Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1990 Oct;86(4):1278–1284. doi: 10.1172/JCI114835

Role of ventriculovascular coupling in cardiac response to increased contractility in closed-chest dogs.

G L Freeman 1, J T Colston 1
PMCID: PMC296859  PMID: 2212012

Abstract

While both dobutamine and pacing tachycardia augment left ventricular (LV) contractility, whether overall cardiovascular response to these stimuli is comparable is not known. To address this question we studied seven dogs previously instrumented with three LV diameter gauges and LV pressure manometers. After ganglionic blockade and sedation, caval occlusions were performed at heart rates of 120, 160, and 200 bpm before (C), and 160 and 200 bpm after administration of 10 micrograms/kg per min dobutamine, i.v. (D). The effective arterial elastance (Ea) went up from 14.2 +/- 4.5 mmHg/ml at C120 to 19.6 +/- 8.8 (P less than 0.025 vs C120) and 24.2 +/- 10.4 (P less than 0.001 vs C120) mmHg/ml at C160 and C200. Ees, the slope of the end-systolic pressure-volume relation, increased with pacing from 9.7 +/- 4.6 to 11.7 +/- 4.3 (P less than 0.02), and 13.2 +/- 5.7 (P less than 0.02) mmHg/ml at 160 and 200 bpm. With dobutamine infusion Ea went down, and Ees was further increased to 37.0 +/- 20.9 mmHg/ml at 160 bpm (P less than 0.002 vs C160), and 53.0 +/- 22.6 mmHg/ml at 200 bpm (P less than 0.002 vs C200). Comparison of stroke work and pressure-volume area from single beats with matched LV end-diastolic volumes showed that these were both increased by dobutamine, but not by pacing tachycardia. While increased heart rate after dobutamine markedly increased contractility, Ea was not changed, and neither stroke work nor pressure-volume was further increased. Thus, how well an increase in contractility is transmitted to the periphery is determined in part by arterial behavior. Assessment of both the arterial system and cardiac contractility is necessary to fully evaluate the overall impact of an inotropic stimulus.

Full text

PDF
1278

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ABBOTT B. C., MOMMAERTS W. F. A study of inotropic mechanisms in the papillary muscle preparation. J Gen Physiol. 1959 Jan 20;42(3):533–551. doi: 10.1085/jgp.42.3.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BLINKS J. R., KOCH-WESER J. Analysis of the effects of changes in rate and rhythm upon myocardial contractility. J Pharmacol Exp Ther. 1961 Dec;134:373–389. [PubMed] [Google Scholar]
  3. Brum G., Osterrieder W., Trautwein W. Beta-adrenergic increase in the calcium conductance of cardiac myocytes studied with the patch clamp. Pflugers Arch. 1984 Jun;401(2):111–118. doi: 10.1007/BF00583870. [DOI] [PubMed] [Google Scholar]
  4. Covell J. W., Ross J., Jr, Taylor R., Sonnenblick E. H., Braunwald E. Effects of increasing frequency of contraction on the force velocity relation of left ventricle. Cardiovasc Res. 1967 Jan;1(1):2–8. doi: 10.1093/cvr/1.1.2. [DOI] [PubMed] [Google Scholar]
  5. Freeman G. L., Colston J. T. Evaluation of long-term variance of left ventricular performance indexes in closed-chest dogs. Am J Physiol. 1989 Jul;257(1 Pt 2):H70–H78. doi: 10.1152/ajpheart.1989.257.1.H70. [DOI] [PubMed] [Google Scholar]
  6. Freeman G. L., Little W. C., O'Rourke R. A. Influence of heart rate on left ventricular performance in conscious dogs. Circ Res. 1987 Sep;61(3):455–464. doi: 10.1161/01.res.61.3.455. [DOI] [PubMed] [Google Scholar]
  7. Glower D. D., Spratt J. A., Snow N. D., Kabas J. S., Davis J. W., Olsen C. O., Tyson G. S., Sabiston D. C., Jr, Rankin J. S. Linearity of the Frank-Starling relationship in the intact heart: the concept of preload recruitable stroke work. Circulation. 1985 May;71(5):994–1009. doi: 10.1161/01.cir.71.5.994. [DOI] [PubMed] [Google Scholar]
  8. Kono A., Maughan W. L., Sunagawa K., Hamilton K., Sagawa K., Weisfeldt M. L. The use of left ventricular end-ejection pressure and peak pressure in the estimation of the end-systolic pressure-volume relationship. Circulation. 1984 Dec;70(6):1057–1065. doi: 10.1161/01.cir.70.6.1057. [DOI] [PubMed] [Google Scholar]
  9. Kranias E. G., Solaro R. J. Coordination of cardiac sarcoplasmic reticulum and myofibrillar function by protein phosphorylation. Fed Proc. 1983 Jan;42(1):33–38. [PubMed] [Google Scholar]
  10. Little W. C., Cheng C. P., Peterson T., Vinten-Johansen J. Response of the left ventricular end-systolic pressure-volume relation in conscious dogs to a wide range of contractile states. Circulation. 1988 Sep;78(3):736–745. doi: 10.1161/01.cir.78.3.736. [DOI] [PubMed] [Google Scholar]
  11. Little W. C. The left ventricular dP/dtmax-end-diastolic volume relation in closed-chest dogs. Circ Res. 1985 Jun;56(6):808–815. doi: 10.1161/01.res.56.6.808. [DOI] [PubMed] [Google Scholar]
  12. Mangel A., Fahim M., van Breemen C. Rhythmic contractile activity of the in vivo rabbit aorta. Nature. 1981 Feb 19;289(5799):692–694. doi: 10.1038/289692a0. [DOI] [PubMed] [Google Scholar]
  13. Morgan J. P., Blinks J. R. Intracellular Ca2+ transients in the cat papillary muscle. Can J Physiol Pharmacol. 1982 Apr;60(4):524–528. doi: 10.1139/y82-072. [DOI] [PubMed] [Google Scholar]
  14. Nozawa T., Yasumura Y., Futaki S., Tanaka N., Uenishi M., Suga H. Efficiency of energy transfer from pressure-volume area to external mechanical work increases with contractile state and decreases with afterload in the left ventricle of the anesthetized closed-chest dog. Circulation. 1988 May;77(5):1116–1124. doi: 10.1161/01.cir.77.5.1116. [DOI] [PubMed] [Google Scholar]
  15. Pidgeon J., Lab M., Seed A., Elzinga G., Papadoyannis D., Noble M. I. The contractile state of cat and dog heart in relation to the interval between beats. Circ Res. 1980 Oct;47(4):559–567. doi: 10.1161/01.res.47.4.559. [DOI] [PubMed] [Google Scholar]
  16. Ruffolo R. R., Jr The pharmacology of dobutamine. Am J Med Sci. 1987 Oct;294(4):244–248. doi: 10.1097/00000441-198710000-00005. [DOI] [PubMed] [Google Scholar]
  17. SONNENBLICK E. H. Force-velocity relations in mammalian heart muscle. Am J Physiol. 1962 May;202:931–939. doi: 10.1152/ajplegacy.1962.202.5.931. [DOI] [PubMed] [Google Scholar]
  18. Sheu S. S., Sharma V. K., Uglesity A. Na+-Ca2+ exchange contributes to increase of cytosolic Ca2+ concentration during depolarization in heart muscle. Am J Physiol. 1986 Apr;250(4 Pt 1):C651–C656. doi: 10.1152/ajpcell.1986.250.4.C651. [DOI] [PubMed] [Google Scholar]
  19. Sodums M. T., Badke F. R., Starling M. R., Little W. C., O'Rourke R. A. Evaluation of left ventricular contractile performance utilizing end-systolic pressure-volume relationships in conscious dogs. Circ Res. 1984 Jun;54(6):731–739. doi: 10.1161/01.res.54.6.731. [DOI] [PubMed] [Google Scholar]
  20. Suga H., Hayashi T., Shirahata M., Ninomiya I. Critical evaluation of left ventricular systolic pressure volume areas as predictor of oxygen consumption rate. Jpn J Physiol. 1980;30(6):907–919. doi: 10.2170/jjphysiol.30.907. [DOI] [PubMed] [Google Scholar]
  21. Suga H., Hayashi T., Shirahata M., Suehiro S., Hisano R. Regression of cardiac oxygen consumption on ventricular pressure-volume area in dog. Am J Physiol. 1981 Mar;240(3):H320–H325. doi: 10.1152/ajpheart.1981.240.3.H320. [DOI] [PubMed] [Google Scholar]
  22. Sunagawa K., Maughan W. L., Burkhoff D., Sagawa K. Left ventricular interaction with arterial load studied in isolated canine ventricle. Am J Physiol. 1983 Nov;245(5 Pt 1):H773–H780. doi: 10.1152/ajpheart.1983.245.5.H773. [DOI] [PubMed] [Google Scholar]
  23. Sunagawa K., Maughan W. L., Sagawa K. Optimal arterial resistance for the maximal stroke work studied in isolated canine left ventricle. Circ Res. 1985 Apr;56(4):586–595. doi: 10.1161/01.res.56.4.586. [DOI] [PubMed] [Google Scholar]
  24. Sunagawa K., Sagawa K., Maughan W. L. Ventricular interaction with the loading system. Ann Biomed Eng. 1984;12(2):163–189. doi: 10.1007/BF02584229. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES