Abstract
X-ray crystallography unequivocally confirmed the stereochemistry of the C atom at position 2 in the carbon scaffold of the title molecule, C10H18O4. The pyranose ring exists in a chair conformation with the methyl group on the C atom in the 2 position in an equatorial configuration. The absolute stereochemistry was determined from the starting material. The crystal structure consists of O—H⋯O hydrogen-bonded chains of molecules running parallel to the b axis.
Related literature
For deoxy sugars see: Becker & Lowe (2003 ▶); Yoshihara et al. (2008 ▶); Gullapalli et al. (2007 ▶). For a related structure see: Booth et al. (2007 ▶).
Experimental
Crystal data
C10H18O4
M r = 202.25
Monoclinic,
a = 6.0641 (3) Å
b = 13.4016 (7) Å
c = 6.8287 (3) Å
β = 102.596 (2)°
V = 541.60 (5) Å3
Z = 2
Mo Kα radiation
μ = 0.10 mm−1
T = 150 K
0.50 × 0.20 × 0.20 mm
Data collection
Nonius KappaCCD diffractometer
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997 ▶) T min = 0.89, T max = 0.98
5025 measured reflections
1266 independent reflections
1183 reflections with I > 2σ(I)
R int = 0.036
Refinement
R[F 2 > 2σ(F 2)] = 0.030
wR(F 2) = 0.073
S = 0.98
1266 reflections
127 parameters
1 restraint
H-atom parameters constrained
Δρmax = 0.16 e Å−3
Δρmin = −0.16 e Å−3
Data collection: COLLECT (Nonius, 2001 ▶).; cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997 ▶); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994 ▶); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003 ▶); molecular graphics: CAMERON (Watkin et al., 1996 ▶); software used to prepare material for publication: CRYSTALS.
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809005777/lh2774sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809005777/lh2774Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O12—H121⋯O1i | 0.86 | 1.93 | 2.786 (3) | 179 |
Symmetry code: (i)
.
Acknowledgments
We would like to thank the Chemical Crystallography Department and ALT at Oxford University for use of the difractometers.
supplementary crystallographic information
Comment
Deoxy sugars play an important role in the natural world; 2-deoxy ribose forms the sugar backbone of DNA whilst L-fucose, 6-deoxy-L-galactose, is involved in a wide range of mammalian glycan mediated responses (Becker and Lowe, 2003). Whilst the synthesis and biological evaluation of deoxy sugars is relatively common (Yoshihara et al., 2008; Gullapalli et al., 2007), examples of doubly branched analogues are to our knowledge, unknown.
Herein we report the structure of the novel deoxy aldose 3, generated by a short synthetic sequence from di-branched lactone 1 (Booth et al. 2007) (Fig. 1). Hydrogenation of the alkene functionality in 2 could give either epimer at position C-2 of lactone 3 or a mixture of both products. The reaction proved to be extremely stereospecific, generating only one product. Direct crystallization of lactone 3 generated poor quality crystals, however, after reduction to the lactol, crystallization was facile and X-ray crystallography showed the product to be the arabino compound 4 rather than the ribo compound 5. The absolute stereochemistry was determined from the use of 2-C-methyl-D-ribono-1,4-lactone as starting material.
The pyranose ring adopts a chair conformation with methyl group at position 2 (atom C10 in the crystallogrphic labelling scheme) in the equatorial position (Fig. 2). The crystal structure exists O—H···O hydrogen-bonded chains of molecules lying parallel to the b-axis (Fig. 3). Only classical hydrogen bonding has been considered. There are no unusual crystal packing features.
Experimental
The title compound was recrystallized from dichloromethane by slow evaporation: m.p. 349–352 K; [α]D25 -49.6 (c,0.15 in CHCl3).
Refinement
In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration was assigned from the starting material.
The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.
Figures
Fig. 1.
Synthetic Scheme
Fig. 2.
The molecular structure showing the crystallographic labelling scheme. Displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.
Fig. 3.
Packing diagram for the title compound projected along the a-axis. Hydrogen bonds are indicated by dotted lines.
Crystal data
| C10H18O4 | F(000) = 220 |
| Mr = 202.25 | Dx = 1.240 Mg m−3 |
| Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: P 2yb | Cell parameters from 1185 reflections |
| a = 6.0641 (3) Å | θ = 5–27° |
| b = 13.4016 (7) Å | µ = 0.10 mm−1 |
| c = 6.8287 (3) Å | T = 150 K |
| β = 102.596 (2)° | Plate, colourless |
| V = 541.60 (5) Å3 | 0.50 × 0.20 × 0.20 mm |
| Z = 2 |
Data collection
| Nonius KappaCCD diffractometer | 1183 reflections with I > 2σ(I) |
| graphite | Rint = 0.036 |
| ω scans | θmax = 27.5°, θmin = 5.5° |
| Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) | h = −7→7 |
| Tmin = 0.89, Tmax = 0.98 | k = −13→17 |
| 5025 measured reflections | l = −8→8 |
| 1266 independent reflections |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.030 | H-atom parameters constrained |
| wR(F2) = 0.073 | Method = Modified Sheldrick w = 1/[σ2(F2) + (0.03P)2 + 0.12P], where P = [max(Fo2,0) + 2Fc2]/3 |
| S = 0.98 | (Δ/σ)max = 0.0001 |
| 1266 reflections | Δρmax = 0.16 e Å−3 |
| 127 parameters | Δρmin = −0.16 e Å−3 |
| 1 restraint |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| O1 | 0.3944 (2) | 0.39582 (13) | 0.04435 (17) | 0.0245 | |
| C2 | 0.4077 (3) | 0.39975 (17) | 0.2596 (2) | 0.0228 | |
| O3 | 0.3257 (2) | 0.30533 (13) | 0.30874 (17) | 0.0224 | |
| C4 | 0.1684 (3) | 0.27174 (16) | 0.1342 (2) | 0.0195 | |
| C5 | 0.2816 (3) | 0.30472 (16) | −0.0350 (2) | 0.0213 | |
| C6 | 0.1137 (3) | 0.32628 (18) | −0.2291 (3) | 0.0299 | |
| C7 | 0.4647 (3) | 0.23026 (16) | −0.0612 (3) | 0.0275 | |
| O8 | 0.3798 (2) | 0.13095 (14) | −0.0775 (2) | 0.0287 | |
| C9 | 0.3274 (3) | 0.10066 (16) | 0.1088 (3) | 0.0255 | |
| C10 | 0.1251 (3) | 0.15996 (16) | 0.1439 (3) | 0.0220 | |
| C11 | 0.0585 (3) | 0.13084 (17) | 0.3391 (3) | 0.0294 | |
| O12 | 0.2706 (2) | 0.00005 (14) | 0.0917 (2) | 0.0322 | |
| C13 | 0.2595 (3) | 0.48536 (17) | 0.3003 (3) | 0.0298 | |
| C14 | 0.6502 (3) | 0.41048 (18) | 0.3718 (3) | 0.0312 | |
| H41 | 0.0240 | 0.3081 | 0.1185 | 0.0230* | |
| H63 | 0.0358 | 0.2638 | −0.2803 | 0.0479* | |
| H62 | 0.1938 | 0.3530 | −0.3250 | 0.0474* | |
| H61 | 0.0028 | 0.3745 | −0.2037 | 0.0467* | |
| H71 | 0.5148 | 0.2448 | −0.1837 | 0.0319* | |
| H72 | 0.5917 | 0.2377 | 0.0580 | 0.0331* | |
| H91 | 0.4639 | 0.1091 | 0.2207 | 0.0329* | |
| H101 | 0.0017 | 0.1448 | 0.0295 | 0.0264* | |
| H111 | 0.0082 | 0.0613 | 0.3332 | 0.0474* | |
| H112 | 0.1891 | 0.1410 | 0.4520 | 0.0465* | |
| H113 | −0.0662 | 0.1730 | 0.3609 | 0.0474* | |
| H132 | 0.2647 | 0.4876 | 0.4458 | 0.0489* | |
| H131 | 0.3214 | 0.5481 | 0.2611 | 0.0489* | |
| H133 | 0.1041 | 0.4759 | 0.2247 | 0.0491* | |
| H142 | 0.6552 | 0.4165 | 0.5154 | 0.0457* | |
| H143 | 0.7110 | 0.4711 | 0.3212 | 0.0458* | |
| H141 | 0.7362 | 0.3515 | 0.3460 | 0.0456* | |
| H121 | 0.3746 | −0.0319 | 0.0515 | 0.0539* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| O1 | 0.0310 (7) | 0.0222 (6) | 0.0214 (6) | −0.0072 (5) | 0.0082 (5) | −0.0002 (5) |
| C2 | 0.0259 (8) | 0.0224 (9) | 0.0208 (7) | −0.0045 (7) | 0.0066 (6) | −0.0005 (7) |
| O3 | 0.0270 (6) | 0.0202 (7) | 0.0199 (6) | −0.0045 (5) | 0.0047 (5) | −0.0001 (5) |
| C4 | 0.0190 (8) | 0.0193 (9) | 0.0205 (8) | −0.0003 (6) | 0.0050 (6) | −0.0018 (6) |
| C5 | 0.0233 (8) | 0.0199 (9) | 0.0215 (8) | −0.0012 (7) | 0.0069 (6) | −0.0017 (7) |
| C6 | 0.0358 (10) | 0.0297 (11) | 0.0223 (9) | 0.0016 (8) | 0.0025 (7) | 0.0005 (8) |
| C7 | 0.0276 (9) | 0.0248 (10) | 0.0340 (10) | 0.0003 (8) | 0.0153 (8) | 0.0019 (8) |
| O8 | 0.0363 (7) | 0.0218 (7) | 0.0333 (7) | 0.0021 (6) | 0.0190 (6) | 0.0004 (6) |
| C9 | 0.0284 (9) | 0.0196 (9) | 0.0312 (9) | 0.0013 (7) | 0.0124 (7) | 0.0023 (7) |
| C10 | 0.0212 (8) | 0.0201 (9) | 0.0257 (9) | −0.0015 (6) | 0.0074 (6) | −0.0011 (7) |
| C11 | 0.0344 (10) | 0.0236 (9) | 0.0349 (10) | 0.0002 (8) | 0.0176 (8) | 0.0011 (8) |
| O12 | 0.0366 (7) | 0.0200 (7) | 0.0450 (8) | 0.0021 (6) | 0.0198 (6) | −0.0011 (6) |
| C13 | 0.0327 (10) | 0.0243 (10) | 0.0354 (10) | −0.0004 (8) | 0.0141 (8) | −0.0007 (8) |
| C14 | 0.0276 (9) | 0.0324 (11) | 0.0313 (9) | −0.0037 (8) | 0.0013 (7) | −0.0021 (9) |
Geometric parameters (Å, °)
| O1—C2 | 1.4553 (19) | O8—C9 | 1.436 (2) |
| O1—C5 | 1.446 (2) | C9—C10 | 1.524 (2) |
| C2—O3 | 1.426 (2) | C9—O12 | 1.390 (2) |
| C2—C13 | 1.520 (3) | C9—H91 | 1.003 |
| C2—C14 | 1.510 (2) | C10—C11 | 1.525 (2) |
| O3—C4 | 1.427 (2) | C10—H101 | 0.978 |
| C4—C5 | 1.533 (2) | C11—H111 | 0.979 |
| C4—C10 | 1.525 (2) | C11—H112 | 0.987 |
| C4—H41 | 0.987 | C11—H113 | 0.981 |
| C5—C6 | 1.513 (2) | O12—H121 | 0.855 |
| C5—C7 | 1.532 (2) | C13—H132 | 0.988 |
| C6—H63 | 0.986 | C13—H131 | 0.982 |
| C6—H62 | 0.965 | C13—H133 | 0.979 |
| C6—H61 | 0.975 | C14—H142 | 0.978 |
| C7—O8 | 1.423 (2) | C14—H143 | 0.986 |
| C7—H71 | 0.970 | C14—H141 | 0.984 |
| C7—H72 | 0.996 | ||
| C2—O1—C5 | 109.06 (12) | C7—O8—C9 | 109.94 (14) |
| O1—C2—O3 | 105.09 (13) | O8—C9—C10 | 109.46 (14) |
| O1—C2—C13 | 107.90 (14) | O8—C9—O12 | 107.37 (15) |
| O3—C2—C13 | 112.10 (14) | C10—C9—O12 | 109.02 (14) |
| O1—C2—C14 | 110.45 (13) | O8—C9—H91 | 109.8 |
| O3—C2—C14 | 108.43 (15) | C10—C9—H91 | 112.3 |
| C13—C2—C14 | 112.62 (16) | O12—C9—H91 | 108.7 |
| C2—O3—C4 | 106.69 (12) | C4—C10—C9 | 110.70 (13) |
| O3—C4—C5 | 102.17 (13) | C4—C10—C11 | 111.73 (15) |
| O3—C4—C10 | 111.32 (14) | C9—C10—C11 | 112.32 (15) |
| C5—C4—C10 | 115.19 (14) | C4—C10—H101 | 106.2 |
| O3—C4—H41 | 110.5 | C9—C10—H101 | 105.6 |
| C5—C4—H41 | 108.0 | C11—C10—H101 | 110.0 |
| C10—C4—H41 | 109.4 | C10—C11—H111 | 110.3 |
| C4—C5—O1 | 102.36 (13) | C10—C11—H112 | 109.1 |
| C4—C5—C6 | 112.89 (15) | H111—C11—H112 | 110.6 |
| O1—C5—C6 | 109.89 (15) | C10—C11—H113 | 110.2 |
| C4—C5—C7 | 110.82 (15) | H111—C11—H113 | 108.2 |
| O1—C5—C7 | 107.33 (13) | H112—C11—H113 | 108.4 |
| C6—C5—C7 | 112.89 (15) | C9—O12—H121 | 109.0 |
| C5—C6—H63 | 109.1 | C2—C13—H132 | 108.4 |
| C5—C6—H62 | 108.8 | C2—C13—H131 | 108.7 |
| H63—C6—H62 | 110.3 | H132—C13—H131 | 108.6 |
| C5—C6—H61 | 109.2 | C2—C13—H133 | 110.2 |
| H63—C6—H61 | 109.3 | H132—C13—H133 | 110.5 |
| H62—C6—H61 | 110.1 | H131—C13—H133 | 110.4 |
| C5—C7—O8 | 111.05 (14) | C2—C14—H142 | 109.3 |
| C5—C7—H71 | 109.9 | C2—C14—H143 | 107.3 |
| O8—C7—H71 | 107.2 | H142—C14—H143 | 110.6 |
| C5—C7—H72 | 106.9 | C2—C14—H141 | 109.1 |
| O8—C7—H72 | 111.1 | H142—C14—H141 | 110.1 |
| H71—C7—H72 | 110.7 | H143—C14—H141 | 110.3 |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| C6—H61···O12i | 0.97 | 2.59 | 3.562 (3) | 173 |
| O12—H121···O1ii | 0.86 | 1.93 | 2.786 (3) | 179 |
Symmetry codes: (i) −x, y+1/2, −z; (ii) −x+1, y−1/2, −z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2774).
References
- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
- Becker, D. J. & Lowe, B. J. (2003). Glycobiology, 13, 41R–53R. [DOI] [PubMed]
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst.36, 1487.
- Booth, K. V., Watkin, D. J., Jenkinson, S. F. & Fleet, G. W. J. (2007). Acta Cryst. E63, o1128–o1130.
- Gullapalli, P., Shiji, T., Rao, D., Yoshihara, A., Morimoto, K., Takata, G., Fleet, G. W. J. & Izumori, K. (2007). Tetrahedron Asymmetry, 18, 1995–2000.
- Nonius (2001). COLLECT Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Watkin, D. J., Prout, C. K. & &Pearce, L. J. (1996). CAMERON Chemical Crystallography Laboratory, Oxford, England.
- Yoshihara, A., Haraguchi, S., Gullapalli, P., Rao, D., Morimoto, K., Takata, G., Jones, N., Jenkinson, S. F., Wormald, M. R., Dwek, R. A., Fleet, G. W. J. & Izumori, K. (2008). Tetrahedron Asymmetry, 19, 739–745..
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809005777/lh2774sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809005777/lh2774Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report



