Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Feb 4;65(Pt 3):m243–m244. doi: 10.1107/S160053680900350X

Dichlorido[1-(2-methyl­benz­yl)-3-(η6-2,4,6-trimethyl­benz­yl)-1H-2,3-dihydro­benzimidazol-2-yl­idene]ruthenium(II) dichloro­methane solvate

Hakan Arslan a,b,*, Don VanDerveer c, Sedat Yaşar d, İsmail Özdemir d, Bekir Çetinkaya e
PMCID: PMC2968587  PMID: 21582038

Abstract

The title complex, [RuCl2(C25H26N2)]·CH2Cl2, is best thought of as containing an octa­hedrally coordinated Ru center with the arene occupying three sites. Two Ru—Cl bonds and one Ru–carbene bond complete the distorted octa­hedron. The carbene portion of the ligand is a benzimidazole ring. This ring is connected to the C6H2(CH3)3 arene group by a CH2 bridge. This leads to a system with very little apparent strain. A dichloro­methane solvent mol­ecule completes the crystal structure. Further stabilization is accomplished via C—H⋯N and C—H⋯Cl interactions.

Related literature

For synthesis, see: Yaşar et al. (2008); Çetinkaya et al. (2001, 2003); Özdemir et al. (2001, 2004). For general background, see: Herrmann (2002); Herrmann et al. (1995); Navarro et al. (2006); Arduengo & Krafczyc (1998). For related compounds, see: Begley et al. (1991); Steedman & Burrell (1997); Arslan et al. (2004, 2005, 2007).graphic file with name e-65-0m243-scheme1.jpg

Experimental

Crystal data

  • [RuCl2(C25H26N2)]·CH2Cl2

  • M r = 611.37

  • Monoclinic, Inline graphic

  • a = 31.362 (6) Å

  • b = 8.1014 (16) Å

  • c = 20.484 (4) Å

  • β = 100.11 (3)°

  • V = 5123.8 (18) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.05 mm−1

  • T = 153 (2) K

  • 0.46 × 0.14 × 0.06 mm

Data collection

  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998) T min = 0.644, T max = 0.940

  • 15807 measured reflections

  • 4501 independent reflections

  • 3825 reflections with I > 2σ(I)

  • R int = 0.054

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.115

  • S = 1.08

  • 4501 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 0.92 e Å−3

  • Δρmin = −0.73 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2006); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680900350X/at2716sup1.cif

e-65-0m243-sup1.cif (31.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680900350X/at2716Isup2.hkl

e-65-0m243-Isup2.hkl (220.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15C⋯N2 0.98 2.60 3.244 (7) 123
C18—H18A⋯Cl2 0.99 2.67 3.468 (5) 138
C23—H23A⋯Cl1i 0.95 2.78 3.730 (5) 175
C26—H26A⋯Cl2ii 0.99 2.46 3.431 (6) 168

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We thank the Technological and Scientific Research Council of Turkey TÜBİTAK-CNRS [grant No. TBAG-U/181(106 T716)] and İnönü University Research Fund (BAP 2007/39) for financial support.

supplementary crystallographic information

Comment

The ruthenium complexes of N-Heterocyclic carbenes have proved to be excellent catalysts for the Suzuki-Miyura, Sonogashira, Stille and Heck reactions (Herrmann et al., 1995; Herrmann, 2002; Navarro et al., 2006; Arduengo & Krafczyc, 1998). Expressive examples are found in various catalytic reactions with ruthenium catalysts for alken metathesis, cycloisomerization, and cyclopropanation reactions (Özdemir et al., 2004).

Previous work from our research groups in this area has focused on the elaboration of olefins as electron-rich heterocyclic carbene precursors which allow the formation of chelating carbenes, on the rapidly developing chemistry of η6-arene ruthenium(II) complexes containing substituted imidazolidin-2-ylidenes (Özdemir et al., 2001; Çetinkaya et al., 2001, 2003), and on the synthesis, characterization and uses of palladium, platinum and ruthenium N-heterocyclic carbene complexes as catalysts (Yaşar et al., 2008; Arslan et al., 2004, 2005, 2007, and references therein).

In the present study, we have synthesized and characterized a new ruthenium complex, (1-(2-methylbenzyl)-3-(2,4,6-trimethylbenzyl)-1H-benzo[d]imidazol-2(3H)-ylidene)ruthenium(II) dichloride. dichloromethane solvate, (I). The crystal structure of the title compound, (I), is depicted in Fig. 1.

The benzimidazol ring which has a carbene portion is connected to the C6H2(CH3)3 arene by a CH2 bridge. This leads to a system with very little apparent strain. The ruthenium atom in the title compound is best described as having an octahedral coordination environment, with the arene occupying three coordination sites. Two coordination sites are occupied by Cl ligands, while the sixth site is occupied by the carbene carbon of the benzimidazol ring.

The ruthenium atom is situated 1.6766 (19) Å from the ring centroid of the arene. While there are substantial differences in the C—C and Ru—C distances [Ru—C 92.099 (5), –C10 2.161 (4), –C11 2.246 (4), –C12 2.282 (5), –C13 2.203 (5), –C14 2.198 (5) Å] for the arene ring, there is no evidence of the alternating C—C bonds observed in some ruthenium-arene complexes (Begley et al., 1991).

The arene, the 2-methylbenzyl, imidazol and benzimidazol rings are almost planar with a maximum deviation of 0.038 (5) Å for atom C14, 0.015 (5) Å for atom C21, 0.004 (4) Å for atom N2, and 0.023 (5) Å for atom C5. The five-membered imidazole ring forms dihedral angles of 87.30 (4) ° and 78.53 (4) ° with the 2-methylbenzyl and 2,4,6-trimethylbenzyl rings, respectively.

The small steric demand of the benzimidazole ligand is reflected in the Cl—Ru—C1 angles, which are 87.51 (12) ° and 97.42 (12) °. These are significantly larger than the angles in the pyridine substituted complexes [RuCl2(py)(η6-arene)] (Steedman & Burrell, 1997), and agree with Arslan results, (Arslan et al., 2004, 2005, 2007, and references therein). On the other side, the Ru—Cl distances in the coordination sphere are equal within experimental error [Ru—Cl1 = 2.4167 (12) Å and Ru—Cl2 = 2.4175 (13) Å]. The Cl—Ru—Cl angle is 88.52 (5) °.

The components of the title compound are assembled by two intermolecular C—H···Cl hydrogen bonds, to form a three-dimensional framework (Fig. 2 and Table 1). The intramolecular contacts, C—H···N and C—H···Cl, are also listed in Table 1.

Experimental

A suspension of 1-(2-methylbenzyl)-3-(2,4,6-trimethylbenzyl)benzimidazolium chloride (1.00 g, 2.56 mmol), Cs2CO3 (0.84 g, 2.56 mmol), [RuCl2(p-cymene)]2 (0.78 g, 1.28 mmol) and molecular sieves was heated under reflux in degassed dry toluene (20 ml) for 12 h. The reaction mixture was then filtered while hot, and the volume was reduced to about 10 ml before addition of n-hexane (10 ml). The precipitate formed was crystallized from CH2Cl2:hexane (5:10 ml) to give crystal product (Figure 3). Yield 0.58 g (86%), M.p.: 549–550 K. FT—IR (KBr pellet, cm-1): νCN 1424 cm-1. 1H NMR (δ, 399.9 MHz, CDCl3): 2.18 and 2.34 [s, 9H, CH2C6H2(CH3)3-2,4,6]; 2.39 [s, 3H, CH2C6H4(CH3)-2]; 5.08 [s, 2H, CH2C6H4(CH3)-2]; 5.59 [s, 2H, CH2C6H2(CH3)3-2,4,6]; 5.76 [s, 2H, CH2C6H2(CH3)3-2,4,6]; 6.80–7.50 [m, 8H, NC6H4N and CH2C6H4(CH3)-2]. 13C{H} NMR (δ, 100.5 MHz, CDCl3): 17.0 and 17.4 [CH2C6H2(CH3)3-2,4,6]; 19.5 [CH2C6H4(CH3)-2]; 49.7 [CH2C6H2(CH3)3-2,4,6]; 53.5 [CH2C6H4(CH3)-2]; 90.0, 92.8, 98.6, 101.6, 110.0, 112.5, 123.4, 123.8, 126.0, 127.0, 127.1, 130.2, 133.2, 134.8, 135.0 and 135.4 [CH2C6H2(CH3)3-2,4,6; NC6H4N and CH2C6H4(CH3)-2]; 185.9 [Ccarbene].

Refinement

H atoms were geometrically fixed and allowed to ride on the parent atom with C—H = 0.95 - 0.99 Å, and Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A packing diagram for (I). [Symmetry codes: A = 1 - x, y, 0.5 - z; B = -1/2 + x, 1/2 + y, z; C = 1.5 - x, 1/2 + y, 0.5 - z; D = 1 - x, 1 - y, 1 - z; E = x, 1 - y, 1/2 + z; F = 1.5 - x, 0.5 - y, 1 - z; G = -1/2 + x, 0.5 - y, 1/2 + z; H = x, -1 + y, z ].

Fig. 3.

Fig. 3.

Synthesis of Ru(NHC) complex.

Crystal data

[RuCl2(C25H26N2)]·CH2Cl2 F(000) = 2480
Mr = 611.37 Dx = 1.585 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 5683 reflections
a = 31.362 (6) Å θ = 2.8–26.0°
b = 8.1014 (16) Å µ = 1.05 mm1
c = 20.484 (4) Å T = 153 K
β = 100.11 (3)° Rod, orange
V = 5123.8 (18) Å3 0.46 × 0.14 × 0.06 mm
Z = 8

Data collection

Rigaku Mercury CCD (2x2 bin mode) diffractometer 4501 independent reflections
Radiation source: Sealed Tube 3825 reflections with I > 2σ(I)
Graphite Monochromator Rint = 0.054
Detector resolution: 14.6306 pixels mm-1 θmax = 25.2°, θmin = 2.8°
ω scans h = −28→37
Absorption correction: multi-scan (REQAB; Jacobson, 1998) k = −9→9
Tmin = 0.644, Tmax = 0.940 l = −23→24
15807 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0431P)2 + 37.6344P] where P = (Fo2 + 2Fc2)/3
4501 reflections (Δ/σ)max = 0.001
298 parameters Δρmax = 0.92 e Å3
0 restraints Δρmin = −0.73 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ru1 0.859197 (11) 0.28327 (4) 0.574586 (17) 0.01982 (13)
Cl1 0.91585 (4) 0.08062 (14) 0.60413 (6) 0.0281 (3)
Cl2 0.82324 (4) 0.09300 (16) 0.49193 (6) 0.0355 (3)
N1 0.91793 (11) 0.3570 (4) 0.46538 (17) 0.0191 (7)
N2 0.91101 (12) 0.5520 (4) 0.53600 (17) 0.0214 (8)
C1 0.89796 (14) 0.3939 (5) 0.5173 (2) 0.0201 (9)
C2 0.94310 (13) 0.4900 (5) 0.4509 (2) 0.0201 (9)
C3 0.96901 (14) 0.5119 (6) 0.4034 (2) 0.0241 (10)
H3A 0.9716 0.4287 0.3716 0.029*
C4 0.99086 (14) 0.6595 (6) 0.4043 (2) 0.0262 (10)
H4A 1.0093 0.6778 0.3728 0.031*
C5 0.98659 (14) 0.7840 (6) 0.4505 (2) 0.0252 (10)
H5A 1.0026 0.8834 0.4500 0.030*
C6 0.95983 (14) 0.7658 (6) 0.4967 (2) 0.0238 (10)
H6A 0.9562 0.8509 0.5271 0.029*
C7 0.93834 (13) 0.6142 (5) 0.4960 (2) 0.0205 (9)
C8 0.89772 (16) 0.6340 (6) 0.5930 (2) 0.0276 (10)
H8A 0.8851 0.7437 0.5802 0.033*
H8B 0.9228 0.6485 0.6293 0.033*
C9 0.86420 (15) 0.5220 (6) 0.6150 (2) 0.0242 (10)
C10 0.87528 (15) 0.4087 (6) 0.6688 (2) 0.0249 (10)
C11 0.84433 (15) 0.2836 (6) 0.6779 (2) 0.0265 (10)
H11A 0.8549 0.1881 0.7073 0.032*
C12 0.80490 (15) 0.2661 (6) 0.6353 (2) 0.0274 (10)
C13 0.79482 (15) 0.3822 (6) 0.5822 (2) 0.0292 (11)
H13A 0.7701 0.3561 0.5457 0.035*
C14 0.82217 (15) 0.5141 (6) 0.5727 (2) 0.0277 (10)
C15 0.80849 (18) 0.6362 (7) 0.5183 (3) 0.0381 (12)
H15A 0.7922 0.7258 0.5346 0.057*
H15B 0.7901 0.5812 0.4810 0.057*
H15C 0.8342 0.6816 0.5036 0.057*
C16 0.91763 (16) 0.4145 (6) 0.7169 (2) 0.0330 (11)
H16A 0.9142 0.4825 0.7553 0.049*
H16B 0.9401 0.4624 0.6950 0.049*
H16C 0.9261 0.3024 0.7318 0.049*
C17 0.77421 (17) 0.1265 (7) 0.6407 (3) 0.0396 (13)
H17A 0.7546 0.1577 0.6710 0.059*
H17B 0.7907 0.0282 0.6578 0.059*
H17C 0.7573 0.1024 0.5968 0.059*
C18 0.91506 (14) 0.2017 (5) 0.4291 (2) 0.0203 (9)
H18A 0.8997 0.1196 0.4523 0.024*
H18B 0.9446 0.1596 0.4287 0.024*
C19 0.89144 (14) 0.2196 (5) 0.3583 (2) 0.0212 (9)
C20 0.85252 (15) 0.3085 (6) 0.3461 (2) 0.0264 (10)
H20A 0.8427 0.3619 0.3820 0.032*
C21 0.82819 (16) 0.3203 (6) 0.2835 (2) 0.0320 (11)
H21A 0.8023 0.3838 0.2762 0.038*
C22 0.84158 (18) 0.2394 (6) 0.2313 (2) 0.0339 (12)
H22A 0.8243 0.2426 0.1884 0.041*
C23 0.88025 (16) 0.1539 (6) 0.2418 (2) 0.0296 (11)
H23A 0.8896 0.1011 0.2054 0.036*
C24 0.90593 (16) 0.1429 (6) 0.3047 (2) 0.0262 (10)
C25 0.94799 (17) 0.0499 (7) 0.3128 (3) 0.0372 (12)
H25A 0.9520 0.0060 0.2697 0.056*
H25B 0.9474 −0.0415 0.3439 0.056*
H25C 0.9720 0.1244 0.3299 0.056*
C26 0.81998 (16) 0.8842 (7) 0.3454 (3) 0.0353 (12)
H26A 0.8182 0.9577 0.3835 0.042*
H26B 0.8224 0.9543 0.3066 0.042*
Cl3 0.77287 (6) 0.7648 (3) 0.32788 (10) 0.0729 (6)
Cl4 0.86627 (5) 0.7586 (2) 0.36431 (8) 0.0496 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ru1 0.0249 (2) 0.0163 (2) 0.0197 (2) −0.00305 (13) 0.00788 (14) −0.00191 (13)
Cl1 0.0343 (6) 0.0203 (6) 0.0332 (6) 0.0028 (4) 0.0156 (5) 0.0037 (5)
Cl2 0.0372 (7) 0.0366 (7) 0.0346 (7) −0.0150 (5) 0.0119 (5) −0.0159 (5)
N1 0.0201 (18) 0.0165 (18) 0.0207 (18) −0.0012 (14) 0.0035 (14) −0.0015 (15)
N2 0.031 (2) 0.0133 (18) 0.0213 (19) −0.0040 (15) 0.0094 (15) −0.0024 (14)
C1 0.026 (2) 0.017 (2) 0.017 (2) −0.0001 (17) 0.0010 (17) 0.0010 (17)
C2 0.021 (2) 0.017 (2) 0.022 (2) −0.0026 (17) 0.0024 (17) 0.0032 (17)
C3 0.027 (2) 0.023 (2) 0.023 (2) 0.0029 (18) 0.0048 (18) 0.0029 (18)
C4 0.023 (2) 0.028 (3) 0.030 (2) −0.0005 (19) 0.0099 (19) 0.010 (2)
C5 0.022 (2) 0.020 (2) 0.033 (3) −0.0061 (18) 0.0033 (19) 0.0048 (19)
C6 0.023 (2) 0.021 (2) 0.026 (2) −0.0019 (18) 0.0015 (18) 0.0011 (19)
C7 0.021 (2) 0.019 (2) 0.021 (2) −0.0009 (17) 0.0037 (17) 0.0026 (17)
C8 0.039 (3) 0.020 (2) 0.026 (2) −0.006 (2) 0.013 (2) −0.0064 (19)
C9 0.031 (2) 0.020 (2) 0.023 (2) 0.0011 (19) 0.0112 (19) −0.0055 (18)
C10 0.032 (2) 0.022 (2) 0.023 (2) 0.0023 (19) 0.0114 (19) −0.0065 (18)
C11 0.033 (3) 0.021 (2) 0.027 (2) 0.0008 (19) 0.012 (2) −0.0024 (19)
C12 0.029 (2) 0.029 (3) 0.029 (3) −0.002 (2) 0.017 (2) −0.004 (2)
C13 0.029 (2) 0.031 (3) 0.028 (2) 0.006 (2) 0.008 (2) −0.005 (2)
C14 0.030 (2) 0.024 (2) 0.031 (3) 0.0044 (19) 0.012 (2) −0.003 (2)
C15 0.042 (3) 0.031 (3) 0.039 (3) 0.005 (2) 0.000 (2) 0.005 (2)
C16 0.038 (3) 0.031 (3) 0.030 (3) −0.002 (2) 0.007 (2) −0.003 (2)
C17 0.038 (3) 0.035 (3) 0.049 (3) −0.010 (2) 0.017 (2) −0.001 (2)
C18 0.024 (2) 0.016 (2) 0.022 (2) −0.0007 (17) 0.0056 (17) −0.0036 (17)
C19 0.029 (2) 0.015 (2) 0.020 (2) −0.0061 (17) 0.0062 (18) −0.0014 (17)
C20 0.031 (2) 0.024 (2) 0.024 (2) −0.0016 (19) 0.0067 (19) −0.0007 (19)
C21 0.030 (3) 0.034 (3) 0.031 (3) −0.003 (2) 0.003 (2) 0.005 (2)
C22 0.044 (3) 0.034 (3) 0.022 (3) −0.012 (2) 0.002 (2) 0.005 (2)
C23 0.047 (3) 0.025 (3) 0.019 (2) −0.007 (2) 0.012 (2) −0.0028 (19)
C24 0.039 (3) 0.018 (2) 0.023 (2) −0.004 (2) 0.010 (2) 0.0002 (18)
C25 0.049 (3) 0.032 (3) 0.033 (3) 0.005 (2) 0.013 (2) −0.004 (2)
C26 0.041 (3) 0.034 (3) 0.030 (3) −0.001 (2) 0.003 (2) −0.003 (2)
Cl3 0.0424 (9) 0.0820 (13) 0.0869 (13) −0.0229 (9) −0.0094 (9) 0.0202 (10)
Cl4 0.0440 (8) 0.0547 (9) 0.0488 (8) 0.0042 (7) 0.0051 (6) 0.0140 (7)

Geometric parameters (Å, °)

Ru1—C1 2.039 (4) C12—C17 1.502 (7)
Ru1—C9 2.099 (4) C13—C14 1.405 (7)
Ru1—C10 2.162 (4) C13—H13A 1.0000
Ru1—C14 2.198 (5) C14—C15 1.496 (7)
Ru1—C13 2.203 (5) C15—H15A 0.9800
Ru1—C11 2.246 (5) C15—H15B 0.9800
Ru1—C12 2.282 (5) C15—H15C 0.9800
Ru1—Cl1 2.4167 (12) C16—H16A 0.9800
Ru1—Cl2 2.4175 (13) C16—H16B 0.9800
N1—C1 1.359 (6) C16—H16C 0.9800
N1—C2 1.398 (5) C17—H17A 0.9800
N1—C18 1.456 (5) C17—H17B 0.9800
N2—C1 1.378 (5) C17—H17C 0.9800
N2—C7 1.381 (6) C18—C19 1.515 (6)
N2—C8 1.466 (6) C18—H18A 0.9900
C2—C3 1.384 (6) C18—H18B 0.9900
C2—C7 1.392 (6) C19—C20 1.401 (6)
C3—C4 1.377 (6) C19—C24 1.405 (6)
C3—H3A 0.9500 C20—C21 1.377 (6)
C4—C5 1.407 (7) C20—H20A 0.9500
C4—H4A 0.9500 C21—C22 1.380 (8)
C5—C6 1.378 (7) C21—H21A 0.9500
C5—H5A 0.9500 C22—C23 1.380 (7)
C6—C7 1.399 (6) C22—H22A 0.9500
C6—H6A 0.9500 C23—C24 1.397 (7)
C8—C9 1.515 (6) C23—H23A 0.9500
C8—H8A 0.9900 C24—C25 1.503 (7)
C8—H8B 0.9900 C25—H25A 0.9800
C9—C10 1.430 (6) C25—H25B 0.9800
C9—C14 1.446 (6) C25—H25C 0.9800
C10—C11 1.438 (6) C26—Cl3 1.750 (5)
C10—C16 1.509 (7) C26—Cl4 1.760 (5)
C11—C12 1.390 (7) C26—H26A 0.9900
C11—H11A 1.0000 C26—H26B 0.9900
C12—C13 1.430 (7)
C1—Ru1—C9 79.10 (17) C16—C10—Ru1 129.7 (3)
C1—Ru1—C10 103.77 (17) C12—C11—C10 122.4 (4)
C9—Ru1—C10 39.19 (17) C12—C11—Ru1 73.5 (3)
C1—Ru1—C14 89.00 (17) C10—C11—Ru1 67.8 (2)
C9—Ru1—C14 39.24 (17) C12—C11—H11A 117.6
C10—Ru1—C14 69.83 (17) C10—C11—H11A 117.6
C1—Ru1—C13 121.82 (18) Ru1—C11—H11A 117.6
C9—Ru1—C13 69.08 (18) C11—C12—C13 117.7 (4)
C10—Ru1—C13 80.71 (18) C11—C12—C17 122.8 (5)
C14—Ru1—C13 37.24 (18) C13—C12—C17 119.5 (4)
C1—Ru1—C11 141.73 (17) C11—C12—Ru1 70.7 (3)
C9—Ru1—C11 68.95 (17) C13—C12—Ru1 68.4 (3)
C10—Ru1—C11 38.02 (17) C17—C12—Ru1 129.4 (3)
C14—Ru1—C11 79.57 (17) C14—C13—C12 123.1 (4)
C13—Ru1—C11 65.68 (18) C14—C13—Ru1 71.2 (3)
C1—Ru1—C12 156.54 (17) C12—C13—Ru1 74.4 (3)
C9—Ru1—C12 81.52 (17) C14—C13—H13A 117.9
C10—Ru1—C12 67.76 (17) C12—C13—H13A 117.9
C14—Ru1—C12 67.59 (17) Ru1—C13—H13A 117.9
C13—Ru1—C12 37.12 (18) C13—C14—C9 117.7 (4)
C11—Ru1—C12 35.75 (17) C13—C14—C15 120.3 (4)
C1—Ru1—Cl1 87.51 (12) C9—C14—C15 121.9 (4)
C9—Ru1—Cl1 121.77 (13) C13—C14—Ru1 71.6 (3)
C10—Ru1—Cl1 92.85 (13) C9—C14—Ru1 66.7 (2)
C14—Ru1—Cl1 160.95 (13) C15—C14—Ru1 131.1 (3)
C13—Ru1—Cl1 150.67 (13) C14—C15—H15A 109.5
C11—Ru1—Cl1 91.71 (13) C14—C15—H15B 109.5
C12—Ru1—Cl1 114.09 (13) H15A—C15—H15B 109.5
C1—Ru1—Cl2 97.42 (12) C14—C15—H15C 109.5
C9—Ru1—Cl2 149.00 (13) H15A—C15—H15C 109.5
C10—Ru1—Cl2 158.81 (13) H15B—C15—H15C 109.5
C14—Ru1—Cl2 110.51 (13) C10—C16—H16A 109.5
C13—Ru1—Cl2 87.77 (13) C10—C16—H16B 109.5
C11—Ru1—Cl2 120.82 (12) H16A—C16—H16B 109.5
C12—Ru1—Cl2 92.40 (12) C10—C16—H16C 109.5
Cl1—Ru1—Cl2 88.52 (5) H16A—C16—H16C 109.5
C1—N1—C2 110.6 (3) H16B—C16—H16C 109.5
C1—N1—C18 126.4 (4) C12—C17—H17A 109.5
C2—N1—C18 123.0 (3) C12—C17—H17B 109.5
C1—N2—C7 111.1 (4) H17A—C17—H17B 109.5
C1—N2—C8 122.0 (4) C12—C17—H17C 109.5
C7—N2—C8 126.9 (4) H17A—C17—H17C 109.5
N1—C1—N2 105.5 (4) H17B—C17—H17C 109.5
N1—C1—Ru1 139.2 (3) N1—C18—C19 112.5 (3)
N2—C1—Ru1 115.2 (3) N1—C18—H18A 109.1
C3—C2—C7 121.3 (4) C19—C18—H18A 109.1
C3—C2—N1 132.1 (4) N1—C18—H18B 109.1
C7—C2—N1 106.6 (4) C19—C18—H18B 109.1
C4—C3—C2 117.0 (4) H18A—C18—H18B 107.8
C4—C3—H3A 121.5 C20—C19—C24 118.6 (4)
C2—C3—H3A 121.5 C20—C19—C18 118.9 (4)
C3—C4—C5 121.7 (4) C24—C19—C18 122.4 (4)
C3—C4—H4A 119.1 C21—C20—C19 121.7 (4)
C5—C4—H4A 119.1 C21—C20—H20A 119.2
C6—C5—C4 121.8 (4) C19—C20—H20A 119.2
C6—C5—H5A 119.1 C20—C21—C22 119.6 (5)
C4—C5—H5A 119.1 C20—C21—H21A 120.2
C5—C6—C7 115.9 (4) C22—C21—H21A 120.2
C5—C6—H6A 122.0 C21—C22—C23 119.7 (5)
C7—C6—H6A 122.0 C21—C22—H22A 120.1
N2—C7—C2 106.3 (4) C23—C22—H22A 120.1
N2—C7—C6 131.5 (4) C22—C23—C24 121.6 (4)
C2—C7—C6 122.2 (4) C22—C23—H23A 119.2
N2—C8—C9 105.9 (4) C24—C23—H23A 119.2
N2—C8—H8A 110.6 C23—C24—C19 118.7 (4)
C9—C8—H8A 110.6 C23—C24—C25 119.1 (4)
N2—C8—H8B 110.6 C19—C24—C25 122.3 (4)
C9—C8—H8B 110.6 C24—C25—H25A 109.5
H8A—C8—H8B 108.7 C24—C25—H25B 109.5
C10—C9—C14 120.4 (4) H25A—C25—H25B 109.5
C10—C9—C8 121.7 (4) C24—C25—H25C 109.5
C14—C9—C8 117.1 (4) H25A—C25—H25C 109.5
C10—C9—Ru1 72.8 (3) H25B—C25—H25C 109.5
C14—C9—Ru1 74.1 (3) Cl3—C26—Cl4 111.1 (3)
C8—C9—Ru1 116.3 (3) Cl3—C26—H26A 109.4
C9—C10—C11 118.3 (4) Cl4—C26—H26A 109.4
C9—C10—C16 123.4 (4) Cl3—C26—H26B 109.4
C11—C10—C16 118.3 (4) Cl4—C26—H26B 109.4
C9—C10—Ru1 68.0 (2) H26A—C26—H26B 108.0
C11—C10—Ru1 74.2 (3)
C2—N1—C1—N2 −0.4 (4) C14—Ru1—C11—C12 65.9 (3)
C18—N1—C1—N2 178.7 (4) C13—Ru1—C11—C12 29.6 (3)
C2—N1—C1—Ru1 −176.3 (4) Cl1—Ru1—C11—C12 −131.1 (3)
C18—N1—C1—Ru1 2.8 (7) Cl2—Ru1—C11—C12 −41.8 (3)
C7—N2—C1—N1 0.7 (5) C1—Ru1—C11—C10 4.3 (4)
C8—N2—C1—N1 −177.2 (4) C9—Ru1—C11—C10 −31.1 (3)
C7—N2—C1—Ru1 177.7 (3) C14—Ru1—C11—C10 −70.5 (3)
C8—N2—C1—Ru1 −0.1 (5) C13—Ru1—C11—C10 −106.9 (3)
C9—Ru1—C1—N1 −178.4 (5) C12—Ru1—C11—C10 −136.4 (4)
C10—Ru1—C1—N1 150.9 (5) Cl1—Ru1—C11—C10 92.4 (3)
C14—Ru1—C1—N1 −140.1 (5) Cl2—Ru1—C11—C10 −178.3 (2)
C13—Ru1—C1—N1 −121.6 (5) C10—C11—C12—C13 −2.4 (7)
C11—Ru1—C1—N1 148.2 (4) Ru1—C11—C12—C13 −51.5 (4)
C12—Ru1—C1—N1 −143.5 (5) C10—C11—C12—C17 174.2 (4)
Cl1—Ru1—C1—N1 58.6 (5) Ru1—C11—C12—C17 125.1 (5)
Cl2—Ru1—C1—N1 −29.6 (5) C10—C11—C12—Ru1 49.1 (4)
C9—Ru1—C1—N2 6.0 (3) C1—Ru1—C12—C11 −100.0 (5)
C10—Ru1—C1—N2 −24.7 (3) C9—Ru1—C12—C11 −65.5 (3)
C14—Ru1—C1—N2 44.2 (3) C10—Ru1—C12—C11 −27.3 (3)
C13—Ru1—C1—N2 62.8 (4) C14—Ru1—C12—C11 −103.7 (3)
C11—Ru1—C1—N2 −27.4 (5) C13—Ru1—C12—C11 −131.9 (4)
C12—Ru1—C1—N2 40.8 (6) Cl1—Ru1—C12—C11 55.6 (3)
Cl1—Ru1—C1—N2 −117.0 (3) Cl2—Ru1—C12—C11 145.0 (3)
Cl2—Ru1—C1—N2 154.8 (3) C1—Ru1—C12—C13 31.8 (6)
C1—N1—C2—C3 180.0 (4) C9—Ru1—C12—C13 66.3 (3)
C18—N1—C2—C3 0.9 (7) C10—Ru1—C12—C13 104.6 (3)
C1—N1—C2—C7 0.0 (5) C14—Ru1—C12—C13 28.1 (3)
C18—N1—C2—C7 −179.1 (4) C11—Ru1—C12—C13 131.9 (4)
C7—C2—C3—C4 2.1 (6) Cl1—Ru1—C12—C13 −172.6 (2)
N1—C2—C3—C4 −177.9 (4) Cl2—Ru1—C12—C13 −83.1 (3)
C2—C3—C4—C5 −1.0 (6) C1—Ru1—C12—C17 142.9 (5)
C3—C4—C5—C6 −1.0 (7) C9—Ru1—C12—C17 177.4 (5)
C4—C5—C6—C7 2.0 (6) C10—Ru1—C12—C17 −144.3 (5)
C1—N2—C7—C2 −0.7 (5) C14—Ru1—C12—C17 139.2 (5)
C8—N2—C7—C2 177.1 (4) C13—Ru1—C12—C17 111.1 (6)
C1—N2—C7—C6 −179.0 (4) C11—Ru1—C12—C17 −117.0 (6)
C8—N2—C7—C6 −1.2 (8) Cl1—Ru1—C12—C17 −61.5 (5)
C3—C2—C7—N2 −179.6 (4) Cl2—Ru1—C12—C17 28.0 (5)
N1—C2—C7—N2 0.4 (4) C11—C12—C13—C14 −1.9 (7)
C3—C2—C7—C6 −1.1 (6) C17—C12—C13—C14 −178.5 (4)
N1—C2—C7—C6 178.9 (4) Ru1—C12—C13—C14 −54.4 (4)
C5—C6—C7—N2 177.1 (4) C11—C12—C13—Ru1 52.5 (4)
C5—C6—C7—C2 −0.9 (6) C17—C12—C13—Ru1 −124.1 (4)
C1—N2—C8—C9 −8.3 (6) C1—Ru1—C13—C14 −31.7 (3)
C7—N2—C8—C9 174.2 (4) C9—Ru1—C13—C14 29.9 (3)
N2—C8—C9—C10 98.1 (5) C10—Ru1—C13—C14 68.8 (3)
N2—C8—C9—C14 −71.9 (5) C11—Ru1—C13—C14 105.4 (3)
N2—C8—C9—Ru1 12.9 (5) C12—Ru1—C13—C14 134.0 (4)
C1—Ru1—C9—C10 −128.3 (3) Cl1—Ru1—C13—C14 147.9 (2)
C14—Ru1—C9—C10 129.7 (4) Cl2—Ru1—C13—C14 −129.1 (3)
C13—Ru1—C9—C10 101.3 (3) C1—Ru1—C13—C12 −165.7 (3)
C11—Ru1—C9—C10 30.3 (3) C9—Ru1—C13—C12 −104.1 (3)
C12—Ru1—C9—C10 65.0 (3) C10—Ru1—C13—C12 −65.2 (3)
Cl1—Ru1—C9—C10 −48.2 (3) C14—Ru1—C13—C12 −134.0 (4)
Cl2—Ru1—C9—C10 145.4 (2) C11—Ru1—C13—C12 −28.5 (3)
C1—Ru1—C9—C14 102.0 (3) Cl1—Ru1—C13—C12 13.9 (4)
C10—Ru1—C9—C14 −129.7 (4) Cl2—Ru1—C13—C12 96.9 (3)
C13—Ru1—C9—C14 −28.4 (3) C12—C13—C14—C9 6.2 (7)
C11—Ru1—C9—C14 −99.5 (3) Ru1—C13—C14—C9 −49.7 (4)
C12—Ru1—C9—C14 −64.7 (3) C12—C13—C14—C15 −176.7 (4)
Cl1—Ru1—C9—C14 −177.9 (2) Ru1—C13—C14—C15 127.4 (4)
Cl2—Ru1—C9—C14 15.7 (4) C12—C13—C14—Ru1 55.9 (4)
C1—Ru1—C9—C8 −10.9 (3) C10—C9—C14—C13 −6.4 (6)
C10—Ru1—C9—C8 117.4 (5) C8—C9—C14—C13 163.8 (4)
C14—Ru1—C9—C8 −112.8 (4) Ru1—C9—C14—C13 52.0 (4)
C13—Ru1—C9—C8 −141.3 (4) C10—C9—C14—C15 176.6 (4)
C11—Ru1—C9—C8 147.7 (4) C8—C9—C14—C15 −13.3 (6)
C12—Ru1—C9—C8 −177.6 (4) Ru1—C9—C14—C15 −125.0 (4)
Cl1—Ru1—C9—C8 69.3 (4) C10—C9—C14—Ru1 −58.4 (4)
Cl2—Ru1—C9—C8 −97.1 (4) C8—C9—C14—Ru1 111.8 (4)
C14—C9—C10—C11 2.5 (6) C1—Ru1—C14—C13 153.4 (3)
C8—C9—C10—C11 −167.2 (4) C9—Ru1—C14—C13 −132.7 (4)
Ru1—C9—C10—C11 −56.5 (4) C10—Ru1—C14—C13 −101.5 (3)
C14—C9—C10—C16 −177.0 (4) C11—Ru1—C14—C13 −63.3 (3)
C8—C9—C10—C16 13.3 (7) C12—Ru1—C14—C13 −28.0 (3)
Ru1—C9—C10—C16 124.0 (4) Cl1—Ru1—C14—C13 −127.2 (4)
C14—C9—C10—Ru1 59.0 (4) Cl2—Ru1—C14—C13 55.9 (3)
C8—C9—C10—Ru1 −110.7 (4) C1—Ru1—C14—C9 −73.9 (3)
C1—Ru1—C10—C9 52.5 (3) C10—Ru1—C14—C9 31.2 (3)
C14—Ru1—C10—C9 −31.2 (3) C13—Ru1—C14—C9 132.7 (4)
C13—Ru1—C10—C9 −68.2 (3) C11—Ru1—C14—C9 69.4 (3)
C11—Ru1—C10—C9 −130.2 (4) C12—Ru1—C14—C9 104.6 (3)
C12—Ru1—C10—C9 −104.4 (3) Cl1—Ru1—C14—C9 5.5 (5)
Cl1—Ru1—C10—C9 140.6 (2) Cl2—Ru1—C14—C9 −171.4 (2)
Cl2—Ru1—C10—C9 −126.1 (3) C1—Ru1—C14—C15 39.0 (5)
C1—Ru1—C10—C11 −177.3 (3) C9—Ru1—C14—C15 112.8 (6)
C9—Ru1—C10—C11 130.2 (4) C10—Ru1—C14—C15 144.0 (5)
C14—Ru1—C10—C11 99.0 (3) C13—Ru1—C14—C15 −114.5 (6)
C13—Ru1—C10—C11 62.1 (3) C11—Ru1—C14—C15 −177.8 (5)
C12—Ru1—C10—C11 25.8 (3) C12—Ru1—C14—C15 −142.5 (5)
Cl1—Ru1—C10—C11 −89.1 (3) Cl1—Ru1—C14—C15 118.4 (5)
Cl2—Ru1—C10—C11 4.1 (5) Cl2—Ru1—C14—C15 −58.6 (5)
C1—Ru1—C10—C16 −63.4 (4) C1—N1—C18—C19 112.6 (5)
C9—Ru1—C10—C16 −115.9 (5) C2—N1—C18—C19 −68.4 (5)
C14—Ru1—C10—C16 −147.1 (5) N1—C18—C19—C20 −45.8 (5)
C13—Ru1—C10—C16 175.9 (5) N1—C18—C19—C24 137.6 (4)
C11—Ru1—C10—C16 113.9 (5) C24—C19—C20—C21 0.8 (7)
C12—Ru1—C10—C16 139.7 (5) C18—C19—C20—C21 −175.9 (4)
Cl1—Ru1—C10—C16 24.7 (4) C19—C20—C21—C22 1.7 (7)
Cl2—Ru1—C10—C16 118.0 (4) C20—C21—C22—C23 −3.0 (8)
C9—C10—C11—C12 2.0 (7) C21—C22—C23—C24 1.7 (7)
C16—C10—C11—C12 −178.5 (4) C22—C23—C24—C19 0.9 (7)
Ru1—C10—C11—C12 −51.5 (4) C22—C23—C24—C25 −179.2 (5)
C9—C10—C11—Ru1 53.5 (3) C20—C19—C24—C23 −2.1 (6)
C16—C10—C11—Ru1 −127.0 (4) C18—C19—C24—C23 174.5 (4)
C1—Ru1—C11—C12 140.7 (3) C20—C19—C24—C25 177.9 (4)
C9—Ru1—C11—C12 105.3 (3) C18—C19—C24—C25 −5.5 (7)
C10—Ru1—C11—C12 136.4 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C15—H15C···N2 0.98 2.60 3.244 (7) 123
C18—H18A···Cl2 0.99 2.67 3.468 (5) 138
C23—H23A···Cl1i 0.95 2.78 3.730 (5) 175
C26—H26A···Cl2ii 0.99 2.46 3.431 (6) 168

Symmetry codes: (i) x, −y, z−1/2; (ii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2716).

References

  1. Arduengo, A. J. & Krafczyc, R. (1998). Chem. Ztg, 32, 6–14.
  2. Arslan, H., VanDerveer, D., Özdemir, İ., Çetinkaya, B. & Demir, S. (2004). Z. Kristallogr. New Cryst. Struct.219, 377–378.
  3. Arslan, H., VanDerveer, D., Özdemir, I., Yaşar, S. & Çetinkaya, B. (2005). Acta Cryst. E61, m1873–m1875.
  4. Arslan, H., VanDerveer, D., Yaşar, S., Özdemir, İ. & Çetinkaya, B. (2007). Acta Cryst. E63, m1001–m1003.
  5. Begley, M. J., Harrison, S. & Wright, A. H. (1991). Acta Cryst. C47, 318–320.
  6. Çetinkaya, B., Demir, S., Özdemir, İ., Toupet, L., Semeril, D., Bruneau, C. & Dixneuf, P. H. (2001). New J. Chem.25, 519–521. [DOI] [PubMed]
  7. Çetinkaya, B., Demir, S., Özdemir, İ., Toupet, L., Semeril, D., Bruneau, C. & Dixneuf, P. H. (2003). Chem. Eur. J.9, 2323–2330. [DOI] [PubMed]
  8. Herrmann, W. A. (2002). Angew. Chem. Int. Ed.41, 1290–1309.
  9. Herrmann, W. A., Elison, M., Fischer, J., Köcher, C. & Artus, G. R. J. (1995). Angew. Chem. Int. Ed. Engl.34, 2371–2374.
  10. Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.
  11. Navarro, O., Marion, N., Oonishi, Y., Kelly, R. A. & Nolan, S. P. (2006). J. Org. Chem.71, 685–692. [DOI] [PubMed]
  12. Özdemir, İ., Alıcı, B., Gürbüz, N., Çetinkaya, E. & Çetinkaya, B. (2004). J. Mol. Catal. A Chem.217, 37–40.
  13. Özdemir, İ., Yiğit, B., Çetinkaya, B., Ülkü, D., Tahir, M. N. & Arici, C. (2001). J. Organomet. Chem.633, 27–32.
  14. Rigaku/MSC (2006). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Steedman, A. J. & Burrell, A. K. (1997). Acta Cryst. C53, 864–866.
  17. Yaşar, S., Özdemir, İ., Çetinkaya, B., Renaud, J. L. & Bruneau, C. (2008). Eur. J. Org. Chem.12, 2142–2149.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680900350X/at2716sup1.cif

e-65-0m243-sup1.cif (31.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680900350X/at2716Isup2.hkl

e-65-0m243-Isup2.hkl (220.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES