Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Feb 11;65(Pt 3):o506. doi: 10.1107/S1600536809003791

N,N-Dimethyl-4-[(E)-phenyl­imino­meth­yl]aniline

Lei Zheng a, Xiu-juan Yin a, Cong-ling Yang a, Ying Li a, Shu-fan Yin a,*
PMCID: PMC2968577  PMID: 21582169

Abstract

The title compound, C15H16N2, contains two aromatic rings linked through an imino group. The mol­ecule exhibits an E configuration with respect to the C=N bond. The dihedral angle between the aromatic rings is 61.96 (1)°.

Related literature

For the physical properties and physiological activity of Schiff bases, see: Hodnett & Dunn (1970); Nyarku & Mavuso (1998); Tang & Vanslyke (1987); Yu et al. (2001). For related structures, see: Ahmet et al. (1994); Nakai et al. (1976); Wang & Wang (2007, 2008).graphic file with name e-65-0o506-scheme1.jpg

Experimental

Crystal data

  • C15H16N2

  • M r = 224.30

  • Monoclinic, Inline graphic

  • a = 9.441 (4) Å

  • b = 8.356 (3) Å

  • c = 17.245 (5) Å

  • β = 110.97 (2)°

  • V = 1270.4 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 292 (2) K

  • 0.52 × 0.48 × 0.46 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 3023 measured reflections

  • 2328 independent reflections

  • 1336 reflections with I > 2σ(I)

  • R int = 0.012

  • 3 standard reflections every 200 reflections intensity decay: 1.8%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.150

  • S = 1.02

  • 2328 reflections

  • 157 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: DIFRAC (Gabe et al., 1993); cell refinement: NRCVAX (Gabe et al., 1989); data reduction: NRCVAX; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia,1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809003791/pv2134sup1.cif

e-65-0o506-sup1.cif (16.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809003791/pv2134Isup2.hkl

e-65-0o506-Isup2.hkl (114.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Mr Zhi-Hua Mao, Sichuan University, for the X-ray data collection.

supplementary crystallographic information

Comment

Schiff base, because of its unique light, electric, magnetic and other physical material properties (Tang & Vanslyke, 1987; Yu et al., 2001), good coordination chemistry performance, unique anti-bacterial, anti-cancer and other physiological activities (Nyarku & Mavuso, 1998; Hodnett & Dunn, 1970), has aroused broad, systematic and in-depth theoretical and applied research. Several crystal sturctures of schiff bases, which are closely related to the title compound, have been reported (eg., Ahmet et al., 1994; Nakai et al., 1976; Wang & Wang, 2008; Wang & Wang, 2007). We report herein the crystal sturcture of the title schiff base, N,N-dimethyl-4-[(E)-(phenylimino)methyl]benzenamine, (I).

The molecule of the title compound (Fig. 1) adopts an E configuration probably owing to the steric effect. The C(10)–N(2)–C(9)–C(6) and C(7)–C(6)–C(9)–N(2) torsion angles are -176.70 (15) and 9.2 (3)°, respectively. There are no intermolecular hydrogen-bonding interactions in the crystal structure. The packing is essentially stabilized via van der Waals forces.

Experimental

To a solution of N,N-dimethyl-4-aminobenzaldehyde (0.75 g, 5 mmol) in ethanol (10 ml) and aniline (0.91 ml, 10 mmol) were added three drops of acetic acid as a catalyst. The mixture was heated to reflux and the reaction monitored by TLC. After completion of the reaction, on cooling to room temperature, crystals were obtained. Colourless crystals suitable for X-ray analysis were obtained by slow evaporation of an ethyl acetate solution at room temperature.

Refinement

H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and included in the refinement using a riding model, with Uiso(H) = 1.2Ueq (methylene C, aromatic C), Uiso(H) = 1.5Ueq (methyl C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level.

Crystal data

C15H16N2 F(000) = 480
Mr = 224.30 Dx = 1.173 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 20 reflections
a = 9.441 (4) Å θ = 4.4–7.1°
b = 8.356 (3) Å µ = 0.07 mm1
c = 17.245 (5) Å T = 292 K
β = 110.97 (2)° Block, colourless
V = 1270.4 (8) Å3 0.52 × 0.48 × 0.46 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.012
Radiation source: fine-focus sealed tube θmax = 25.5°, θmin = 2.3°
graphite h = −11→11
ω/2θ scans k = −10→0
3023 measured reflections l = −20→10
2328 independent reflections 3 standard reflections every 200 reflections
1336 reflections with I > 2σ(I) intensity decay: 1.8%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047 H-atom parameters constrained
wR(F2) = 0.150 w = 1/[σ2(Fo2) + (0.0913P)2] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
2328 reflections Δρmax = 0.13 e Å3
157 parameters Δρmin = −0.13 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.032 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.30901 (17) 1.50607 (18) −0.07311 (10) 0.0722 (5)
N2 0.28787 (18) 0.86291 (19) 0.13032 (9) 0.0668 (5)
C1 0.3837 (2) 1.4806 (2) −0.13194 (12) 0.0815 (6)
H1A 0.4831 1.4372 −0.1037 0.122*
H1B 0.3924 1.5807 −0.1572 0.122*
H1C 0.3254 1.4071 −0.1740 0.122*
C2 0.2456 (3) 1.6630 (2) −0.07117 (15) 0.0907 (7)
H2A 0.1369 1.6571 −0.0944 0.136*
H2B 0.2810 1.7363 −0.1031 0.136*
H2C 0.2768 1.6997 −0.0148 0.136*
C3 0.28724 (19) 1.3833 (2) −0.02654 (11) 0.0587 (5)
C4 0.2055 (2) 1.4036 (2) 0.02656 (12) 0.0687 (5)
H4 0.1636 1.5029 0.0300 0.082*
C5 0.1867 (2) 1.2792 (2) 0.07319 (12) 0.0686 (5)
H5 0.1329 1.2965 0.1082 0.082*
C6 0.2449 (2) 1.1275 (2) 0.07036 (11) 0.0616 (5)
C7 0.3258 (2) 1.1071 (2) 0.01746 (10) 0.0636 (5)
H7 0.3669 1.0073 0.0142 0.076*
C8 0.3462 (2) 1.2297 (2) −0.02946 (11) 0.0625 (5)
H8 0.4004 1.2115 −0.0643 0.075*
C9 0.2222 (2) 0.9985 (2) 0.12090 (11) 0.0681 (5)
H9 0.1550 1.0160 0.1484 0.082*
C10 0.2496 (2) 0.7447 (2) 0.17785 (11) 0.0619 (5)
C11 0.1006 (2) 0.7114 (2) 0.16925 (12) 0.0715 (6)
H11 0.0217 0.7702 0.1321 0.086*
C12 0.0694 (2) 0.5918 (3) 0.21553 (13) 0.0795 (6)
H12 −0.0307 0.5700 0.2093 0.095*
C13 0.1848 (3) 0.5041 (2) 0.27093 (13) 0.0796 (6)
H13 0.1629 0.4243 0.3025 0.096*
C14 0.3326 (2) 0.5352 (2) 0.27936 (12) 0.0744 (6)
H14 0.4110 0.4757 0.3165 0.089*
C15 0.3645 (2) 0.6536 (2) 0.23315 (11) 0.0682 (5)
H15 0.4648 0.6733 0.2389 0.082*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0775 (11) 0.0677 (10) 0.0723 (11) 0.0087 (8) 0.0278 (9) 0.0044 (8)
N2 0.0681 (10) 0.0769 (11) 0.0590 (9) 0.0019 (8) 0.0270 (8) −0.0015 (8)
C1 0.0882 (14) 0.0911 (14) 0.0695 (12) −0.0005 (11) 0.0338 (11) 0.0092 (11)
C2 0.0945 (16) 0.0719 (13) 0.1018 (16) 0.0086 (11) 0.0305 (14) 0.0059 (12)
C3 0.0538 (10) 0.0656 (11) 0.0530 (10) −0.0001 (8) 0.0146 (8) −0.0077 (9)
C4 0.0696 (12) 0.0667 (11) 0.0716 (12) 0.0094 (9) 0.0276 (10) −0.0083 (10)
C5 0.0684 (12) 0.0816 (14) 0.0637 (11) 0.0060 (10) 0.0333 (10) −0.0109 (10)
C6 0.0620 (11) 0.0713 (12) 0.0535 (10) 0.0026 (9) 0.0231 (9) −0.0057 (9)
C7 0.0682 (12) 0.0637 (11) 0.0630 (11) 0.0070 (9) 0.0285 (10) −0.0066 (9)
C8 0.0669 (12) 0.0682 (12) 0.0580 (11) 0.0063 (9) 0.0290 (9) −0.0048 (9)
C9 0.0657 (12) 0.0836 (14) 0.0594 (11) 0.0019 (10) 0.0278 (9) −0.0064 (10)
C10 0.0642 (12) 0.0724 (11) 0.0528 (10) −0.0030 (10) 0.0255 (9) −0.0095 (9)
C11 0.0607 (12) 0.0852 (14) 0.0656 (12) −0.0022 (10) 0.0191 (10) −0.0030 (11)
C12 0.0657 (12) 0.0961 (15) 0.0779 (13) −0.0151 (11) 0.0271 (11) −0.0076 (12)
C13 0.0881 (15) 0.0816 (14) 0.0746 (13) −0.0110 (12) 0.0358 (12) −0.0003 (11)
C14 0.0770 (13) 0.0800 (13) 0.0680 (12) 0.0054 (11) 0.0281 (10) 0.0050 (11)
C15 0.0619 (12) 0.0796 (12) 0.0680 (12) 0.0011 (10) 0.0291 (10) −0.0036 (11)

Geometric parameters (Å, °)

N1—C3 1.363 (2) C6—C7 1.394 (2)
N1—C1 1.444 (2) C6—C9 1.449 (3)
N1—C2 1.447 (2) C7—C8 1.361 (2)
N2—C9 1.274 (2) C7—H7 0.9300
N2—C10 1.411 (2) C8—H8 0.9300
C1—H1A 0.9600 C9—H9 0.9300
C1—H1B 0.9600 C10—C15 1.388 (3)
C1—H1C 0.9600 C10—C11 1.388 (3)
C2—H2A 0.9600 C11—C12 1.375 (3)
C2—H2B 0.9600 C11—H11 0.9300
C2—H2C 0.9600 C12—C13 1.375 (3)
C3—C4 1.403 (2) C12—H12 0.9300
C3—C8 1.407 (2) C13—C14 1.375 (3)
C4—C5 1.364 (2) C13—H13 0.9300
C4—H4 0.9300 C14—C15 1.370 (3)
C5—C6 1.389 (2) C14—H14 0.9300
C5—H5 0.9300 C15—H15 0.9300
C3—N1—C1 121.18 (15) C8—C7—C6 121.63 (16)
C3—N1—C2 121.17 (16) C8—C7—H7 119.2
C1—N1—C2 117.39 (17) C6—C7—H7 119.2
C9—N2—C10 118.88 (16) C7—C8—C3 121.55 (16)
N1—C1—H1A 109.5 C7—C8—H8 119.2
N1—C1—H1B 109.5 C3—C8—H8 119.2
H1A—C1—H1B 109.5 N2—C9—C6 124.65 (17)
N1—C1—H1C 109.5 N2—C9—H9 117.7
H1A—C1—H1C 109.5 C6—C9—H9 117.7
H1B—C1—H1C 109.5 C15—C10—C11 118.49 (18)
N1—C2—H2A 109.5 C15—C10—N2 118.89 (16)
N1—C2—H2B 109.5 C11—C10—N2 122.57 (18)
H2A—C2—H2B 109.5 C12—C11—C10 120.17 (19)
N1—C2—H2C 109.5 C12—C11—H11 119.9
H2A—C2—H2C 109.5 C10—C11—H11 119.9
H2B—C2—H2C 109.5 C13—C12—C11 120.63 (19)
N1—C3—C4 121.86 (16) C13—C12—H12 119.7
N1—C3—C8 121.37 (16) C11—C12—H12 119.7
C4—C3—C8 116.77 (17) C12—C13—C14 119.64 (19)
C5—C4—C3 120.70 (16) C12—C13—H13 120.2
C5—C4—H4 119.7 C14—C13—H13 120.2
C3—C4—H4 119.7 C15—C14—C13 120.05 (19)
C4—C5—C6 122.56 (16) C15—C14—H14 120.0
C4—C5—H5 118.7 C13—C14—H14 120.0
C6—C5—H5 118.7 C14—C15—C10 121.00 (18)
C5—C6—C7 116.79 (17) C14—C15—H15 119.5
C5—C6—C9 120.79 (17) C10—C15—H15 119.5
C7—C6—C9 122.42 (17)
C1—N1—C3—C4 −175.41 (16) C10—N2—C9—C6 −176.70 (15)
C2—N1—C3—C4 −1.3 (3) C5—C6—C9—N2 −170.32 (18)
C1—N1—C3—C8 4.7 (3) C7—C6—C9—N2 9.2 (3)
C2—N1—C3—C8 178.74 (17) C9—N2—C10—C15 −137.72 (18)
N1—C3—C4—C5 −179.28 (17) C9—N2—C10—C11 44.8 (2)
C8—C3—C4—C5 0.6 (3) C15—C10—C11—C12 0.7 (3)
C3—C4—C5—C6 −0.7 (3) N2—C10—C11—C12 178.17 (16)
C4—C5—C6—C7 0.5 (3) C10—C11—C12—C13 0.2 (3)
C4—C5—C6—C9 −179.94 (17) C11—C12—C13—C14 −0.8 (3)
C5—C6—C7—C8 −0.3 (3) C12—C13—C14—C15 0.4 (3)
C9—C6—C7—C8 −179.89 (17) C13—C14—C15—C10 0.5 (3)
C6—C7—C8—C3 0.4 (3) C11—C10—C15—C14 −1.0 (3)
N1—C3—C8—C7 179.43 (16) N2—C10—C15—C14 −178.61 (16)
C4—C3—C8—C7 −0.5 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2134).

References

  1. Ahmet, M. T., Silver, J. & Houlton, A. (1994). Acta Cryst. C50, 1814–1818.
  2. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  3. Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst.22, 384–387.
  4. Gabe, E. J., White, P. S. & Enright, G. D. (1993). DIFRAC American Crystallographic Association, Pittsburgh Meeting, Abstract PA 104.
  5. Hodnett, E. M. & Dunn, W. J. (1970). J. Med. Chem.13, 768–770. [DOI] [PubMed]
  6. Nakai, H., Shiro, M., Emuzi, K., Sakata, S. & Kubota, T. (1976). Acta Cryst. B32, 1827–1833.
  7. Nyarku, S. K. & Mavuso, E. (1998). S. Afr. J. Chem.51, 168–172.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Tang, C. W. & Vanslyke, S. A. (1987). Appl. Phys. Lett.51, 913–915.
  10. Wang, Q. & Wang, D.-Q. (2007). Acta Cryst. E63, o4838.
  11. Wang, Q. & Wang, D.-Q. (2008). Acta Cryst. E64, o51.
  12. Yu, G., Liu, Y. Q. & Song, Y. R. (2001). Synth. Met.117, 211–214.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809003791/pv2134sup1.cif

e-65-0o506-sup1.cif (16.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809003791/pv2134Isup2.hkl

e-65-0o506-Isup2.hkl (114.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES