Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Feb 11;65(Pt 3):o511. doi: 10.1107/S1600536809001780

1,2-Dimorpholinoethane-1,2-dithione

Yan-Ping Yu a, Yuan-Yuan Lin a, Bing-Xin Liu a,*
PMCID: PMC2968583  PMID: 21582174

Abstract

The title compound, C10H16N2O2S2, was prepared by a reaction of 4-tert-butyl­benzene, morpholine and sulfur. In the crystal structure, both morpholine rings display the typical chair conformation. Weak C—H⋯O hydrogen bonding is present in the crystal structure.

Related literature

For general background, see: Carmack (1989). For a related structure, see: Rozentsveig et al. (2005).graphic file with name e-65-0o511-scheme1.jpg

Experimental

Crystal data

  • C10H16N2O2S2

  • M r = 260.37

  • Monoclinic, Inline graphic

  • a = 34.661 (7) Å

  • b = 6.5155 (12) Å

  • c = 10.6632 (19) Å

  • β = 93.633 (2)°

  • V = 2403.3 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 295 (2) K

  • 0.25 × 0.20 × 0.15 mm

Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.905, T max = 0.940

  • 6026 measured reflections

  • 2118 independent reflections

  • 1673 reflections with I > 2σ(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.086

  • S = 1.05

  • 2118 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809001780/xu2457sup1.cif

e-65-0o511-sup1.cif (15.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809001780/xu2457Isup2.hkl

e-65-0o511-Isup2.hkl (102.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2B⋯O1i 0.97 2.51 3.400 (3) 153

Symmetry code: (i) Inline graphic.

Acknowledgments

The project was supported by the Educational Development Foundation of the Shanghai Educational Committee, China (AB0448).

supplementary crystallographic information

Comment

Willgerodt-Kindler reaction is an important synthesize reaction of medicament, but the reaction mechanism is not completely clear (Carmack, 1989). To investigate the reaction mechanism of Willgerodt-Kindler reaction, we performed the reaction of morpholine with 4-tert-butylphenyl and sulfur and obtained single crystals of the title compound. Herein we present its X-ray structure.

The molecular structure of the title compound is shown in Fig. 1. Within the molecule structure, two C═S bond distances are 1.656 (2) Å and 1.666 (2) Å, respectively. The two planes containing the C—S bonds, C1/C4/N1/C5/S1 and C7/C10/N2/C6/S2, are nearly perpendicular to each other with a dihedral angle of 89.94 (7)°. Both morpholino rings display the typical chair conformation, which agrees with that found in the dimorpholine derivative, 4-chloro-N-(2-(4-methylphenyl)-1,2-dimorpholinoethylidene)benzenesulfonamide (Rozentsveig et al., 2005). The adjacent molecules are linked together via C—H···O weak hydrogen bonding (Table 1).

Experimental

The title compound was prepared by a reaction of 4'-tert-butylacetophenone (17.72 g, 0.1 mol), morpholine (33 ml, 0.375 mol) and sulfur (5.29 g, 0.165 mol) at 397–405 K until the reaction mixture changed color to puce. Add methanol (100 ml) and active carbon (1 g) into the reaction mixture after the reaction undergoing 10 h. After the reaction mixture cooling to room temperature, the filemot solid product was separated from the reaction mixture. The filemot solid product and was mixed with an ethanol-water solution (1:3) and an aqueous solution (20 ml) of NaOH (0.05 g 1.14 mmol). The mixture was refluxed for 4 h at 357 K and the kelly depositions were obtained from the cooling reaction mixture. The single crystals of the title compound were obtained by recrystallization of the solid product from an ethanol solution after 2 d.

Refinement

H atoms were placed in calculated positions with C—H = 0.97 Å and included in the final cycles of refinement in riding mode with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with 30% probability displacement ellipsoids.

Crystal data

C10H16N2O2S2 F(000) = 1104
Mr = 260.37 Dx = 1.439 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 2010 reflections
a = 34.661 (7) Å θ = 2.0–25.0°
b = 6.5155 (12) Å µ = 0.43 mm1
c = 10.6632 (19) Å T = 295 K
β = 93.633 (2)° Prism, colorless
V = 2403.3 (8) Å3 0.25 × 0.20 × 0.15 mm
Z = 8

Data collection

Bruker APEX CCD diffractometer 2118 independent reflections
Radiation source: fine-focus sealed tube 1673 reflections with I > 2σ(I)
graphite Rint = 0.029
φ and ω scans θmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −39→40
Tmin = 0.905, Tmax = 0.940 k = −7→7
6026 measured reflections l = −12→7

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035 H-atom parameters constrained
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0357P)2 + 1.3632P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
2118 reflections Δρmax = 0.19 e Å3
146 parameters Δρmin = −0.20 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0028 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.372884 (17) −0.19547 (8) 0.11699 (5) 0.0400 (2)
S2 0.380220 (17) 0.28649 (9) 0.28638 (5) 0.04075 (19)
N1 0.32643 (5) 0.1044 (3) 0.03467 (16) 0.0338 (4)
N2 0.41166 (5) 0.2706 (3) 0.06457 (16) 0.0322 (4)
O1 0.27344 (4) 0.2067 (3) −0.16300 (16) 0.0515 (5)
O2 0.48123 (4) 0.2411 (3) −0.04519 (17) 0.0557 (5)
C1 0.29717 (6) −0.0402 (4) −0.0084 (2) 0.0458 (6)
H1A 0.2748 −0.0269 0.0412 0.055*
H1B 0.3070 −0.1790 0.0014 0.055*
C2 0.28575 (7) 0.0009 (4) −0.1446 (2) 0.0504 (6)
H2A 0.3076 −0.0258 −0.1947 0.060*
H2B 0.2650 −0.0913 −0.1727 0.060*
C3 0.30297 (7) 0.3439 (4) −0.1261 (2) 0.0489 (6)
H3A 0.2940 0.4833 −0.1412 0.059*
H3B 0.3249 0.3208 −0.1765 0.059*
C4 0.31559 (6) 0.3191 (3) 0.0111 (2) 0.0400 (6)
H4A 0.3375 0.4079 0.0327 0.048*
H4B 0.2947 0.3573 0.0626 0.048*
C5 0.35897 (6) 0.0447 (3) 0.09058 (18) 0.0294 (5)
C6 0.38568 (6) 0.2090 (3) 0.13964 (18) 0.0288 (5)
C7 0.41350 (6) 0.2047 (3) −0.0666 (2) 0.0356 (5)
H7A 0.4101 0.3225 −0.1218 0.043*
H7B 0.3928 0.1081 −0.0878 0.043*
C8 0.45103 (6) 0.1074 (4) −0.0844 (2) 0.0490 (6)
H8A 0.4532 −0.0187 −0.0361 0.059*
H8B 0.4529 0.0733 −0.1724 0.059*
C9 0.47931 (6) 0.2926 (4) 0.0832 (2) 0.0508 (6)
H9A 0.5013 0.3783 0.1093 0.061*
H9B 0.4809 0.1682 0.1333 0.061*
C10 0.44318 (6) 0.4028 (4) 0.1069 (2) 0.0433 (6)
H10A 0.4421 0.4320 0.1958 0.052*
H10B 0.4418 0.5315 0.0611 0.052*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0510 (4) 0.0286 (3) 0.0395 (4) 0.0032 (3) −0.0054 (3) 0.0015 (2)
S2 0.0501 (4) 0.0399 (3) 0.0323 (3) −0.0051 (3) 0.0034 (3) −0.0076 (2)
N1 0.0288 (9) 0.0299 (9) 0.0418 (11) −0.0012 (8) −0.0053 (8) 0.0005 (8)
N2 0.0271 (9) 0.0358 (10) 0.0336 (10) −0.0022 (8) 0.0007 (7) −0.0031 (8)
O1 0.0382 (9) 0.0582 (11) 0.0560 (11) 0.0050 (8) −0.0147 (7) 0.0016 (8)
O2 0.0339 (9) 0.0722 (12) 0.0620 (12) −0.0023 (8) 0.0117 (8) −0.0043 (9)
C1 0.0345 (12) 0.0426 (14) 0.0587 (16) −0.0099 (11) −0.0092 (11) 0.0003 (11)
C2 0.0424 (14) 0.0558 (16) 0.0512 (16) −0.0012 (12) −0.0115 (11) −0.0101 (12)
C3 0.0402 (13) 0.0461 (15) 0.0594 (16) 0.0046 (12) −0.0054 (11) 0.0089 (12)
C4 0.0301 (11) 0.0351 (12) 0.0539 (15) 0.0058 (10) −0.0048 (10) −0.0021 (10)
C5 0.0327 (11) 0.0323 (11) 0.0234 (11) 0.0004 (9) 0.0030 (8) −0.0003 (9)
C6 0.0273 (10) 0.0266 (11) 0.0320 (12) 0.0036 (9) −0.0032 (9) 0.0025 (9)
C7 0.0347 (12) 0.0405 (13) 0.0316 (12) 0.0002 (10) 0.0013 (9) 0.0012 (10)
C8 0.0437 (14) 0.0554 (16) 0.0486 (15) 0.0028 (12) 0.0090 (11) −0.0080 (12)
C9 0.0314 (13) 0.0636 (17) 0.0571 (17) −0.0067 (12) −0.0003 (11) 0.0028 (13)
C10 0.0344 (12) 0.0436 (14) 0.0517 (15) −0.0106 (11) 0.0020 (10) −0.0075 (11)

Geometric parameters (Å, °)

S1—C5 1.656 (2) C3—C4 1.509 (3)
S2—C6 1.666 (2) C3—H3A 0.9700
N1—C5 1.301 (2) C3—H3B 0.9700
N1—C1 1.438 (3) C4—H4A 0.9700
N1—C4 1.466 (3) C4—H4B 0.9700
N2—C6 1.305 (3) C5—C6 1.488 (3)
N2—C10 1.441 (2) C7—C8 1.470 (3)
N2—C7 1.468 (3) C7—H7A 0.9700
O1—C3 1.397 (3) C7—H7B 0.9700
O1—C2 1.417 (3) C8—H8A 0.9700
O2—C8 1.405 (3) C8—H8B 0.9700
O2—C9 1.415 (3) C9—C10 1.479 (3)
C1—C2 1.505 (3) C9—H9A 0.9700
C1—H1A 0.9700 C9—H9B 0.9700
C1—H1B 0.9700 C10—H10A 0.9700
C2—H2A 0.9700 C10—H10B 0.9700
C2—H2B 0.9700
C5—N1—C1 121.59 (18) H4A—C4—H4B 108.3
C5—N1—C4 124.67 (17) N1—C5—C6 116.62 (18)
C1—N1—C4 113.73 (16) N1—C5—S1 126.50 (16)
C6—N2—C10 122.03 (18) C6—C5—S1 116.84 (14)
C6—N2—C7 124.58 (17) N2—C6—C5 116.33 (18)
C10—N2—C7 113.29 (17) N2—C6—S2 127.33 (16)
C3—O1—C2 110.98 (16) C5—C6—S2 116.28 (15)
C8—O2—C9 110.79 (18) N2—C7—C8 109.97 (17)
N1—C1—C2 109.19 (19) N2—C7—H7A 109.7
N1—C1—H1A 109.8 C8—C7—H7A 109.7
C2—C1—H1A 109.8 N2—C7—H7B 109.7
N1—C1—H1B 109.8 C8—C7—H7B 109.7
C2—C1—H1B 109.8 H7A—C7—H7B 108.2
H1A—C1—H1B 108.3 O2—C8—C7 110.04 (19)
O1—C2—C1 111.12 (19) O2—C8—H8A 109.7
O1—C2—H2A 109.4 C7—C8—H8A 109.7
C1—C2—H2A 109.4 O2—C8—H8B 109.7
O1—C2—H2B 109.4 C7—C8—H8B 109.7
C1—C2—H2B 109.4 H8A—C8—H8B 108.2
H2A—C2—H2B 108.0 O2—C9—C10 111.87 (19)
O1—C3—C4 111.5 (2) O2—C9—H9A 109.2
O1—C3—H3A 109.3 C10—C9—H9A 109.2
C4—C3—H3A 109.3 O2—C9—H9B 109.2
O1—C3—H3B 109.3 C10—C9—H9B 109.2
C4—C3—H3B 109.3 H9A—C9—H9B 107.9
H3A—C3—H3B 108.0 N2—C10—C9 106.86 (19)
N1—C4—C3 108.89 (18) N2—C10—H10A 110.4
N1—C4—H4A 109.9 C9—C10—H10A 110.4
C3—C4—H4A 109.9 N2—C10—H10B 110.4
N1—C4—H4B 109.9 C9—C10—H10B 110.4
C3—C4—H4B 109.9 H10A—C10—H10B 108.6

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C2—H2B···O1i 0.97 2.51 3.400 (3) 153

Symmetry codes: (i) −x+1/2, y−1/2, −z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2457).

References

  1. Bruker (2004). SMART and SAINT Bruker AXS Inc., Madison, Winsonsin, USA.
  2. Carmack, M. (1989). J. Heterocycl. Chem 26, 1319–1323.
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  5. Rozentsveig, I. B., Levkovskaya, G. G., Rozentsveig, G. N., Mirskova, A. N., Krivdin, L. B., Larina, L. I. & Albanov, A. I. (2005). Tetrahedron Lett 46, 8889–8893.
  6. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809001780/xu2457sup1.cif

e-65-0o511-sup1.cif (15.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809001780/xu2457Isup2.hkl

e-65-0o511-Isup2.hkl (102.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES