Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Feb 21;65(Pt 3):o570. doi: 10.1107/S1600536809005777

2-De­oxy-2,3-O-isopropyl­idene-2,4-di-C-methyl-β-l-arabinose

K Victoria Booth a,*, Sarah F Jenkinson a, George W J Fleet a, David J Watkin b
PMCID: PMC2968580  PMID: 21582225

Abstract

X-ray crystallography unequivocally confirmed the stereochemistry of the C atom at position 2 in the carbon scaffold of the title mol­ecule, C10H18O4. The pyran­ose ring exists in a chair conformation with the methyl group on the C atom in the 2 position in an equatorial configuration. The absolute stereochemistry was determined from the starting material. The crystal structure consists of O—H⋯O hydrogen-bonded chains of mol­ecules running parallel to the b axis.

Related literature

For de­oxy sugars see: Becker & Lowe (2003); Yoshihara et al. (2008); Gullapalli et al. (2007). For a related structure see: Booth et al. (2007).graphic file with name e-65-0o570-scheme1.jpg

Experimental

Crystal data

  • C10H18O4

  • M r = 202.25

  • Monoclinic, Inline graphic

  • a = 6.0641 (3) Å

  • b = 13.4016 (7) Å

  • c = 6.8287 (3) Å

  • β = 102.596 (2)°

  • V = 541.60 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 150 K

  • 0.50 × 0.20 × 0.20 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) T min = 0.89, T max = 0.98

  • 5025 measured reflections

  • 1266 independent reflections

  • 1183 reflections with I > 2σ(I)

  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030

  • wR(F 2) = 0.073

  • S = 0.98

  • 1266 reflections

  • 127 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: COLLECT (Nonius, 2001).; cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809005777/lh2774sup1.cif

e-65-0o570-sup1.cif (14.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809005777/lh2774Isup2.hkl

e-65-0o570-Isup2.hkl (63.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O12—H121⋯O1i 0.86 1.93 2.786 (3) 179

Symmetry code: (i) Inline graphic.

Acknowledgments

We would like to thank the Chemical Crystallography Department and ALT at Oxford University for use of the difractometers.

supplementary crystallographic information

Comment

Deoxy sugars play an important role in the natural world; 2-deoxy ribose forms the sugar backbone of DNA whilst L-fucose, 6-deoxy-L-galactose, is involved in a wide range of mammalian glycan mediated responses (Becker and Lowe, 2003). Whilst the synthesis and biological evaluation of deoxy sugars is relatively common (Yoshihara et al., 2008; Gullapalli et al., 2007), examples of doubly branched analogues are to our knowledge, unknown.

Herein we report the structure of the novel deoxy aldose 3, generated by a short synthetic sequence from di-branched lactone 1 (Booth et al. 2007) (Fig. 1). Hydrogenation of the alkene functionality in 2 could give either epimer at position C-2 of lactone 3 or a mixture of both products. The reaction proved to be extremely stereospecific, generating only one product. Direct crystallization of lactone 3 generated poor quality crystals, however, after reduction to the lactol, crystallization was facile and X-ray crystallography showed the product to be the arabino compound 4 rather than the ribo compound 5. The absolute stereochemistry was determined from the use of 2-C-methyl-D-ribono-1,4-lactone as starting material.

The pyranose ring adopts a chair conformation with methyl group at position 2 (atom C10 in the crystallogrphic labelling scheme) in the equatorial position (Fig. 2). The crystal structure exists O—H···O hydrogen-bonded chains of molecules lying parallel to the b-axis (Fig. 3). Only classical hydrogen bonding has been considered. There are no unusual crystal packing features.

Experimental

The title compound was recrystallized from dichloromethane by slow evaporation: m.p. 349–352 K; [α]D25 -49.6 (c,0.15 in CHCl3).

Refinement

In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration was assigned from the starting material.

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Figures

Fig. 1.

Fig. 1.

Synthetic Scheme

Fig. 2.

Fig. 2.

The molecular structure showing the crystallographic labelling scheme. Displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.

Fig. 3.

Fig. 3.

Packing diagram for the title compound projected along the a-axis. Hydrogen bonds are indicated by dotted lines.

Crystal data

C10H18O4 F(000) = 220
Mr = 202.25 Dx = 1.240 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 1185 reflections
a = 6.0641 (3) Å θ = 5–27°
b = 13.4016 (7) Å µ = 0.10 mm1
c = 6.8287 (3) Å T = 150 K
β = 102.596 (2)° Plate, colourless
V = 541.60 (5) Å3 0.50 × 0.20 × 0.20 mm
Z = 2

Data collection

Nonius KappaCCD diffractometer 1183 reflections with I > 2σ(I)
graphite Rint = 0.036
ω scans θmax = 27.5°, θmin = 5.5°
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) h = −7→7
Tmin = 0.89, Tmax = 0.98 k = −13→17
5025 measured reflections l = −8→8
1266 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030 H-atom parameters constrained
wR(F2) = 0.073 Method = Modified Sheldrick w = 1/[σ2(F2) + (0.03P)2 + 0.12P], where P = [max(Fo2,0) + 2Fc2]/3
S = 0.98 (Δ/σ)max = 0.0001
1266 reflections Δρmax = 0.16 e Å3
127 parameters Δρmin = −0.16 e Å3
1 restraint

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.3944 (2) 0.39582 (13) 0.04435 (17) 0.0245
C2 0.4077 (3) 0.39975 (17) 0.2596 (2) 0.0228
O3 0.3257 (2) 0.30533 (13) 0.30874 (17) 0.0224
C4 0.1684 (3) 0.27174 (16) 0.1342 (2) 0.0195
C5 0.2816 (3) 0.30472 (16) −0.0350 (2) 0.0213
C6 0.1137 (3) 0.32628 (18) −0.2291 (3) 0.0299
C7 0.4647 (3) 0.23026 (16) −0.0612 (3) 0.0275
O8 0.3798 (2) 0.13095 (14) −0.0775 (2) 0.0287
C9 0.3274 (3) 0.10066 (16) 0.1088 (3) 0.0255
C10 0.1251 (3) 0.15996 (16) 0.1439 (3) 0.0220
C11 0.0585 (3) 0.13084 (17) 0.3391 (3) 0.0294
O12 0.2706 (2) 0.00005 (14) 0.0917 (2) 0.0322
C13 0.2595 (3) 0.48536 (17) 0.3003 (3) 0.0298
C14 0.6502 (3) 0.41048 (18) 0.3718 (3) 0.0312
H41 0.0240 0.3081 0.1185 0.0230*
H63 0.0358 0.2638 −0.2803 0.0479*
H62 0.1938 0.3530 −0.3250 0.0474*
H61 0.0028 0.3745 −0.2037 0.0467*
H71 0.5148 0.2448 −0.1837 0.0319*
H72 0.5917 0.2377 0.0580 0.0331*
H91 0.4639 0.1091 0.2207 0.0329*
H101 0.0017 0.1448 0.0295 0.0264*
H111 0.0082 0.0613 0.3332 0.0474*
H112 0.1891 0.1410 0.4520 0.0465*
H113 −0.0662 0.1730 0.3609 0.0474*
H132 0.2647 0.4876 0.4458 0.0489*
H131 0.3214 0.5481 0.2611 0.0489*
H133 0.1041 0.4759 0.2247 0.0491*
H142 0.6552 0.4165 0.5154 0.0457*
H143 0.7110 0.4711 0.3212 0.0458*
H141 0.7362 0.3515 0.3460 0.0456*
H121 0.3746 −0.0319 0.0515 0.0539*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0310 (7) 0.0222 (6) 0.0214 (6) −0.0072 (5) 0.0082 (5) −0.0002 (5)
C2 0.0259 (8) 0.0224 (9) 0.0208 (7) −0.0045 (7) 0.0066 (6) −0.0005 (7)
O3 0.0270 (6) 0.0202 (7) 0.0199 (6) −0.0045 (5) 0.0047 (5) −0.0001 (5)
C4 0.0190 (8) 0.0193 (9) 0.0205 (8) −0.0003 (6) 0.0050 (6) −0.0018 (6)
C5 0.0233 (8) 0.0199 (9) 0.0215 (8) −0.0012 (7) 0.0069 (6) −0.0017 (7)
C6 0.0358 (10) 0.0297 (11) 0.0223 (9) 0.0016 (8) 0.0025 (7) 0.0005 (8)
C7 0.0276 (9) 0.0248 (10) 0.0340 (10) 0.0003 (8) 0.0153 (8) 0.0019 (8)
O8 0.0363 (7) 0.0218 (7) 0.0333 (7) 0.0021 (6) 0.0190 (6) 0.0004 (6)
C9 0.0284 (9) 0.0196 (9) 0.0312 (9) 0.0013 (7) 0.0124 (7) 0.0023 (7)
C10 0.0212 (8) 0.0201 (9) 0.0257 (9) −0.0015 (6) 0.0074 (6) −0.0011 (7)
C11 0.0344 (10) 0.0236 (9) 0.0349 (10) 0.0002 (8) 0.0176 (8) 0.0011 (8)
O12 0.0366 (7) 0.0200 (7) 0.0450 (8) 0.0021 (6) 0.0198 (6) −0.0011 (6)
C13 0.0327 (10) 0.0243 (10) 0.0354 (10) −0.0004 (8) 0.0141 (8) −0.0007 (8)
C14 0.0276 (9) 0.0324 (11) 0.0313 (9) −0.0037 (8) 0.0013 (7) −0.0021 (9)

Geometric parameters (Å, °)

O1—C2 1.4553 (19) O8—C9 1.436 (2)
O1—C5 1.446 (2) C9—C10 1.524 (2)
C2—O3 1.426 (2) C9—O12 1.390 (2)
C2—C13 1.520 (3) C9—H91 1.003
C2—C14 1.510 (2) C10—C11 1.525 (2)
O3—C4 1.427 (2) C10—H101 0.978
C4—C5 1.533 (2) C11—H111 0.979
C4—C10 1.525 (2) C11—H112 0.987
C4—H41 0.987 C11—H113 0.981
C5—C6 1.513 (2) O12—H121 0.855
C5—C7 1.532 (2) C13—H132 0.988
C6—H63 0.986 C13—H131 0.982
C6—H62 0.965 C13—H133 0.979
C6—H61 0.975 C14—H142 0.978
C7—O8 1.423 (2) C14—H143 0.986
C7—H71 0.970 C14—H141 0.984
C7—H72 0.996
C2—O1—C5 109.06 (12) C7—O8—C9 109.94 (14)
O1—C2—O3 105.09 (13) O8—C9—C10 109.46 (14)
O1—C2—C13 107.90 (14) O8—C9—O12 107.37 (15)
O3—C2—C13 112.10 (14) C10—C9—O12 109.02 (14)
O1—C2—C14 110.45 (13) O8—C9—H91 109.8
O3—C2—C14 108.43 (15) C10—C9—H91 112.3
C13—C2—C14 112.62 (16) O12—C9—H91 108.7
C2—O3—C4 106.69 (12) C4—C10—C9 110.70 (13)
O3—C4—C5 102.17 (13) C4—C10—C11 111.73 (15)
O3—C4—C10 111.32 (14) C9—C10—C11 112.32 (15)
C5—C4—C10 115.19 (14) C4—C10—H101 106.2
O3—C4—H41 110.5 C9—C10—H101 105.6
C5—C4—H41 108.0 C11—C10—H101 110.0
C10—C4—H41 109.4 C10—C11—H111 110.3
C4—C5—O1 102.36 (13) C10—C11—H112 109.1
C4—C5—C6 112.89 (15) H111—C11—H112 110.6
O1—C5—C6 109.89 (15) C10—C11—H113 110.2
C4—C5—C7 110.82 (15) H111—C11—H113 108.2
O1—C5—C7 107.33 (13) H112—C11—H113 108.4
C6—C5—C7 112.89 (15) C9—O12—H121 109.0
C5—C6—H63 109.1 C2—C13—H132 108.4
C5—C6—H62 108.8 C2—C13—H131 108.7
H63—C6—H62 110.3 H132—C13—H131 108.6
C5—C6—H61 109.2 C2—C13—H133 110.2
H63—C6—H61 109.3 H132—C13—H133 110.5
H62—C6—H61 110.1 H131—C13—H133 110.4
C5—C7—O8 111.05 (14) C2—C14—H142 109.3
C5—C7—H71 109.9 C2—C14—H143 107.3
O8—C7—H71 107.2 H142—C14—H143 110.6
C5—C7—H72 106.9 C2—C14—H141 109.1
O8—C7—H72 111.1 H142—C14—H141 110.1
H71—C7—H72 110.7 H143—C14—H141 110.3

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C6—H61···O12i 0.97 2.59 3.562 (3) 173
O12—H121···O1ii 0.86 1.93 2.786 (3) 179

Symmetry codes: (i) −x, y+1/2, −z; (ii) −x+1, y−1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2774).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  2. Becker, D. J. & Lowe, B. J. (2003). Glycobiology, 13, 41R–53R. [DOI] [PubMed]
  3. Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst.36, 1487.
  4. Booth, K. V., Watkin, D. J., Jenkinson, S. F. & Fleet, G. W. J. (2007). Acta Cryst. E63, o1128–o1130.
  5. Gullapalli, P., Shiji, T., Rao, D., Yoshihara, A., Morimoto, K., Takata, G., Fleet, G. W. J. & Izumori, K. (2007). Tetrahedron Asymmetry, 18, 1995–2000.
  6. Nonius (2001). COLLECT Nonius BV, Delft, The Netherlands.
  7. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  8. Watkin, D. J., Prout, C. K. & &Pearce, L. J. (1996). CAMERON Chemical Crystallography Laboratory, Oxford, England.
  9. Yoshihara, A., Haraguchi, S., Gullapalli, P., Rao, D., Morimoto, K., Takata, G., Jones, N., Jenkinson, S. F., Wormald, M. R., Dwek, R. A., Fleet, G. W. J. & Izumori, K. (2008). Tetrahedron Asymmetry, 19, 739–745..

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809005777/lh2774sup1.cif

e-65-0o570-sup1.cif (14.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809005777/lh2774Isup2.hkl

e-65-0o570-Isup2.hkl (63.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES