Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Feb 25;65(Pt 3):o586. doi: 10.1107/S1600536809004231

2-(4-Methoxyphenoxy)-6-methyl-3-oxo-3,6-dihydro-2H-pyran-4-yl benzoate

Shi-qiang Yan a, Xiao-mei Liang a, Jian-jun Zhang a,*, Dao-quan Wang a
PMCID: PMC2968613  PMID: 21582241

Abstract

The title compound, C20H18O6, has been synthesized from 4-methoxy­phenyl 3-O-benzo­yloxy-α-l-rhamnopyran­oside by oxidation on treatment with pyridinium dichromate in the presence of acetic anhydride. In the mol­ecule, the pyran ring adopts an envelope conformation with the O atom at the flap position. Weak inter­molecular C—H⋯O hydrogen bonding is present in the crystal structure.

Related literature

For general background to enolone derivatives, see: Schmidt et al. (1954); Hodges et al. (1963); Bevan et al. (1963); Ripperger & Seifert (1975); Yan et al. (2008).graphic file with name e-65-0o586-scheme1.jpg

Experimental

Crystal data

  • C20H18O6

  • M r = 354.34

  • Orthorhombic, Inline graphic

  • a = 8.5906 (17) Å

  • b = 11.594 (2) Å

  • c = 17.404 (4) Å

  • V = 1733.4 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 173 (2) K

  • 0.80 × 0.72 × 0.40 mm

Data collection

  • Rigaku R-Axis Rapid IP are-detector diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.924, T max = 0.961

  • 3953 measured reflections

  • 2262 independent reflections

  • 1752 reflections with I > 2σ(I)

  • R int = 0.015

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.055

  • S = 0.87

  • 2262 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: RAPID-AUTO (Rigaku, 2001); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809004231/xu2467sup1.cif

e-65-0o586-sup1.cif (20.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809004231/xu2467Isup2.hkl

e-65-0o586-Isup2.hkl (111.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15A⋯O6i 0.95 2.42 3.343 (2) 163

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry (No. 21168020) and the Doctoral Program Foundation of Institutions of Higher Education of China (No. 20070019072) for support.

supplementary crystallographic information

Comment

The enolone structural unit is often present in nature products, such as brevifolic acid, a constituent of the ellagitannins (Schmidt et al., 1954), meliacinslike cedrelone and anthothecol (Hodges et al., 1963; Bevan et al., 1963) or triterpenoids of the elaterin type, which are widely distributed in cucurbitaceous and cruciferous plants (Ripperger & Seifert, 1975). In a continuation of our search for alcohol oxidation (Yan et al., 2008), herein we present the crystal structure of the title compound, which was produced by oxidation with PDC and acetic anhydride.

In the molecule of the title compound (Fig. 1), the pyran ring conformation can be described as an envelope, with C1/C2/C3/C4/C5 lying almost on the same plane and O1 deviating from this mean plane. The terminal benzene rings of the molecule are nearly perpendicular to each other with a dihedral angle of 83.6 (1)°. The weak intermolecular C—H···O hydrogen bonding presents in the crystal structure (Table 1).

Experimental

A mixture of 4-methoxyphenyl 3-O-benzoyloxy-a-L-rhamnopyranoside (3.74 g, 10 mmol), pyridinium dichromate (4.60 g, 12 mmol), and acetic anhydride (5.68 ml, 60 mmol) in CH2Cl2 (40 ml) was stirred at reflux for 8 h, at the end of which time TLC (4:1 petroleumether–EtOAc) indicated that the reaction was complete. After direct concentration of the reaction mixture, the dark brown residue was diluted with EtOAc (60 ml) and the solution was passed through a short (5–10 cm) silica-gel column. The column was eluted with EtOAc and the eluents were concentrated and coevaporated with toluene. The residue was subjected to silica-gel column chromatography again (4:1 petroleum ether–EtOAc) to give the title compound (2.48 g, 70%). Single crystals suitable for X-ray measurements were obtained by recrystallization from 8:1 petroleumether–EtOAc at room temperature.

Refinement

H atoms were positioned geometrically, with C—H = 0.95 Å, 0.98 Å and 1.00 Å for aromatic, methyl and methine H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x= 1.5 for methyl H and x = 1.2 for other H. The absolute structure was not determined for this structure, Friedel pairs were merged.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing the atomic labelling and displacement ellipsoids drawn at the 50% probability level.

Crystal data

C20H18O6 F(000) = 744
Mr = 354.34 Dx = 1.358 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 789 reflections
a = 8.5906 (17) Å θ = 2.2–27.5°
b = 11.594 (2) Å µ = 0.10 mm1
c = 17.404 (4) Å T = 173 K
V = 1733.4 (6) Å3 Block, colorless
Z = 4 0.80 × 0.72 × 0.40 mm

Data collection

Rigaku R-Axis Rapid IP are-detector diffractometer 2262 independent reflections
Radiation source: rotating anode 1752 reflections with I > 2σ(I)
graphite Rint = 0.015
ω scan θmax = 27.4°, θmin = 2.1°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −11→11
Tmin = 0.924, Tmax = 0.961 k = −14→15
3953 measured reflections l = −22→22

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034 H-atom parameters constrained
wR(F2) = 0.055 w = 1/[σ2(Fo2)]
S = 0.87 (Δ/σ)max = 0.001
2262 reflections Δρmax = 0.17 e Å3
236 parameters Δρmin = −0.24 e Å3
0 restraints Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0215 (13)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 1.17184 (15) 0.59200 (11) 0.94630 (8) 0.0262 (4)
O2 0.93224 (17) 0.89681 (11) 0.91264 (8) 0.0298 (4)
O3 1.04268 (19) 0.94639 (12) 1.02536 (9) 0.0370 (4)
O4 1.21198 (18) 0.84659 (12) 0.84053 (9) 0.0372 (4)
O5 1.13746 (15) 0.59345 (11) 0.81269 (7) 0.0230 (3)
O6 1.36640 (18) 0.16881 (11) 0.72242 (9) 0.0371 (4)
C1 1.0087 (2) 0.58644 (17) 0.96426 (13) 0.0278 (5)
H1A 0.9575 0.5302 0.9288 0.033*
C2 0.9327 (3) 0.70107 (17) 0.95530 (12) 0.0290 (5)
H2A 0.8318 0.7123 0.9763 0.035*
C3 1.0009 (3) 0.78794 (17) 0.91900 (12) 0.0257 (5)
C4 1.1459 (2) 0.77091 (16) 0.87611 (12) 0.0250 (5)
C5 1.2071 (2) 0.64760 (16) 0.87719 (11) 0.0236 (5)
H5A 1.3226 0.6488 0.8701 0.028*
C6 0.9976 (3) 0.5411 (2) 1.04592 (14) 0.0425 (6)
H6A 1.0486 0.4657 1.0491 0.064*
H6B 0.8878 0.5333 1.0604 0.064*
H6C 1.0491 0.5952 1.0810 0.064*
C7 0.9639 (2) 0.97192 (17) 0.97094 (13) 0.0251 (5)
C8 0.8888 (2) 1.08488 (16) 0.95760 (12) 0.0230 (5)
C9 0.8571 (3) 1.15548 (17) 1.02010 (13) 0.0304 (5)
H9A 0.8852 1.1316 1.0705 0.037*
C10 0.7844 (3) 1.26088 (18) 1.00880 (15) 0.0379 (6)
H10A 0.7621 1.3092 1.0515 0.045*
C11 0.7445 (3) 1.29565 (18) 0.93534 (14) 0.0384 (6)
H11A 0.6946 1.3679 0.9277 0.046*
C12 0.7767 (3) 1.22605 (17) 0.87332 (14) 0.0340 (6)
H12A 0.7498 1.2507 0.8230 0.041*
C13 0.8478 (2) 1.12062 (16) 0.88406 (12) 0.0278 (5)
H13A 0.8687 1.0724 0.8412 0.033*
C14 1.1981 (2) 0.48407 (16) 0.79498 (10) 0.0203 (5)
C15 1.3486 (2) 0.47295 (16) 0.76804 (11) 0.0242 (5)
H15A 1.4147 0.5385 0.7652 0.029*
C16 1.4024 (2) 0.36583 (16) 0.74524 (12) 0.0260 (5)
H16A 1.5060 0.3573 0.7271 0.031*
C17 1.3043 (2) 0.27089 (16) 0.74899 (12) 0.0247 (5)
C18 1.1540 (3) 0.28231 (17) 0.77601 (12) 0.0278 (5)
H18A 1.0869 0.2173 0.7784 0.033*
C19 1.1018 (2) 0.39045 (16) 0.79972 (11) 0.0260 (5)
H19A 0.9992 0.3991 0.8192 0.031*
C20 1.2665 (3) 0.07108 (16) 0.72123 (15) 0.0446 (7)
H20A 1.3233 0.0044 0.7010 0.067*
H20B 1.1765 0.0871 0.6883 0.067*
H20C 1.2307 0.0544 0.7735 0.067*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0262 (8) 0.0268 (8) 0.0256 (8) 0.0052 (7) −0.0006 (6) 0.0013 (7)
O2 0.0395 (9) 0.0208 (8) 0.0292 (8) 0.0097 (7) −0.0036 (7) −0.0066 (7)
O3 0.0455 (10) 0.0285 (9) 0.0370 (10) 0.0032 (7) −0.0157 (8) −0.0016 (7)
O4 0.0356 (10) 0.0274 (8) 0.0486 (10) −0.0030 (8) 0.0019 (8) 0.0054 (8)
O5 0.0236 (8) 0.0212 (7) 0.0244 (7) 0.0041 (7) −0.0024 (6) −0.0035 (6)
O6 0.0275 (9) 0.0231 (8) 0.0607 (11) 0.0022 (7) −0.0003 (9) −0.0118 (8)
C1 0.0272 (12) 0.0244 (12) 0.0319 (12) 0.0035 (10) 0.0030 (10) 0.0004 (10)
C2 0.0276 (12) 0.0339 (13) 0.0255 (12) 0.0059 (10) 0.0044 (10) −0.0026 (10)
C3 0.0294 (13) 0.0236 (11) 0.0242 (11) 0.0062 (10) −0.0048 (10) −0.0063 (10)
C4 0.0274 (13) 0.0233 (11) 0.0244 (11) −0.0013 (10) −0.0071 (10) −0.0039 (10)
C5 0.0199 (11) 0.0251 (11) 0.0258 (11) 0.0026 (9) −0.0010 (10) −0.0013 (10)
C6 0.0481 (15) 0.0426 (14) 0.0367 (14) 0.0099 (13) 0.0097 (12) 0.0110 (12)
C7 0.0249 (12) 0.0227 (11) 0.0278 (12) −0.0028 (10) 0.0029 (10) −0.0022 (10)
C8 0.0196 (11) 0.0199 (11) 0.0295 (12) −0.0031 (9) 0.0026 (9) −0.0009 (9)
C9 0.0358 (14) 0.0268 (12) 0.0287 (12) −0.0022 (11) 0.0055 (11) −0.0010 (10)
C10 0.0484 (16) 0.0218 (11) 0.0434 (15) 0.0026 (12) 0.0142 (13) −0.0060 (11)
C11 0.0384 (15) 0.0229 (12) 0.0540 (17) 0.0059 (11) 0.0116 (13) 0.0059 (11)
C12 0.0355 (14) 0.0283 (13) 0.0382 (14) 0.0017 (11) 0.0016 (12) 0.0096 (11)
C13 0.0284 (12) 0.0262 (12) 0.0288 (12) −0.0008 (10) 0.0030 (10) −0.0023 (10)
C14 0.0229 (12) 0.0194 (10) 0.0185 (10) 0.0038 (9) −0.0009 (9) −0.0022 (8)
C15 0.0235 (12) 0.0207 (10) 0.0284 (12) −0.0047 (10) 0.0006 (10) 0.0005 (9)
C16 0.0170 (11) 0.0284 (12) 0.0326 (12) 0.0022 (9) 0.0041 (10) −0.0016 (10)
C17 0.0243 (13) 0.0214 (11) 0.0285 (12) 0.0056 (9) −0.0048 (10) −0.0028 (9)
C18 0.0236 (12) 0.0232 (11) 0.0367 (13) −0.0053 (10) 0.0011 (11) −0.0004 (10)
C19 0.0212 (12) 0.0280 (12) 0.0287 (12) 0.0001 (10) 0.0040 (9) −0.0019 (10)
C20 0.0363 (15) 0.0194 (11) 0.0782 (19) 0.0025 (11) −0.0133 (14) −0.0114 (12)

Geometric parameters (Å, °)

O1—C5 1.398 (2) C8—C13 1.391 (3)
O1—C1 1.437 (2) C9—C10 1.386 (3)
O2—C7 1.365 (2) C9—H9A 0.9500
O2—C3 1.398 (2) C10—C11 1.384 (3)
O3—C7 1.201 (2) C10—H10A 0.9500
O4—C4 1.215 (2) C11—C12 1.376 (3)
O5—C14 1.405 (2) C11—H11A 0.9500
O5—C5 1.418 (2) C12—C13 1.379 (3)
O6—C17 1.378 (2) C12—H12A 0.9500
O6—C20 1.422 (2) C13—H13A 0.9500
C1—C2 1.489 (3) C14—C19 1.367 (3)
C1—C6 1.518 (3) C14—C15 1.381 (3)
C1—H1A 1.0000 C15—C16 1.383 (3)
C2—C3 1.326 (3) C15—H15A 0.9500
C2—H2A 0.9500 C16—C17 1.387 (3)
C3—C4 1.465 (3) C16—H16A 0.9500
C4—C5 1.523 (3) C17—C18 1.381 (3)
C5—H5A 1.0000 C18—C19 1.394 (3)
C6—H6A 0.9800 C18—H18A 0.9500
C6—H6B 0.9800 C19—H19A 0.9500
C6—H6C 0.9800 C20—H20A 0.9800
C7—C8 1.478 (3) C20—H20B 0.9800
C8—C9 1.388 (3) C20—H20C 0.9800
C5—O1—C1 114.77 (15) C10—C9—H9A 120.1
C7—O2—C3 115.67 (16) C8—C9—H9A 120.1
C14—O5—C5 114.64 (14) C11—C10—C9 120.0 (2)
C17—O6—C20 117.11 (17) C11—C10—H10A 120.0
O1—C1—C2 111.40 (17) C9—C10—H10A 120.0
O1—C1—C6 106.29 (18) C12—C11—C10 120.3 (2)
C2—C1—C6 112.29 (19) C12—C11—H11A 119.9
O1—C1—H1A 108.9 C10—C11—H11A 119.9
C2—C1—H1A 108.9 C11—C12—C13 120.2 (2)
C6—C1—H1A 108.9 C11—C12—H12A 119.9
C3—C2—C1 122.3 (2) C13—C12—H12A 119.9
C3—C2—H2A 118.9 C12—C13—C8 120.1 (2)
C1—C2—H2A 118.9 C12—C13—H13A 120.0
C2—C3—O2 122.5 (2) C8—C13—H13A 120.0
C2—C3—C4 121.08 (19) C19—C14—C15 120.83 (18)
O2—C3—C4 116.11 (18) C19—C14—O5 118.64 (18)
O4—C4—C3 124.03 (19) C15—C14—O5 120.37 (17)
O4—C4—C5 121.5 (2) C14—C15—C16 119.60 (18)
C3—C4—C5 114.42 (18) C14—C15—H15A 120.2
O1—C5—O5 112.68 (15) C16—C15—H15A 120.2
O1—C5—C4 111.63 (17) C15—C16—C17 119.73 (19)
O5—C5—C4 105.08 (15) C15—C16—H16A 120.1
O1—C5—H5A 109.1 C17—C16—H16A 120.1
O5—C5—H5A 109.1 O6—C17—C18 123.95 (19)
C4—C5—H5A 109.1 O6—C17—C16 115.51 (19)
C1—C6—H6A 109.5 C18—C17—C16 120.52 (18)
C1—C6—H6B 109.5 C17—C18—C19 119.18 (19)
H6A—C6—H6B 109.5 C17—C18—H18A 120.4
C1—C6—H6C 109.5 C19—C18—H18A 120.4
H6A—C6—H6C 109.5 C14—C19—C18 120.1 (2)
H6B—C6—H6C 109.5 C14—C19—H19A 119.9
O3—C7—O2 122.79 (19) C18—C19—H19A 119.9
O3—C7—C8 126.03 (19) O6—C20—H20A 109.5
O2—C7—C8 111.18 (18) O6—C20—H20B 109.5
C9—C8—C13 119.72 (19) H20A—C20—H20B 109.5
C9—C8—C7 119.00 (19) O6—C20—H20C 109.5
C13—C8—C7 121.27 (18) H20A—C20—H20C 109.5
C10—C9—C8 119.8 (2) H20B—C20—H20C 109.5
C5—O1—C1—C2 −48.6 (2) O3—C7—C8—C13 157.1 (2)
C5—O1—C1—C6 −171.17 (16) O2—C7—C8—C13 −23.2 (3)
O1—C1—C2—C3 14.0 (3) C13—C8—C9—C10 0.2 (3)
C6—C1—C2—C3 133.1 (2) C7—C8—C9—C10 −179.0 (2)
C1—C2—C3—O2 −177.84 (19) C8—C9—C10—C11 −0.3 (3)
C1—C2—C3—C4 8.9 (3) C9—C10—C11—C12 0.0 (4)
C7—O2—C3—C2 89.0 (2) C10—C11—C12—C13 0.6 (4)
C7—O2—C3—C4 −97.4 (2) C11—C12—C13—C8 −0.7 (3)
C2—C3—C4—O4 178.5 (2) C9—C8—C13—C12 0.3 (3)
O2—C3—C4—O4 4.8 (3) C7—C8—C13—C12 179.49 (19)
C2—C3—C4—C5 0.3 (3) C5—O5—C14—C19 116.7 (2)
O2—C3—C4—C5 −173.41 (17) C5—O5—C14—C15 −67.9 (2)
C1—O1—C5—O5 −59.9 (2) C19—C14—C15—C16 0.3 (3)
C1—O1—C5—C4 58.1 (2) O5—C14—C15—C16 −174.99 (17)
C14—O5—C5—O1 −68.5 (2) C14—C15—C16—C17 0.6 (3)
C14—O5—C5—C4 169.78 (16) C20—O6—C17—C18 1.8 (3)
O4—C4—C5—O1 149.13 (18) C20—O6—C17—C16 −176.5 (2)
C3—C4—C5—O1 −32.6 (2) C15—C16—C17—O6 177.71 (17)
O4—C4—C5—O5 −88.4 (2) C15—C16—C17—C18 −0.6 (3)
C3—C4—C5—O5 89.8 (2) O6—C17—C18—C19 −178.37 (19)
C3—O2—C7—O3 −1.6 (3) C16—C17—C18—C19 −0.2 (3)
C3—O2—C7—C8 178.67 (17) C15—C14—C19—C18 −1.1 (3)
O3—C7—C8—C9 −23.8 (3) O5—C14—C19—C18 174.26 (17)
O2—C7—C8—C9 155.93 (18) C17—C18—C19—C14 1.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C15—H15A···O6i 0.95 2.42 3.343 (2) 163

Symmetry codes: (i) −x+3, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2467).

References

  1. Bevan, C. W. L., Rees, A. H. & Taylor, D. A. H. (1963). J. Chem. Soc. pp. 983–989.
  2. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  3. Hodges, R., McGeachin, S. G. & Raphael, R. A. H. (1963). J. Chem. Soc. pp. 2515–2526.
  4. Rigaku (2001). RAPID-AUTO Rigaku Corporation, Tokyo.
  5. Ripperger, H. & Seifert, K. (1975). Tetrahedron, 31, 1561–1563.
  6. Schmidt, O. T. & Bernauer, K. (1954). Justus Liebigs Ann. Chem 588, 211–230.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Yan, S. Q., Liang, X. M., Diao, P. Y., Yang, Y., Zhang, J. J., Wang, D. Q. & Kong, F. Z. (2008). Carbohydr. Res.343, 3107–3111. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809004231/xu2467sup1.cif

e-65-0o586-sup1.cif (20.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809004231/xu2467Isup2.hkl

e-65-0o586-Isup2.hkl (111.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES