Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Feb 25;65(Pt 3):m319. doi: 10.1107/S1600536809006230

Bis(μ-N,N-dimethyl­dithio­carbamato-κ3 S,S′:S)bis­[(N,N-dimethyl­dithio­carbamato-κ2 S,S′)copper(II)]

Le-Qing Fan a,*, Ji-Huai Wu a
PMCID: PMC2968622  PMID: 21582093

Abstract

In the centrosymmetric dimeric title compound, [Cu2(C3H6NS2)4], the CuII atom is five-coordinate in a square-pyramidal environment. The basal coordination positions are occupied by four S atoms from two dimethyl­dithio­carbamate ligands and the apical coordination position is occupied by an S atom also bonded to the other Cu atom.

Related literature

For the structural diversity and potential applications of transition metal complexes, see: Noro et al. (2000); Yaghi et al. (1998). For dialkyl­dithio­carbamates anions acting as monodentate, bidentate or bridging ligands, see: Engelhardt et al. (1988); Fernández et al. (2000); Koh et al. (2003). graphic file with name e-65-0m319-scheme1.jpg

Experimental

Crystal data

  • [Cu2(C3H6NS2)4]

  • M r = 607.91

  • Monoclinic, Inline graphic

  • a = 8.068 (3) Å

  • b = 19.446 (7) Å

  • c = 15.108 (6) Å

  • β = 99.354 (6)°

  • V = 2338.7 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.54 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.15 mm

Data collection

  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2007) T min = 0.807, T max = 1.000 (expected range = 0.552–0.683)

  • 9796 measured reflections

  • 2685 independent reflections

  • 2423 reflections with I > 2σ(I)

  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.141

  • S = 1.07

  • 2685 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.58 e Å−3

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809006230/ng2548sup1.cif

e-65-0m319-sup1.cif (14.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809006230/ng2548Isup2.hkl

e-65-0m319-Isup2.hkl (131.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Cu1—S3 2.3072 (13)
Cu1—S4 2.3208 (13)
Cu1—S1 2.3240 (13)
Cu1—S2 2.3278 (13)
Cu1—S1i 2.8258 (14)

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported financially by the Research Fund of Huaqiao University (No. 06BS216) and the Young Talent Fund of Fujian Province (No. 2007 F3060).

supplementary crystallographic information

Comment

Research into transition metal complexes has been rapidly expanding because of their fascinating structural diversity, as well as their potential applications as functional materials and enzymes (Noro et al., 2000; Yaghi et al., 1998). Dialkyldithiocarbamates anions, which are typical sulfur ligands, acting as monodentate, bidentate or bridging ligands, are often chosen for the preparation of a considerable structural variety of complexes (Engelhardt et al., 1988; Fernández et al., 2000; Koh, et al., 2003). We report here the crystal structure of the title copper(II) complex, (I), contanining a dimethyldithiocarbamate ligand.

The crystal structure of (I) is built up by dimeric entities of CuII complex (Fig. 1). The coordination geometry of CuII ion is described as a distorted square-pyramid. The basal coordination positions are occupied by four S atoms from two dimethyldithiocarbamate ligands. Each briding S atom simultaneously occupies an equatorial coordination site on one CuII ion and apical site on the other CuII. The axial Cu—S bond distance is longer than the equatorial Cu—S ones (Table 1).

Experimental

A mixture of Cu(Ac)2.H2O (0.04 g, 0.2 mmol) and NaS2CNMe2.2H2O (0.04 g, 0.2 mmol) was stirred in DMF (15 ml) at 313 K. 2-PrOH was diffused into the resulting solution, yielding single crystals of (I).

Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.96 Å, Uiso(H) = 1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with 30% probability displacement ellipsoids (arbitrary spheres for H atoms). [Symmetry code: A 1 - x, y, 1/2 - z.]

Crystal data

[Cu2(C3H6NS2)4] F(000) = 1240
Mr = 607.91 Dx = 1.727 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 3071 reflections
a = 8.068 (3) Å θ = 2.5–27.5°
b = 19.446 (7) Å µ = 2.54 mm1
c = 15.108 (6) Å T = 293 K
β = 99.354 (6)° Block, black
V = 2338.7 (15) Å3 0.25 × 0.20 × 0.15 mm
Z = 4

Data collection

Rigaku Mercury CCD diffractometer 2685 independent reflections
Radiation source: Sealed Tube 2423 reflections with I > 2σ(I)
Graphite Monochromator Rint = 0.048
ω scans θmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan (CrystalClear; Rigaku, 2007) h = −9→10
Tmin = 0.807, Tmax = 1.000 k = −25→25
9796 measured reflections l = −19→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0741P)2 + 4.6176P] where P = (Fo2 + 2Fc2)/3
2685 reflections (Δ/σ)max < 0.001
118 parameters Δρmax = 0.44 e Å3
0 restraints Δρmin = −0.58 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.58962 (6) 0.37634 (2) 0.36682 (3) 0.04294 (19)
S1 0.72601 (13) 0.39120 (5) 0.24400 (7) 0.0438 (3)
S2 0.66137 (15) 0.49238 (5) 0.37410 (7) 0.0493 (3)
S3 0.50794 (15) 0.35823 (5) 0.50440 (7) 0.0497 (3)
S4 0.56076 (14) 0.25771 (5) 0.37160 (7) 0.0478 (3)
N1 0.7709 (4) 0.52631 (17) 0.2215 (2) 0.0482 (8)
N2 0.4789 (4) 0.22341 (17) 0.5308 (2) 0.0451 (7)
C1 0.7268 (5) 0.47699 (19) 0.2734 (3) 0.0410 (8)
C2 0.8173 (7) 0.5106 (3) 0.1342 (3) 0.0660 (13)
H2A 0.8225 0.4616 0.1269 0.099*
H2B 0.9251 0.5303 0.1307 0.099*
H2C 0.7348 0.5295 0.0876 0.099*
C3 0.7562 (7) 0.5986 (2) 0.2445 (4) 0.0642 (13)
H3A 0.7251 0.6022 0.3030 0.096*
H3B 0.6717 0.6201 0.2011 0.096*
H3C 0.8620 0.6211 0.2444 0.096*
C4 0.5123 (5) 0.27279 (19) 0.4761 (2) 0.0396 (8)
C5 0.4841 (6) 0.1509 (2) 0.5072 (3) 0.0616 (12)
H5A 0.5085 0.1466 0.4473 0.092*
H5B 0.3773 0.1301 0.5103 0.092*
H5C 0.5699 0.1281 0.5483 0.092*
C6 0.4417 (6) 0.2385 (3) 0.6202 (3) 0.0631 (13)
H6A 0.4415 0.2874 0.6291 0.095*
H6B 0.5257 0.2178 0.6645 0.095*
H6C 0.3333 0.2202 0.6258 0.095*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0524 (3) 0.0380 (3) 0.0398 (3) 0.00016 (19) 0.0115 (2) 0.00059 (18)
S1 0.0478 (6) 0.0412 (5) 0.0442 (5) 0.0025 (4) 0.0125 (4) −0.0010 (4)
S2 0.0613 (7) 0.0414 (5) 0.0462 (6) −0.0044 (4) 0.0114 (5) −0.0078 (4)
S3 0.0667 (7) 0.0447 (5) 0.0397 (5) 0.0014 (5) 0.0144 (5) −0.0027 (4)
S4 0.0643 (7) 0.0385 (5) 0.0430 (6) 0.0041 (4) 0.0158 (5) −0.0005 (4)
N1 0.0478 (19) 0.0466 (18) 0.0489 (19) −0.0053 (15) 0.0041 (15) 0.0071 (15)
N2 0.0445 (18) 0.0467 (17) 0.0438 (18) −0.0017 (14) 0.0063 (14) 0.0063 (14)
C1 0.0365 (18) 0.0425 (18) 0.041 (2) −0.0001 (15) −0.0015 (15) 0.0027 (15)
C2 0.069 (3) 0.072 (3) 0.059 (3) −0.008 (2) 0.018 (2) 0.013 (2)
C3 0.076 (3) 0.042 (2) 0.071 (3) −0.012 (2) 0.002 (2) 0.008 (2)
C4 0.0359 (18) 0.0454 (19) 0.0367 (18) 0.0026 (15) 0.0034 (14) 0.0051 (15)
C5 0.071 (3) 0.043 (2) 0.070 (3) −0.002 (2) 0.009 (2) 0.013 (2)
C6 0.071 (3) 0.072 (3) 0.050 (3) −0.005 (2) 0.021 (2) 0.016 (2)

Geometric parameters (Å, °)

Cu1—S3 2.3072 (13) N2—C5 1.457 (5)
Cu1—S4 2.3208 (13) C2—H2A 0.9600
Cu1—S1 2.3240 (13) C2—H2B 0.9600
Cu1—S2 2.3278 (13) C2—H2C 0.9600
Cu1—S1i 2.8258 (14) C3—H3A 0.9600
S1—C1 1.726 (4) C3—H3B 0.9600
S2—C1 1.715 (4) C3—H3C 0.9600
S3—C4 1.717 (4) C5—H5A 0.9600
S4—C4 1.713 (4) C5—H5B 0.9600
N1—C1 1.324 (5) C5—H5C 0.9600
N1—C2 1.461 (6) C6—H6A 0.9600
N1—C3 1.457 (6) C6—H6B 0.9600
N2—C4 1.323 (5) C6—H6C 0.9600
N2—C6 1.460 (5)
S3—Cu1—S4 77.03 (4) H2A—C2—H2B 109.5
S3—Cu1—S1 168.48 (5) N1—C2—H2C 109.5
S4—Cu1—S1 102.20 (4) H2A—C2—H2C 109.5
S3—Cu1—S2 102.16 (4) H2B—C2—H2C 109.5
S4—Cu1—S2 170.94 (5) N1—C3—H3A 109.5
S1—Cu1—S2 76.75 (4) N1—C3—H3B 109.5
S3—Cu1—S1i 100.81 (5) H3A—C3—H3B 109.5
S4—Cu1—S1i 91.99 (4) N1—C3—H3C 109.5
S1—Cu1—S1i 90.70 (4) H3A—C3—H3C 109.5
S2—Cu1—S1i 97.01 (4) H3B—C3—H3C 109.5
C1—S1—Cu1 84.09 (14) N2—C4—S3 122.2 (3)
C1—S2—Cu1 84.21 (13) N2—C4—S4 123.5 (3)
C4—S3—Cu1 84.45 (13) S3—C4—S4 114.3 (2)
C4—S4—Cu1 84.12 (13) N2—C5—H5A 109.5
C1—N1—C2 121.1 (4) N2—C5—H5B 109.5
C1—N1—C3 121.2 (4) H5A—C5—H5B 109.5
C2—N1—C3 117.3 (4) N2—C5—H5C 109.5
C4—N2—C6 121.7 (4) H5A—C5—H5C 109.5
C4—N2—C5 122.2 (4) H5B—C5—H5C 109.5
C6—N2—C5 116.1 (4) N2—C6—H6A 109.5
N1—C1—S2 123.4 (3) N2—C6—H6B 109.5
N1—C1—S1 122.5 (3) H6A—C6—H6B 109.5
S2—C1—S1 114.1 (2) N2—C6—H6C 109.5
N1—C2—H2A 109.5 H6A—C6—H6C 109.5
N1—C2—H2B 109.5 H6B—C6—H6C 109.5

Symmetry codes: (i) −x+1, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2548).

References

  1. Engelhardt, L. M., Healy, P. C., Shephard, R. M., Skelton, B. W. & White, A. H. (1988). Inorg. Chem.27, 2371–2373.
  2. Fernández, E. J., López-de-Luzuriaga, J. M., Monge, M., Olmos, E., Laguna, A., Villacampa, M. D. & Jones, P. G. (2000). J. Cluster Sci. 11, 153–166.
  3. Koh, Y. W., Lai, C. S., Du, A. Y., Tiekink, E. R. T. & Loh, K. P. (2003). Chem. Mater.15, 4544–4554.
  4. Noro, S., Kitagawa, S., Kondo, M. & Seki, K. (2000). Angew. Chem. Int. Ed.39, 2081–2084. [DOI] [PubMed]
  5. Rigaku (2007). CrystalClear Rigaku Corporation, Tokyo, Japan.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Yaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res.31, 474–484.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809006230/ng2548sup1.cif

e-65-0m319-sup1.cif (14.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809006230/ng2548Isup2.hkl

e-65-0m319-Isup2.hkl (131.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES