Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Feb 18;65(Pt 3):o539–o540. doi: 10.1107/S1600536809004954

2-[(4-tert-Butyl­anilino)(phen­yl)meth­yl]cyclo­hexa­none

Hoong-Kun Fun a,*, Suchada Chantrapromma b,, Sankappa Rai c, Prakash Shetty d, Arun M Isloor e
PMCID: PMC2968565  PMID: 21582199

Abstract

In the mol­ecule of the title compound, C23H29NO, the cyclo­hexa­none ring has been distorted from the standard chair conformation by the ketone group such that part of the ring is almost flat. The remaining [(4-tert-butyl­anilino)(phen­yl)meth­yl] portion of the mol­ecule is in an equatorial position on the cyclo­hexa­none ring. The dihedral angle between the two benzene rings is 81.52 (8)°. In the crystal packing, mol­ecules are linked by N—H⋯O hydrogen bonds into infinite one-dimensional chains along the a axis and these chains are stacked down the c axis. The crystal structure is further stabilized by weak C—H⋯O and C—H⋯π inter­actions.

Related literature

For values of bond lengths, see: Allen et al. (1987). For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For information on the Mannich reaction, see: Kobayashi & Ishitani (1999); Bohme & Haake (1976). For background to the bioactivity and applications of beta-amino carbonyl compounds, see, for example: Arend et al. (1988); Isloor, Sunil et al. (2009); Isloor, Kalluraya et al. (2009); Jadhav et al. (2008); Kalluraya et al. (2001). For puckering parameters, see: Cremer & Pople, (1975). For the stability of the temperature controller, see Cosier & Glazer (1986).graphic file with name e-65-0o539-scheme1.jpg

Experimental

Crystal data

  • C23H29NO

  • M r = 335.47

  • Triclinic, Inline graphic

  • a = 6.5315 (2) Å

  • b = 12.3946 (3) Å

  • c = 12.8853 (3) Å

  • α = 62.973 (1)°

  • β = 86.347 (2)°

  • γ = 85.103 (2)°

  • V = 925.46 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 100 K

  • 0.52 × 0.41 × 0.11 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.953, T max = 0.992

  • 17722 measured reflections

  • 4449 independent reflections

  • 3584 reflections with I > 2σ(I)

  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.124

  • S = 1.07

  • 4449 reflections

  • 233 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809004954/sj2573sup1.cif

e-65-0o539-sup1.cif (22.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809004954/sj2573Isup2.hkl

e-65-0o539-Isup2.hkl (218KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1i 0.89 (2) 2.35 (2) 3.2050 (16) 161.6 (19)
C9—H9A⋯O1 0.93 2.59 3.1146 (19) 116
C2—H2ACg1ii 0.97 2.60 3.4992 (19) 155
C23—H23CCg1iii 0.96 2.99 3.747 (2) 137

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic. Cg1 is the centroid of the C14–C19 ring.

Acknowledgments

AMI is grateful to the Director, NITK, Surathkal, India, for providing research facilities. SR thanks Dr Gautam Das, Syngene International Ltd, Bangalore, India, for allocation of research resources. The authors also thank the Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

Mannich reactions are among the most important carbon-carbon bond forming reactions in organic synthesis (Kobayashi & Ishitani, 1999). They provide beta-amino carbonyl compounds, which are important synthetic intermediates for various pharmaceuticals and natural products (Arend et al., 1988). They exhibit wide variety of pharmaceutical properties such as anti cancer (Isloor, Sunil et al., 2009), analgesic (Isloor, Kalluraya et al., 2009), anti-inflammatory (Jadhav et al., 2008), antimicrobial (Kalluraya et al., 2001) activities. The increasing popularity of the Mannich reaction has been fueled by the ubiquitous nature of nitrogen containing compounds in drugs and natural products (Bohme & Haake, 1976). Prompted by the biological activity of these derivatives, we have synthesized the title compound (I) and report its structure here, Fig 1. The cyclohexanone ring has been distorted from the standard chair conformation by the ketone group such that the C2 C1 O1 C6 part of the ring is almost flat with puckering parameter Q = 0.5181 (16)Å, and θ = 159.23 (18)° and φ = 9.3 (5)° (Cremer & Pople, 1975). The [4-(tert-butyl)anilino](phenyl)methyl substituent group is equatorially attached to the ring at atom C6 with torsion angles C5–C6–C7–C8 = -57.80 (16)° and C5–C6–C7–N1 = 69.13 (15)°. The two benzene rings are nearly perpendicular to each other with a dihedral angle of 81.52 (8)° between them. The bond distances have normal values (Allen et al., 1987).

A weak intramolecular C9—H9A···O1 interaction generates an S(7) ring motif (Bernstein et al., 1995) (Table 1) and effects the solid state conformation of the molecule. In the crystal structure N—H···O hydrogen bonds (Table 1, Fig. 2) link the molecules into infinite one-dimensional chains along the a axis and these chains are stacked down the c axis. The crystal is further stabilized by weak C—H···O and C—H···π interactions (Table 1); Cg1 is the centroid of the C14–C19 ring (Table 1).

Experimental

The title compound was obtained by vigorously stirring a solution of cyclohexanone (0.5 g, 5.0 mmol), benzaldehyde (0.53 g, 5.0 mmol) and 4-tert-butylaniline (0.75 g, 5.0 mmol) in dry acetonitrile (5 ml). Trifluoro acetic acid (0.57 g, 5 mmol) was then added. The reaction mixture was stirred at room temperature for 2 h. After standing for 1 hr, the solvent was removed and the crude product was purified by column chromatography using ethyl acetate and petroleum ether (1:1 v:v) as eluants. The product was further recrystalized using 10 ml of hot ethanol. The yield was 1 g (58%), M.p 439–441 K.

Refinement

The amine H atom was located in a difference map and refined isotropically. The remaining H atoms were placed in calculated positions with d(C—H) = 0.93 Å, Uiso=1.2Ueq(C) for aromatic, 0.98 Å, Uiso=1.2Ueq(C) for CH, 0.97 Å, Uiso=1.2Ueq(C) for CH2 and 0.96 Å, Uiso = 1.5Ueq(C) for CH3 atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.72 Å from C8 and the deepest hole is located at 1.03 Å from C16.

Figures

Fig. 1.

Fig. 1.

The structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2.

Fig. 2.

The packing diagram of (I), viewed along the c axis, showing molecular chains along the a axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C23H29NO Z = 2
Mr = 335.47 F(000) = 364
Triclinic, P1 Dx = 1.204 Mg m3
Hall symbol: -P 1 Melting point = 439–441 K
a = 6.5315 (2) Å Mo Kα radiation, λ = 0.71073 Å
b = 12.3946 (3) Å Cell parameters from 4449 reflections
c = 12.8853 (3) Å θ = 1.8–28.0°
α = 62.973 (1)° µ = 0.07 mm1
β = 86.347 (2)° T = 100 K
γ = 85.103 (2)° Plate, colorless
V = 925.46 (4) Å3 0.52 × 0.41 × 0.11 mm

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 4449 independent reflections
Radiation source: fine-focus sealed tube 3584 reflections with I > 2σ(I)
graphite Rint = 0.027
Detector resolution: 8.33 pixels mm-1 θmax = 28.0°, θmin = 1.8°
ω scans h = −8→8
Absorption correction: multi-scan (SADABS; Bruker, 2005) k = −16→16
Tmin = 0.953, Tmax = 0.992 l = −16→16
17722 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124 H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0465P)2 + 0.607P] where P = (Fo2 + 2Fc2)/3
4449 reflections (Δ/σ)max < 0.001
233 parameters Δρmax = 0.39 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 1.32798 (15) 0.71893 (10) 0.43723 (9) 0.0200 (2)
N1 0.75282 (19) 0.58289 (11) 0.55557 (10) 0.0157 (3)
C1 1.1976 (2) 0.75037 (12) 0.36390 (12) 0.0147 (3)
C2 1.2523 (2) 0.82454 (13) 0.23594 (12) 0.0183 (3)
H2A 1.2974 0.7691 0.2037 0.022*
H2B 1.3680 0.8714 0.2299 0.022*
C3 1.0809 (2) 0.91152 (13) 0.16072 (12) 0.0176 (3)
H3A 1.0622 0.9816 0.1759 0.021*
H3B 1.1192 0.9396 0.0790 0.021*
C4 0.8804 (2) 0.84862 (14) 0.18722 (12) 0.0189 (3)
H4A 0.8968 0.7809 0.1684 0.023*
H4B 0.7727 0.9051 0.1396 0.023*
C5 0.8193 (2) 0.80271 (14) 0.31607 (12) 0.0194 (3)
H5A 0.6875 0.7670 0.3308 0.023*
H5B 0.8042 0.8707 0.3346 0.023*
C6 0.9799 (2) 0.70785 (12) 0.39536 (12) 0.0146 (3)
H6A 0.9781 0.6384 0.3785 0.018*
C7 0.9298 (2) 0.65755 (12) 0.52741 (12) 0.0144 (3)
H7A 1.0474 0.6032 0.5682 0.017*
C8 0.9016 (2) 0.75555 (12) 0.56920 (12) 0.0153 (3)
C9 1.0660 (2) 0.78409 (13) 0.61390 (12) 0.0183 (3)
H9A 1.1930 0.7419 0.6200 0.022*
C10 1.0424 (3) 0.87519 (14) 0.64956 (13) 0.0220 (3)
H10A 1.1535 0.8941 0.6785 0.026*
C11 0.8531 (3) 0.93747 (14) 0.64179 (13) 0.0233 (3)
H11A 0.8377 0.9994 0.6641 0.028*
C12 0.6871 (2) 0.90756 (14) 0.60086 (13) 0.0216 (3)
H12A 0.5592 0.9480 0.5977 0.026*
C13 0.7104 (2) 0.81741 (13) 0.56449 (12) 0.0184 (3)
H13A 0.5980 0.7981 0.5368 0.022*
C14 0.6904 (2) 0.51586 (12) 0.67217 (12) 0.0147 (3)
C15 0.4914 (2) 0.47478 (13) 0.69928 (12) 0.0159 (3)
H15A 0.4004 0.4953 0.6396 0.019*
C16 0.4279 (2) 0.40402 (12) 0.81375 (12) 0.0165 (3)
H16A 0.2945 0.3788 0.8288 0.020*
C17 0.5577 (2) 0.36937 (12) 0.90732 (12) 0.0159 (3)
C18 0.7558 (2) 0.41071 (13) 0.87917 (12) 0.0173 (3)
H18A 0.8472 0.3892 0.9389 0.021*
C19 0.8215 (2) 0.48285 (13) 0.76503 (12) 0.0172 (3)
H19A 0.9541 0.5094 0.7503 0.021*
C20 0.4898 (2) 0.28876 (13) 1.03410 (12) 0.0178 (3)
C21 0.5531 (3) 0.15560 (14) 1.06508 (14) 0.0280 (4)
H21A 0.4873 0.1327 1.0142 0.042*
H21B 0.5121 0.1048 1.1444 0.042*
H21C 0.6996 0.1461 1.0560 0.042*
C22 0.2558 (2) 0.30252 (16) 1.05089 (14) 0.0277 (4)
H22A 0.1889 0.2703 1.0078 0.042*
H22B 0.2133 0.3869 1.0233 0.042*
H22C 0.2191 0.2590 1.1321 0.042*
C23 0.5907 (3) 0.32236 (15) 1.11896 (13) 0.0235 (3)
H23A 0.7367 0.3055 1.1169 0.035*
H23B 0.5370 0.2754 1.1965 0.035*
H23C 0.5616 0.4072 1.0966 0.035*
H1N1 0.646 (3) 0.6162 (18) 0.5096 (17) 0.030 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0126 (5) 0.0257 (6) 0.0188 (5) −0.0004 (4) −0.0006 (4) −0.0076 (4)
N1 0.0128 (6) 0.0171 (6) 0.0142 (6) −0.0028 (5) −0.0003 (5) −0.0043 (5)
C1 0.0119 (6) 0.0148 (6) 0.0168 (7) 0.0009 (5) 0.0008 (5) −0.0072 (5)
C2 0.0135 (7) 0.0216 (7) 0.0163 (7) −0.0015 (5) 0.0028 (5) −0.0059 (6)
C3 0.0182 (7) 0.0177 (7) 0.0140 (7) −0.0012 (5) 0.0004 (5) −0.0048 (6)
C4 0.0169 (7) 0.0221 (7) 0.0150 (7) −0.0011 (6) −0.0028 (5) −0.0058 (6)
C5 0.0121 (7) 0.0243 (8) 0.0161 (7) −0.0004 (5) 0.0000 (5) −0.0044 (6)
C6 0.0121 (6) 0.0158 (6) 0.0147 (7) −0.0012 (5) −0.0003 (5) −0.0057 (5)
C7 0.0110 (6) 0.0150 (6) 0.0140 (6) −0.0008 (5) −0.0001 (5) −0.0039 (5)
C8 0.0159 (7) 0.0151 (6) 0.0117 (6) −0.0024 (5) 0.0017 (5) −0.0032 (5)
C9 0.0155 (7) 0.0205 (7) 0.0153 (7) −0.0028 (5) 0.0007 (5) −0.0048 (6)
C10 0.0262 (8) 0.0234 (8) 0.0158 (7) −0.0079 (6) −0.0007 (6) −0.0074 (6)
C11 0.0362 (9) 0.0175 (7) 0.0152 (7) −0.0017 (6) 0.0016 (6) −0.0067 (6)
C12 0.0236 (8) 0.0206 (7) 0.0161 (7) 0.0040 (6) 0.0006 (6) −0.0054 (6)
C13 0.0162 (7) 0.0207 (7) 0.0151 (7) −0.0008 (5) 0.0001 (5) −0.0056 (6)
C14 0.0142 (7) 0.0125 (6) 0.0156 (7) 0.0002 (5) 0.0012 (5) −0.0051 (5)
C15 0.0137 (7) 0.0160 (7) 0.0163 (7) −0.0005 (5) −0.0025 (5) −0.0058 (5)
C16 0.0126 (6) 0.0156 (7) 0.0199 (7) −0.0018 (5) 0.0014 (5) −0.0068 (6)
C17 0.0160 (7) 0.0138 (6) 0.0157 (7) 0.0006 (5) 0.0021 (5) −0.0054 (5)
C18 0.0148 (7) 0.0189 (7) 0.0162 (7) 0.0010 (5) −0.0027 (5) −0.0063 (6)
C19 0.0116 (6) 0.0193 (7) 0.0187 (7) −0.0016 (5) 0.0006 (5) −0.0070 (6)
C20 0.0168 (7) 0.0176 (7) 0.0150 (7) −0.0005 (5) 0.0018 (5) −0.0042 (6)
C21 0.0387 (10) 0.0179 (7) 0.0216 (8) −0.0027 (7) 0.0058 (7) −0.0046 (6)
C22 0.0184 (8) 0.0376 (9) 0.0187 (8) −0.0029 (7) 0.0047 (6) −0.0059 (7)
C23 0.0262 (8) 0.0249 (8) 0.0168 (7) −0.0020 (6) 0.0009 (6) −0.0072 (6)

Geometric parameters (Å, °)

O1—C1 1.2172 (17) C11—C12 1.382 (2)
N1—C14 1.3996 (18) C11—H11A 0.9300
N1—C7 1.4657 (17) C12—C13 1.389 (2)
N1—H1N1 0.89 (2) C12—H12A 0.9300
C1—C2 1.5149 (19) C13—H13A 0.9300
C1—C6 1.5244 (19) C14—C19 1.399 (2)
C2—C3 1.529 (2) C14—C15 1.4019 (19)
C2—H2A 0.9700 C15—C16 1.388 (2)
C2—H2B 0.9700 C15—H15A 0.9300
C3—C4 1.521 (2) C16—C17 1.398 (2)
C3—H3A 0.9700 C16—H16A 0.9300
C3—H3B 0.9700 C17—C18 1.397 (2)
C4—C5 1.5281 (19) C17—C20 1.5376 (19)
C4—H4A 0.9700 C18—C19 1.392 (2)
C4—H4B 0.9700 C18—H18A 0.9300
C5—C6 1.537 (2) C19—H19A 0.9300
C5—H5A 0.9700 C20—C23 1.535 (2)
C5—H5B 0.9700 C20—C22 1.535 (2)
C6—C7 1.5462 (18) C20—C21 1.536 (2)
C6—H6A 0.9800 C21—H21A 0.9600
C7—C8 1.5307 (19) C21—H21B 0.9600
C7—H7A 0.9800 C21—H21C 0.9600
C8—C9 1.392 (2) C22—H22A 0.9600
C8—C13 1.398 (2) C22—H22B 0.9600
C9—C10 1.394 (2) C22—H22C 0.9600
C9—H9A 0.9300 C23—H23A 0.9600
C10—C11 1.384 (2) C23—H23B 0.9600
C10—H10A 0.9300 C23—H23C 0.9600
C14—N1—C7 119.50 (12) C12—C11—C10 119.94 (14)
C14—N1—H1N1 111.8 (13) C12—C11—H11A 120.0
C7—N1—H1N1 115.8 (13) C10—C11—H11A 120.0
O1—C1—C2 120.57 (12) C11—C12—C13 120.31 (14)
O1—C1—C6 121.72 (12) C11—C12—H12A 119.8
C2—C1—C6 117.49 (12) C13—C12—H12A 119.8
C1—C2—C3 116.04 (12) C12—C13—C8 120.49 (14)
C1—C2—H2A 108.3 C12—C13—H13A 119.8
C3—C2—H2A 108.3 C8—C13—H13A 119.8
C1—C2—H2B 108.3 C19—C14—N1 122.84 (13)
C3—C2—H2B 108.3 C19—C14—C15 117.33 (12)
H2A—C2—H2B 107.4 N1—C14—C15 119.78 (13)
C4—C3—C2 110.53 (12) C16—C15—C14 121.08 (13)
C4—C3—H3A 109.5 C16—C15—H15A 119.5
C2—C3—H3A 109.5 C14—C15—H15A 119.5
C4—C3—H3B 109.5 C15—C16—C17 122.24 (13)
C2—C3—H3B 109.5 C15—C16—H16A 118.9
H3A—C3—H3B 108.1 C17—C16—H16A 118.9
C3—C4—C5 110.11 (12) C18—C17—C16 116.14 (13)
C3—C4—H4A 109.6 C18—C17—C20 121.38 (13)
C5—C4—H4A 109.6 C16—C17—C20 122.47 (13)
C3—C4—H4B 109.6 C19—C18—C17 122.45 (13)
C5—C4—H4B 109.6 C19—C18—H18A 118.8
H4A—C4—H4B 108.2 C17—C18—H18A 118.8
C4—C5—C6 111.74 (12) C18—C19—C14 120.75 (13)
C4—C5—H5A 109.3 C18—C19—H19A 119.6
C6—C5—H5A 109.3 C14—C19—H19A 119.6
C4—C5—H5B 109.3 C23—C20—C22 107.70 (13)
C6—C5—H5B 109.3 C23—C20—C21 108.66 (13)
H5A—C5—H5B 107.9 C22—C20—C21 109.07 (13)
C1—C6—C5 112.30 (11) C23—C20—C17 111.26 (12)
C1—C6—C7 112.15 (11) C22—C20—C17 111.07 (12)
C5—C6—C7 114.88 (11) C21—C20—C17 109.02 (12)
C1—C6—H6A 105.5 C20—C21—H21A 109.5
C5—C6—H6A 105.5 C20—C21—H21B 109.5
C7—C6—H6A 105.5 H21A—C21—H21B 109.5
N1—C7—C8 113.40 (11) C20—C21—H21C 109.5
N1—C7—C6 108.22 (11) H21A—C21—H21C 109.5
C8—C7—C6 113.68 (11) H21B—C21—H21C 109.5
N1—C7—H7A 107.1 C20—C22—H22A 109.5
C8—C7—H7A 107.1 C20—C22—H22B 109.5
C6—C7—H7A 107.1 H22A—C22—H22B 109.5
C9—C8—C13 118.57 (13) C20—C22—H22C 109.5
C9—C8—C7 120.52 (13) H22A—C22—H22C 109.5
C13—C8—C7 120.91 (13) H22B—C22—H22C 109.5
C8—C9—C10 120.75 (14) C20—C23—H23A 109.5
C8—C9—H9A 119.6 C20—C23—H23B 109.5
C10—C9—H9A 119.6 H23A—C23—H23B 109.5
C11—C10—C9 119.90 (14) C20—C23—H23C 109.5
C11—C10—H10A 120.1 H23A—C23—H23C 109.5
C9—C10—H10A 120.1 H23B—C23—H23C 109.5
O1—C1—C2—C3 −149.78 (14) C9—C10—C11—C12 1.3 (2)
C6—C1—C2—C3 35.51 (18) C10—C11—C12—C13 −1.7 (2)
C1—C2—C3—C4 −45.58 (17) C11—C12—C13—C8 0.2 (2)
C2—C3—C4—C5 58.62 (16) C9—C8—C13—C12 1.7 (2)
C3—C4—C5—C6 −62.20 (16) C7—C8—C13—C12 −178.96 (13)
O1—C1—C6—C5 148.61 (14) C7—N1—C14—C19 −22.0 (2)
C2—C1—C6—C5 −36.74 (17) C7—N1—C14—C15 160.68 (12)
O1—C1—C6—C7 17.48 (18) C19—C14—C15—C16 −0.1 (2)
C2—C1—C6—C7 −167.88 (12) N1—C14—C15—C16 177.38 (13)
C4—C5—C6—C1 49.83 (16) C14—C15—C16—C17 −0.5 (2)
C4—C5—C6—C7 179.57 (12) C15—C16—C17—C18 0.3 (2)
C14—N1—C7—C8 −59.87 (16) C15—C16—C17—C20 −178.69 (13)
C14—N1—C7—C6 173.04 (12) C16—C17—C18—C19 0.4 (2)
C1—C6—C7—N1 −161.06 (11) C20—C17—C18—C19 179.42 (13)
C5—C6—C7—N1 69.13 (15) C17—C18—C19—C14 −1.0 (2)
C1—C6—C7—C8 72.02 (15) N1—C14—C19—C18 −176.59 (13)
C5—C6—C7—C8 −57.80 (16) C15—C14—C19—C18 0.8 (2)
N1—C7—C8—C9 141.87 (13) C18—C17—C20—C23 34.25 (18)
C6—C7—C8—C9 −93.95 (15) C16—C17—C20—C23 −146.77 (14)
N1—C7—C8—C13 −37.48 (17) C18—C17—C20—C22 154.21 (14)
C6—C7—C8—C13 86.69 (15) C16—C17—C20—C22 −26.80 (19)
C13—C8—C9—C10 −2.1 (2) C18—C17—C20—C21 −85.57 (17)
C7—C8—C9—C10 178.51 (12) C16—C17—C20—C21 93.41 (17)
C8—C9—C10—C11 0.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N1···O1i 0.89 (2) 2.35 (2) 3.2050 (16) 161.6 (19)
C9—H9A···O1 0.93 2.59 3.1146 (19) 116
C2—H2A···Cg1ii 0.97 2.60 3.4992 (19) 155
C23—H23C···Cg1iii 0.96 2.99 3.747 (2) 137

Symmetry codes: (i) x−1, y, z; (ii) −x+2, −y+1, −z+1; (iii) −x+1, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2573).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Arend, M., Westermanb, B. & Risch, N. (1988). Angew. Chem.37, 1044–1070. [DOI] [PubMed]
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  4. Bohme, H. & Haake, M. (1976). Advances in Organic Chemistry, edited by E. C. Taylor, p. 107. New York: John Wiley and Sons.
  5. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  7. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  8. Isloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. Submitted. [DOI] [PubMed]
  9. Isloor, A. M., Sunil, D., Shetty, P. & Satyamoorthy, K. (2009). Eur. J. Med. Chem. Submitted.
  10. Jadhav, V. J., Kulkarni, M. V., Rasal, V. P., Biradar, S. S. & Vinay, M. D. (2008). Eur. J. Med. Chem.43, 1721–1729. [DOI] [PubMed]
  11. Kalluraya, B., Isloor, A. M., Chimbalkar, R. & Shenoy, S. (2001). Indian J. Heterocycl. Chem. pp. 239–240.
  12. Kobayashi, S. & Ishitani, H. (1999). Chem. Rev.99, 1069–1094. [DOI] [PubMed]
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809004954/sj2573sup1.cif

e-65-0o539-sup1.cif (22.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809004954/sj2573Isup2.hkl

e-65-0o539-Isup2.hkl (218KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES