—C2—C3 −178.93 (15) C13—O1—C9—C8 −83.44 (13)
C6—C1—C2—C3 0.0 (2) C7—C8—C9—O2 79.85 (14)
C1—C2—C3—C4 0.4 (3) C7—C8—C9—O1 −164.41 (11)
C2—C3—C4—C5 −0.6 (3) C7—C8—C9—C10 −43.46 (16)
C3—C4—C5—C6 0.3 (3) O2—C9—C10—C11 −64.65 (14)
C4—C5—C6—C1 0.2 (2) O1—C9—C10—C11 −178.44 (11)
C4—C5—C6—C7 178.70 (16) C8—C9—C10—C11 59.37 (16)
N1—C1—C6—C5 178.86 (13) C9—C10—C11—C12 −42.89 (16)
C2—C1—C6—C5 −0.3 (2) C6—C7—C12—N1 0.49 (15)
N1—C1—C6—C7 −0.06 (15) C8—C7—C12—N1 179.18 (12)
C2—C1—C6—C7 −179.21 (13) C6—C7—C12—C11 177.82 (13)
C5—C6—C7—C12 −178.94 (16) C8—C7—C12—C11 −3.5 (2)
C1—C6—C7—C12 −0.27 (14) C1—N1—C12—C7 −0.54 (15)
C5—C6—C7—C8 2.5 (3) C1—N1—C12—C11 −177.90 (13)
C1—C6—C7—C8 −178.84 (13) C10—C11—C12—C7 16.12 (19)
C12—C7—C8—C9 16.67 (18) C10—C11—C12—N1 −166.94 (12)
C6—C7—C8—C9 −164.96 (13) C9—O1—C13—C14 −22.68 (15)
C14—O2—C9—O1 −34.81 (13) C9—O2—C14—C13 20.17 (14)
C14—O2—C9—C10 −150.69 (12) O1—C13—C14—O2 1.51 (16)
C14—O2—C9—C8 84.26 (13)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···C1i 0.88 2.72 3.527 (2) 154
C14—H14A···C12ii 0.99 2.85 3.518 (3) 126

Symmetry codes: (i) −x, y−1/2, −z; (ii) −x+1, y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YA2088).

References

  1. Bruker (2003). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Sheldrick, G. M. (2003). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Ulven, T. & Kostenis, E. (2006). Curr. Top. Med. Chem.6, 1427–1444. [DOI] [PubMed]
  6. Urrutia, A. & Rodriguez, J. G. (1999). Tetrahedron, 55, 11095–11108.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809005558/ya2088sup1.cif

e-65-0o579-sup1.cif (17.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809005558/ya2088Isup2.hkl

e-65-0o579-Isup2.hkl (73.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES