Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Feb 4;65(Pt 3):o460. doi: 10.1107/S1600536809003171

Creatinium perchlorate

Amel Messai a, Amani Direm a, Nourredine Benali-Cherif a,*, Dominique Luneau b, Erwann Jeanneau b
PMCID: PMC2968575  PMID: 21582132

Abstract

The title compound, C4H8N3O+·ClO4 , is built up from creatininium cations and perchlorate anions. Crystal cohesion and perchlorate stability are ensured by N—H⋯O hydrogen bonds that together with weak C—H⋯O inter­actions build up a three-dimensional network.

Related literature

For background on organic–inorganic hybrid materials, see: Benali-Cherif et al. (2004); Hill (1998); Kagan et al. (1999). For a related structure, see: Cherouana et al. (2003); Berrah et al. (2005). For inter­pretation of the solution acidity effect on NMR chemical shifts, see: Kotsyubynskyy et al. (2004). graphic file with name e-65-0o460-scheme1.jpg

Experimental

Crystal data

  • C4H8N3O+·ClO4

  • M r = 213.58

  • Monoclinic, Inline graphic

  • a = 5.8023 (3) Å

  • b = 20.7782 (13) Å

  • c = 7.3250 (4) Å

  • β = 107.947 (4)°

  • V = 840.14 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 293 (2) K

  • 0.10 × 0.10 × 0.10 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 4080 measured reflections

  • 1587 independent reflections

  • 1209 reflections with I > 2σ(I)

  • R int = 0.126

Refinement

  • R[F 2 > 2σ(F 2)] = 0.075

  • wR(F 2) = 0.230

  • S = 1.05

  • 1587 reflections

  • 119 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.42 e Å−3

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809003171/dn2425sup1.cif

e-65-0o460-sup1.cif (14.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809003171/dn2425Isup2.hkl

e-65-0o460-Isup2.hkl (76.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4 0.86 2.18 2.905 (5) 142
N2—H2B⋯O4 0.86 2.33 3.044 (6) 141
N2—H2A⋯O2i 0.86 2.31 3.077 (6) 148
N2—H2A⋯O2ii 0.86 2.52 3.186 (5) 136
N2—H2B⋯O3iii 0.86 2.39 2.947 (5) 123
C3—H3A⋯O2ii 0.96 2.51 3.455 (5) 168
C4—H4A⋯O1iv 0.97 2.43 3.284 (5) 147

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

We wish to thank the Centre Universitaire de Khenchela for financial support.

supplementary crystallographic information

Comment

Studies of organic-inorganic hybrid materials, including amino acids and various inorganic acids (Benali-Cherif et al., 2004), have received a great deal of attention in recent years, because of their electrical, magnetic and optical properties (Kagan et al., 1999; Hill, 1998).

Creatinine is formed by the metabolism of phosphocreatine, a high-energy molecule which provides a rapid supply of ATP to muscles. Phosphocreatine is converted spontaneously to creatinine on a regular basis. Consequently, creatinine is released into the blood and excreted by the kidneys as a metabolic waste product.

The present structure analysis of creatininium perchlorate, (I), was undertaken as part of a more general investigation into the nature of hydrogen bonding between organic bases or amino acids and inorganic acids in their crystalline forms (Cherouana et al., 2003).

In the present study, only the imino group of the imidazolyl moiety (atom N1) in creatinine is protonated, which confirms the possibility of the existence of creatininium cations in various tautomeric forms in aqueous solution. This is discussed and quantified in the light of the interpretation of the solution acidity effect on 1H, 13 C and 14 N NMR chemical shifts (Kotsyubynskyy et al., 2004).

The asymmetric unit of (I) contains a monoprotonated creatininium cation and two perchlorate anions (Fig.1).

The bond distances in the imidazolyl ring of (I) are, in general, not significantly different from those found in similar hybrid compounds containing protonated imidazolyl moieties like creatininium nitrate (Berrah et al., 2005). The creatininium ring is planar, as expected, with a mean deviation from planarity of 0.0017 Å.

The average Cl—O bond distances and O—Cl—O bond angles are 1.40625 (4) Å and 109.50 (3)°, respectively, confirming a tetrahedral configuration, similar to other perchlorates studied at low temperature. Perchlorate anions (ClO4-), surrounded by two creatininium residues via hydrogen bonds play an important role in stabilizing the crystal structure.

The cation-anion N—H—O interactions form sheet parallel to the (0 1 0) plane (Table 1, Fig.2). Weak C-H···O interactions further link the sheets to form a three dimensionnal network (Table 1).

Experimental

The title compound (I) was cristallized by slow evaporation at room temperature of an aqueous solution of creatinine and perchloric acid in a 1:1 stochiometric ratio.

Refinement

The title compound crystallizes in the centrosymmetric space group P21/n. All non-H atoms were refined with anisotropic atomic displacement parameters. All H-atoms of the cation entities were located in difference Fourier syntheses and refined as riding model with C—H and N—H bond lengths constrained to 0.96–0.97 Å and 0.834 Å, respectively.

Figures

Fig. 1.

Fig. 1.

Asymmetric unit and atom-numbering scheme of creatininium perchlorate. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small sphere of arbitrary radii. H bonds are shown as dashed lines.

Fig. 2.

Fig. 2.

Partial packing view showing the hydrogen bond pattern between cation and anion. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (i) x, y, z+1; (ii) 2-x, 1-y, 1-z]

Crystal data

C4H8N3O+·ClO4 F(000) = 440
Mr = 213.58 Dx = 1.689 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 4863 reflections
a = 5.8023 (3) Å θ = 2.0–26.0°
b = 20.7782 (13) Å µ = 0.45 mm1
c = 7.3250 (4) Å T = 293 K
β = 107.947 (4)° Prism, colourless
V = 840.14 (8) Å3 0.10 × 0.10 × 0.10 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer 1209 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.126
graphite θmax = 26.0°, θmin = 2.0°
ω–θ scans h = −7→6
4080 measured reflections k = −23→25
1587 independent reflections l = −9→9

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.075 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.230 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.139P)2 + 0.288P] where P = (Fo2 + 2Fc2)/3
1586 reflections (Δ/σ)max = 0.003
119 parameters Δρmax = 0.39 e Å3
0 restraints Δρmin = −0.41 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O5 0.3264 (6) 0.74385 (13) 0.3068 (5) 0.0803 (9)
N1 0.4969 (5) 0.65462 (13) 0.4848 (5) 0.0623 (8)
H1 0.5899 0.6421 0.4202 0.075*
N2 0.5866 (6) 0.57013 (14) 0.7078 (6) 0.0723 (10)
H2A 0.5667 0.5522 0.8077 0.087*
H2B 0.6800 0.5526 0.6508 0.087*
N3 0.3285 (5) 0.65583 (13) 0.7149 (4) 0.0577 (8)
C2 0.4753 (6) 0.62392 (16) 0.6428 (5) 0.0555 (8)
C3 0.2475 (8) 0.6361 (2) 0.8757 (6) 0.0729 (11)
H3A 0.2690 0.5905 0.8942 0.109*
H3B 0.0793 0.6466 0.8491 0.109*
H3C 0.3409 0.6581 0.9897 0.109*
C4 0.2340 (7) 0.71236 (15) 0.5973 (6) 0.0622 (10)
H4A 0.2797 0.7516 0.6713 0.075*
H4B 0.0588 0.7106 0.5451 0.075*
C5 0.3498 (7) 0.70880 (15) 0.4411 (6) 0.0628 (10)
Cl1 0.89960 (16) 0.57125 (4) 0.24596 (14) 0.0599 (5)
O1 0.8635 (8) 0.63394 (16) 0.1663 (8) 0.1392 (18)
O2 0.7200 (7) 0.52990 (16) 0.1320 (6) 0.1017 (12)
O3 1.1298 (6) 0.5496 (2) 0.2543 (6) 0.1112 (13)
O4 0.8863 (10) 0.5762 (3) 0.4326 (7) 0.1394 (19)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O5 0.105 (2) 0.0604 (16) 0.085 (2) −0.0036 (14) 0.0420 (17) 0.0152 (14)
N1 0.0699 (17) 0.0527 (16) 0.075 (2) −0.0020 (13) 0.0384 (16) −0.0039 (14)
N2 0.082 (2) 0.0549 (19) 0.088 (2) 0.0147 (14) 0.0381 (19) 0.0059 (15)
N3 0.0663 (16) 0.0474 (15) 0.0692 (19) 0.0027 (13) 0.0353 (14) 0.0031 (13)
C2 0.0587 (18) 0.0449 (16) 0.066 (2) −0.0009 (14) 0.0244 (16) −0.0049 (15)
C3 0.087 (3) 0.064 (2) 0.079 (3) 0.008 (2) 0.042 (2) 0.0080 (19)
C4 0.074 (2) 0.0415 (17) 0.081 (3) 0.0048 (15) 0.0369 (19) 0.0024 (15)
C5 0.072 (2) 0.0421 (17) 0.081 (3) −0.0083 (15) 0.0334 (19) −0.0017 (16)
Cl1 0.0651 (7) 0.0471 (6) 0.0728 (7) 0.0028 (3) 0.0289 (5) −0.0067 (3)
O1 0.144 (3) 0.0463 (18) 0.198 (5) 0.0036 (19) 0.010 (3) 0.017 (2)
O2 0.110 (2) 0.074 (2) 0.108 (3) −0.0300 (17) 0.014 (2) 0.0009 (17)
O3 0.088 (2) 0.104 (3) 0.155 (4) 0.015 (2) 0.058 (2) −0.016 (3)
O4 0.164 (4) 0.187 (5) 0.091 (3) 0.029 (3) 0.074 (3) −0.019 (3)

Geometric parameters (Å, °)

O5—C5 1.197 (5) C3—H3A 0.9600
N1—C2 1.361 (4) C3—H3B 0.9600
N1—C5 1.389 (5) C3—H3C 0.9600
N1—H1 0.8600 C4—C5 1.497 (6)
N2—C2 1.305 (4) C4—H4A 0.9700
N2—H2A 0.8600 C4—H4B 0.9700
N2—H2B 0.8600 Cl1—O3 1.393 (3)
N3—C2 1.312 (4) Cl1—O4 1.396 (4)
N3—C3 1.455 (5) Cl1—O2 1.409 (3)
N3—C4 1.460 (4) Cl1—O1 1.416 (4)
C2—N1—C5 111.4 (3) H3B—C3—H3C 109.5
C2—N1—H1 124.3 N3—C4—C5 103.6 (3)
C5—N1—H1 124.3 N3—C4—H4A 111.0
C2—N2—H2A 120.0 C5—C4—H4A 111.0
C2—N2—H2B 120.0 N3—C4—H4B 111.0
H2A—N2—H2B 120.0 C5—C4—H4B 111.0
C2—N3—C3 126.5 (3) H4A—C4—H4B 109.0
C2—N3—C4 110.0 (3) O5—C5—N1 126.0 (4)
C3—N3—C4 123.3 (3) O5—C5—C4 129.3 (3)
N2—C2—N3 126.6 (4) N1—C5—C4 104.6 (3)
N2—C2—N1 123.1 (3) O3—Cl1—O4 108.8 (3)
N3—C2—N1 110.3 (3) O3—Cl1—O2 110.7 (3)
N3—C3—H3A 109.5 O4—Cl1—O2 111.8 (3)
N3—C3—H3B 109.5 O3—Cl1—O1 109.5 (3)
H3A—C3—H3B 109.5 O4—Cl1—O1 106.8 (3)
N3—C3—H3C 109.5 O2—Cl1—O1 109.2 (2)
H3A—C3—H3C 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O4 0.86 2.18 2.905 (5) 142
N2—H2B···O4 0.86 2.33 3.044 (6) 141
N2—H2A···O2i 0.86 2.31 3.077 (6) 148
N2—H2A···O2ii 0.86 2.52 3.186 (5) 136
N2—H2B···O3iii 0.86 2.39 2.947 (5) 123
C3—H3A···O2ii 0.96 2.51 3.455 (5) 168
C4—H4A···O1iv 0.97 2.43 3.284 (5) 147

Symmetry codes: (i) x, y, z+1; (ii) −x+1, −y+1, −z+1; (iii) −x+2, −y+1, −z+1; (iv) x−1/2, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2425).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
  2. Benali-Cherif, N., Bendheif, L., Bouchouit, K. & Cherouana, A. (2004). Ann. Chim. Sci. Mater.29, 11–24.
  3. Berrah, F., Lamraoui, H. & Benali-Cherif, N. (2005). Acta Cryst. E61, o210–o212.
  4. Cherouana, A., Bendjeddou, L. & Benali-Cherif, N. (2003). Acta Cryst. E59, o1790–o1792.
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  7. Hill, C. L. (1998). Chem. Rev.98, 1–2. [DOI] [PubMed]
  8. Kagan, C. R., Mitzi, D. B. & Dimitrakopoulos, C. D. (1999). Science, 286, 945–947. [DOI] [PubMed]
  9. Kotsyubynskyy, D., Molchanov, S. & Gryff-Keller, A. (2004). Pol. J. Chem.78, 239–248. [DOI] [PubMed]
  10. Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  11. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809003171/dn2425sup1.cif

e-65-0o460-sup1.cif (14.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809003171/dn2425Isup2.hkl

e-65-0o460-Isup2.hkl (76.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES